Knowledge

Whistler (radio)

Source đź“ť

138:. Due to interactions with free electrons in the ionosphere, the waves becomes highly dispersive and like guided waves, follow the lines of geomagnetic field. These lines provide the field with sufficient focusing influence and prevents the scattering of field energy. Their paths reach into the outer space as far as 3 to 4 times the Earth's radius in the plane of equator and bring energy from lightning discharge to the Earth at a point in the opposite hemisphere which is the magnetic conjugate of the position of radio emission for whistlers. From there, the whistler waves are reflected back to the hemisphere from which they started. The energy is almost perfectly reflected from earth surface 4 or 5 times with increase dispersion and diminishing amplitude. Along such long paths the speed of propagation of energy is between c/10 to c/100 (where c is the speed of light) and the exact value depends upon frequency. 20: 1141: 1153: 304:, may escape the ionosphere and propagate outward into the magnetosphere. The signal is prone to bounce-mode propagation, reflecting back and forth on opposite sides of the planet until totally attenuated. To clarify which part of this hop pattern the signal is in, it is specified by a number, indicating the portion of the bounce path it is currently on. On its first upward path, it is known as a 142:
modulated. This conductivity modulation together with naturally occurring electrojet fields produces a virtual antenna which radiates at the modulation frequency. The HAARP HF heater array has been used to excite whistler-mode VLF signals detectable at the magnetic conjugate point, with up to 10 hops visible in the received VLF data.
141:
Modulated heating of the lower ionosphere with an HF heater array can also be used to generate VLF waves that excite whistler mode propagation. By transmitting high power HF waves with a VLF modulated power envelope into the D-region ionosphere, the conductivity of the ionospheric plasma can be
234:, but stood radio watch with Mallinckrodt until he heard the whistlers himself. Helliwell described these sounds as "weird, strange and unbelievable as flying saucers" in a 1954 article in the 316:. The + or - sign indicates either upward or downward propagation, respectively. The numeral represents the half-bounce currently in progress. The reflected signal is redesignated 105:. Thus they are perceived as a descending tone which can last for a few seconds. The study of whistlers categorizes them into Pure Note, Diffuse, 2-Hop, and Echo Train types. 226:
in 1950. Mallinckrodt heard some whistling sounds and brought them to Helliwell's attention. As Helliwell recalled in an article in the October 1982 issue of the
198: 668:
Inan, U. S.; Golkowski, M.; Carpenter, D. L.; Reddell, N.; Moore, R. C.; Bell, T. F.; Paschal, E.; Kossey, P.; Kennedy, E.; Meth, S. Z. (28 December 2004).
917: 379:, launched 1965, one of the earliest spacecraft to measure ionospheric and magnetospheric VLF waves, non-operational but still orbiting Earth. 807:
Smith, R.L.; Angerami, J.J. (Jan 1, 1968). "Magnetospheric Properties Deduced from OGO 1 Observations of Ducted and Nonducted Whistlers".
134:
The pulse of electromagnetic energy of a lightning discharge producing whistlers contains a wide range of frequencies below the electron
260:
that was 13 miles (21 km) long. The antenna was used to transmit VLF radio signals into Earth's magnetosphere, to be detected in
69:
to 30 kHz, with maximum frequencies usually at 3 kHz to 5 kHz. Although they are electromagnetic waves, they occur at
1157: 240:. Helliwell tried to understand the mechanism involved in the production of whistlers. He conducted experiments at the VLF outpost 218:
is also known for his research into whistlers. Helliwell and one of his students, Jack Mallinckrodt, were investigating lightning
264:. It was possible to inject these signals into the magnetosphere, since the ionosphere is transparent to these low frequencies. 434: 910: 885: 486: 794:
Melissae Fellet, "Robert Helliwell, Radioscience and Magnetosphere Expert, Dead at 90," Stanford Report, May 20, 2011 at
191: 404: 280:, the observed characteristic of a whistler is that the tone rapidly descends over a few seconds—almost like a person 1179: 1145: 903: 150:
Whistlers were probably heard as early as 1886 on long telephone lines, but the clearest early description was by
1121: 877: 297: 1184: 1003: 505:"On estimating the amplitude of Jovian whistlers observed by Voyager 1 and implications concerning lightning" 370: 338: 333: 795: 740: 82: 1126: 1024: 863:
Geophysics and the IGY: proceedings of the symposium at the opening of the International Geophysical Year
611:
Baumjohann, W.; Treumann, R. A.; Georgescu, E.; Haerendel, G.; Fornacon, K.-H.; Auster, U. (1999-12-31).
