Knowledge

Kármán vortex street

Source 📝

446:
considered at the temperature being considered. On the other hand, the reference length is always an arbitrary parameter, so particular attention should be put when comparing flows around different obstacles or in channels of different shapes: the global Reynolds numbers should be referred to the same reference length. This is actually the reason for which the most precise sources for airfoil and channel flow data specify the reference length at the Reynolds number. The reference length can vary depending on the analysis to be performed: for a body with circle sections such as circular cylinders or spheres, one usually chooses the diameter; for an airfoil, a generic non-circular cylinder or a
911:
was first necessary to know the pressure distribution around the cylinder in a steady flow. Much to his surprise, Hiemenz found that the flow in his channel oscillated violently. When he reported this to Prandtl, the latter told him: 'Obviously your cylinder is not circular.' However, even after very careful machining of the cylinder, the flow continued to oscillate. Then Hiemenz was told that possibly the channel was not symmetric, and he started to adjust it. I was not concerned with this problem, but every morning when I came in the laboratory I asked him, 'Herr Hiemenz, is the flow steady now?' He answered very sadly, 'It always oscillates.'
31: 705: 1970: 121: 558: 105: 80:" of suspended telephone or power lines and the vibration of a car antenna at certain speeds. Mathematical modeling of von Kármán vortex street can be performed using different techniques including but not limited to solving the full Navier-Stokes equations with k-epsilon, SST, k-omega and Reynolds stress, and large eddy simulation (LES) turbulence models, by numerically solving some dynamic equations such as the 1757: 584: 494:≈ 47. Eddies are shed continuously from each side of the circle boundary, forming rows of vortices in its wake. The alternation leads to the core of a vortex in one row being opposite the point midway between two vortex cores in the other row, giving rise to the distinctive pattern shown in the picture. Ultimately, the 609: 445:
For common flows (the ones which can usually be considered as incompressible or isothermal), the kinematic viscosity is everywhere uniform over all the flow field and constant in time, so there is no choice on the viscosity parameter, which becomes naturally the kinematic viscosity of the fluid being
692:
When a tuned mass damper is installed on a cylindrical structure, such as a tall chimney or mast, it helps to reduce the vibration amplitudes caused by vortex shedding. The tuned mass damper consists of a mass that is attached to the structure through springs or dampers. In many cases, the spring is
466:
as the flow speed parameter for comparing different profiles). On the other hand, for fairings and struts the given parameter is usually the dimension of internal structure to be streamlined (let us think for simplicity it is a beam with circular section), and the main target is to minimize the drag
910:
had a doctoral candidate, Karl Hiemenz, to whom he gave the task of constructing a water channel in which he could observe the separation of the flow behind a cylinder. The object was to check experimentally the separation point calculated by means of the boundary-layer theory. For this purpose, it
628:
In low turbulence, tall buildings can produce a Kármán street, so long as the structure is uniform along its height. In urban areas where there are many other tall structures nearby, the turbulence produced by these can prevent the formation of coherent vortices. Periodic crosswind forces set up by
569:
The flow of atmospheric air over obstacles such as islands or isolated mountains sometimes gives birth to von Kármán vortex streets. When a cloud layer is present at the relevant altitude, the streets become visible. Such cloud layer vortex streets have been photographed from satellites. The vortex
700:
The effectiveness of a tuned mass damper in mitigating vortex shedding-induced vibrations depends on factors such as the mass of the damper, its placement on the structure, and the tuning of the system. Engineers carefully analyze the structural dynamics and characteristics of the vortex shedding
461:
For an aerodynamic profile the reference length depends on the analysis. In fact, the profile chord is usually chosen as the reference length also for aerodynamic coefficient for wing sections and thin profiles in which the primary target is to maximize the lift coefficient or the lift/drag ratio
927:
whilst wading through water. Vortices could be seen in the water, and von Kármán noted that "The problem for historians may have been why Christopher was carrying Jesus through the water. For me it was why the vortices". It has been suggested by researchers that the painting is one from the 14th
590: 588: 585: 589: 696:
As the structure is subjected to vortex shedding-induced vibrations, the tuned mass damper oscillates in an out-of-phase motion with the structure. This counteracts the vibrations, reducing their amplitudes and minimizing the potential for resonance and structural damage.
587: 615: 613: 610: 614: 467:
coefficient or the drag/lift ratio. The main design parameter which becomes naturally also a reference length is therefore the profile thickness (the profile dimension or area perpendicular to the flow direction), rather than the profile chord.
725:
projections resembling large screw threads are sometimes placed at the top, which effectively create asymmetric three-dimensional flow, thereby discouraging the alternate shedding of vortices; this is also found in some car antennas.
1162