393: 155: 398: 852:
The INSPIRE Project - Exploring Very Low Frequency Natural Radio (NASA educational portfolio program).
970: 175: 86: 58: 390:(MErcury Surface, Space ENvironment, GEochemistry and Ranging), launched 2004, decommissioned 2015. 926: 236: 670:"Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater" 256:
of 10 kHz corresponds to a wavelength of 30 kilometres (19 mi)), Siple Station had an
119:
known as "Jovian Whistlers", supporting the visual observations of lightning made by Voyager 1.
1194: 1106: 1008: 343: 126:, where they are often called “lion roars” due to their frequencies of tens to hundreds of Hz. 1085: 1069: 965: 955: 858: 410: 816: 681: 624: 575: 516: 440: 19: 846: 8: 1189: 950: 945: 382: 309: 223: 171: 151: 135: 90: 34: 820: 685: 628: 579: 520: 1034: 1029: 960: 697: 650: 565: 478: 422: 54: 23: 612: 178:
lines. From this he deduced but was unable to conclusively prove the existence of the
993: 881: 642: 593: 534: 482: 446: 358: 353: 348: 301: 701: 654: 1090: 1059: 824: 689: 632: 583: 524: 470: 376: 231: 215: 167: 94: 78: 1111: 257: 245: 70: 1039: 732: 493:
Originally published by Stanford University Press, Stanford, California (1965).
93:
of several kHz due to the slower velocity of the lower frequencies through the
74: 38: 637: 1173: 646: 597: 538: 416: 241: 187: 123: 102: 828: 431:(Solar TErrestrial RElations Observatory), launched 2006, still operational. 166:. Around the same time, Storey had posited the existence of whistlers meant 1116: 179: 895: 693: 277: 273: 208: 26: 796:
http://news.stanford.edu/news/2011/may/robert-helliwell-obit-052011.html
940: 669: 249: 195: 183: 98: 42: 529: 504: 1064: 588: 553: 387: 281: 253: 159: 112: 108: 62: 610: 570: 320:, until passing the geomagnetic equator again; then it is called 285: 201:—independently of each other, and the latter using data from the 116: 847:
A beginner's guide to natural VLF radio phenomena - second part.
419:(SOLO), Launched in February 2020, Operational in November 2021. 851: 766: 503:
Hobara, Y.; Kanemaru, S.; Hayakawa, M.; Gurnett, D. A. (1997).
428: 261: 203: 163: 115:
spacecraft detected whistler-like activity in the vicinity of
667: 502: 219: 769:. Engineering and Technology History Wiki. 29 January 2019 174:, and that it moved radio waves in the same direction as 66: 207:
spacecraft—experimentally proved the plasmasphere and
89:
lines from one hemisphere to the other. They undergo
85:
and return-path) where the impulse travels along the
296:
A type of electromagnetic signal propagating in the
469: 65:. Frequencies of terrestrial whistlers are 1  16:Very low frequency EM waves generated by lightning 790: 788: 786: 784: 552:Aplin, Karen L.; Fischer, Georg (February 2017). 73:, and can be converted to audio using a suitable 1171: 861:. In Odishaw, Hugh; Ruttenberg, Stanley (eds.). 800: 248:, which was active from 1971 to 1988. Since the 781: 661: 554:"Lightning detection in planetary atmospheres" 509:Journal of Geophysical Research: Space Physics 911: 806: 613:"Waveform and packet structure of lion roars" 211:'s existence, building on Storey's thinking. 551: 437:(TRACE), launched 1998, decommissioned 2010. 122:Whistlers have been detected in the Earth's 925: 726: 724: 722: 720: 718: 475:Whistlers and Related Ionospheric Phenomena 918: 904: 871: 413:(SMM), launched 1980, decommissioned 1989. 856: 730: 636: 587: 569: 528: 465: 463: 407:(SOHO), launched 1995, still operational. 715: 401:(SDO), launched 2010, still operational. 373:(ACE), launched 1997, still operational. 18: 1172: 761: 759: 757: 460: 435:Transition Region and Coronal Explorer 425:, launched in 2018, still operational. 364: 252:of VLF radio signals is very large (a 899: 443:, launched 1990, decommissioned 2009. 1152: 162:generated whistlers in his 1953 PhD 754: 449:, launched 1994, still operational. 276:radio operators. On the wide-band 13: 839: 405:Solar and Heliospheric Observatory 302:radio atmospheric signal or sferic 14: 1206: 230:, he initially thought it was an 222:at very low radio frequencies at 1151: 1140: 1139: 731:Gallagher, D. L. (27 May 2015). 272:Whistlers were named by British 809:Journal of Geophysical Research 291: 878:Radio Society of Great Britain 733:"Discovering the Plasmasphere" 604: 545: 496: 1: 859:"Whistlers and VLF Emissions" 857:Helliwell, Robert A. (1958). 453: 371:Advanced Composition Explorer 339:Electromagnetic electron wave 334:Dawn chorus (electromagnetic) 288:—hence the name "whistlers." 214:American electrical engineer 190:. In 1963 American scientist 37:VLF group's wave receiver at 741:Marshall Space Flight Center 674:Geophysical Research Letters 267: 59:electromagnetic (radio) wave 7: 1127:Charles Thomson Rees Wilson 1025:Upper-atmospheric lightning 394:Radiation Belt Storm Probes 327: 182:, a thin layer between the 156:Llewelyn Robert Owen Storey 154:in 1919. British scientist 10: 1211: 399:Solar Dynamics Observatory 298:Earth–ionosphere waveguide 145: 129: 1135: 1099: 1078: 1052: 1017: 986: 979: 933: 638:10.1007/s00585-999-1528-9 312:, it is referred to as a 33:wave, as received by the 1180:Atmospheric electricity 927:Atmospheric electricity 829:10.1029/ja073i001p00001 739:. Huntsville, AL: NASA 479:Dover Publications, Inc 77:. They are produced by 1107:Georg Wilhelm Richmann 1086:Electrodynamic tethers 971:Earth's magnetic field 344:Hiss (electromagnetic) 176:Earth's magnetic field 87:Earth's magnetic field 46: 29:of an electromagnetic 1070:Equatorial electrojet 966:Atmospheric chemistry 411:Solar Maximum Mission 308:. After passing the 22: 1185:Electrical phenomena 956:Atmospheric dynamics 737:Space Plasma Physics 694:10.1029/2004GL021647 441:Ulysses (spacecraft) 97:environments of the 951:Atmospheric physics 946:Atmospheric science 872:Romero, R. (2008). 821:1968JGR....73....1S 686:2004GeoRL..3124805I 629:1999AnGeo..17.1528B 617:Annales Geophysicae 580:2017Wthr...72...46A 521:1997JGR...102.7115H 471:Robert A. Helliwell 383:Helios (spacecraft) 365:Relevant spacecraft 310:geomagnetic equator 224:Stanford University 199:Konstantin Gringauz 152:Heinrich Barkhausen 136:cyclotron frequency 35:Stanford University 994:Radio atmospherics 961:Atmospheric dynamo 423:Parker Solar Probe 172:Earth's atmosphere 55:very low frequency 47: 1167: 1166: 1048: 1047: 1018:Optical emissions 987:ELF/VLF emissions 887:978-1-905086-38-2 865:. pp. 35–44. 623:(12): 1528–1534. 530:10.1029/96JA03996 515:(A4): 7115–7125. 488:978-0-486-44572-4 447:WIND (spacecraft) 359:Helicon (physics) 354:Radio atmospheric 349:Atmospheric noise 228:Stanford Engineer 79:lightning strikes 71:audio frequencies 1202: 1155: 1154: 1143: 1142: 1091:Magnetotellurics 1060:Solar irradiance 984: 983: 980:Electromagnetism 920: 913: 906: 897: 896: 891: 866: 833: 832: 804: 798: 792: 779: 778: 776: 774: 763: 752: 751: 749: 747: 728: 713: 712: 710: 708: 665: 659: 658: 640: 608: 602: 601: 591: 589:10.1002/wea.2817 573: 549: 543: 542: 532: 500: 494: 492: 467: 323: 319: 315: 307: 216:Robert Helliwell 1210: 1209: 1205: 1204: 1203: 1201: 1200: 1199: 1170: 1169: 1168: 1163: 1131: 1112:Egon Schweidler 1095: 1074: 1044: 1035:St. Elmo's fire 1013: 975: 929: 924: 894: 888: 876:. Potters Bar: 842: 840:Further reading 837: 836: 805: 801: 793: 782: 772: 770: 765: 764: 755: 745: 743: 729: 716: 706: 704: 666: 662: 609: 605: 550: 546: 501: 497: 489: 468: 461: 456: 367: 330: 321: 317: 313: 305: 294: 284:or an incoming 270: 246:West Antarctica 237:Palo Alto Times 170:was present in 148: 132: 17: 12: 11: 5: 1208: 1198: 1197: 1192: 1187: 1182: 1165: 1164: 1162: 1161: 1149: 1136: 1133: 1132: 1130: 1129: 1124: 1122:George Simpson 1119: 1114: 1109: 1103: 1101: 1097: 1096: 1094: 1093: 1088: 1082: 1080: 1076: 1075: 1073: 1072: 1067: 1062: 1056: 1054: 1050: 1049: 1046: 1045: 1043: 1042: 1040:Ball lightning 1037: 1032: 1027: 1021: 1019: 1015: 1014: 1012: 1011: 1006: 1001: 996: 990: 988: 981: 977: 976: 974: 973: 968: 963: 958: 953: 948: 943: 937: 935: 931: 930: 923: 922: 915: 908: 900: 893: 892: 886: 868: 867: 854: 849: 843: 841: 838: 835: 834: 799: 780: 753: 714: 660: 603: 544: 495: 487: 458: 457: 455: 452: 451: 450: 444: 438: 432: 426: 420: 414: 408: 402: 396: 391: 385: 380: 374: 366: 363: 362: 361: 356: 351: 346: 341: 336: 329: 326: 293: 290: 269: 266: 147: 144: 131: 128: 39:Palmer Station 15: 9: 6: 4: 3: 2: 1207: 1196: 1195:Space physics 1193: 1191: 1188: 1186: 1183: 1181: 1178: 1177: 1175: 1160: 1159: 1150: 1148: 1147: 1138: 1137: 1134: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1104: 1102: 1098: 1092: 1089: 1087: 1084: 1083: 1081: 1077: 1071: 1068: 1066: 1063: 1061: 1058: 1057: 1055: 1051: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1023: 1022: 1020: 1016: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 991: 989: 985: 982: 978: 972: 969: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 938: 936: 932: 928: 921: 916: 914: 909: 907: 902: 901: 898: 889: 883: 879: 875: 870: 869: 864: 860: 855: 853: 850: 848: 845: 844: 830: 826: 822: 818: 814: 810: 803: 797: 791: 789: 787: 785: 768: 767:"Owen Storey" 762: 760: 758: 742: 738: 734: 727: 725: 723: 721: 719: 703: 699: 695: 691: 687: 683: 679: 675: 671: 664: 656: 652: 648: 644: 639: 634: 630: 626: 622: 618: 614: 607: 599: 595: 590: 585: 581: 577: 572: 567: 563: 559: 555: 548: 540: 536: 531: 526: 522: 518: 514: 510: 506: 499: 490: 484: 480: 476: 472: 466: 464: 459: 448: 445: 442: 439: 436: 433: 430: 427: 424: 421: 418: 417:Solar Orbiter 415: 412: 409: 406: 403: 400: 397: 395: 392: 389: 386: 384: 381: 378: 375: 372: 369: 368: 360: 357: 355: 352: 350: 347: 345: 342: 340: 337: 335: 332: 331: 325: 324:, and so on. 311: 303: 300:, known as a 299: 289: 287: 283: 279: 275: 265: 263: 259: 255: 251: 247: 243: 242:Siple Station 239: 238: 233: 229: 225: 221: 217: 212: 210: 206: 205: 200: 197: 193: 192:Don Carpenter 189: 188:magnetosphere 185: 181: 177: 173: 169: 165: 161: 157: 153: 143: 139: 137: 127: 125: 124:magnetosheath 120: 118: 114: 110: 106: 104: 103:magnetosphere 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 61:generated by 60: 56: 52: 44: 40: 36: 32: 28: 25: 21: 1156: 1144: 1117:Nikola Tesla 1079:Applications 998: 874:Radio Nature 873: 862: 812: 808: 802: 771:. Retrieved 744:. Retrieved 736: 705:. Retrieved 677: 673: 663: 620: 616: 606: 564:(2): 46–50. 561: 557: 547: 512: 508: 498: 474: 295: 292:Nomenclature 271: 235: 227: 213: 202: 180:plasmasphere 164:dissertation 149: 140: 133: 121: 107: 50: 48: 30: 815:(1): 1–20. 278:spectrogram 274:World War I 209:plasmapause 194:and Soviet 27:spectrogram 1190:Ionosphere 1174:Categories 941:Geophysics 773:1 December 746:1 December 571:1606.03285 454:References 250:wavelength 196:astronomer 184:ionosphere 158:had shown 99:ionosphere 91:dispersion 83:intracloud 43:Antarctica 1065:Lightning 999:Whistlers 647:0992-7689 598:0043-1656 539:2156-2202 388:MESSENGER 282:whistling 268:Etymology 254:frequency 160:lightning 109:Voyager 1 63:lightning 1146:Category 707:20 April 702:16062416 655:11493967 473:(2006). 328:See also 232:artifact 81:(mostly 75:receiver 51:whistler 31:whistler 1158:Commons 1053:Sources 1030:Sprites 934:General 817:Bibcode 682:Bibcode 625:Bibcode 576:Bibcode 558:Weather 517:Bibcode 286:grenade 258:antenna 146:History 130:Sources 117:Jupiter 1100:People 1004:Chorus 884:  700:  680:(24). 653:  645:  596:  537:  485:  429:STEREO 262:Canada 204:Luna 2 168:plasma 95:plasma 57:(VLF) 698:S2CID 651:S2CID 566:arXiv 220:noise 53:is a 1009:Hiss 882:ISBN 775:2020 748:2020 709:2022 643:ISSN 594:ISSN 535:ISSN 483:ISBN 377:FR-1 186:and 111:and 101:and 825:doi 690:doi 633:doi 584:doi 525:doi 513:102 244:in 67:kHz 24:VLF 1176:: 880:. 823:. 813:73 811:. 783:^ 756:^ 735:. 717:^ 696:. 688:. 678:31 676:. 672:. 649:. 641:. 631:. 621:17 619:. 615:. 592:. 582:. 574:. 562:72 560:. 556:. 533:. 523:. 511:. 507:. 481:. 477:. 462:^ 49:A 41:, 919:e 912:t 905:v 890:. 831:. 827:: 819:: 777:. 750:. 711:. 692:: 684:: 657:. 635:: 627:: 600:. 586:: 578:: 568:: 541:. 527:: 519:: 491:. 322:2 318:1 314:1 306:0 113:2 45:.

Index


VLF
spectrogram
whistler
Stanford University
Palmer Station
Antarctica
very low frequency
electromagnetic (radio) wave
lightning
kHz
audio frequencies
receiver
lightning strikes
intracloud
Earth's magnetic field
dispersion
plasma
ionosphere
magnetosphere
Voyager 1
2
Jupiter
magnetosheath
cyclotron frequency
Heinrich Barkhausen
Llewelyn Robert Owen Storey
lightning
dissertation
plasma

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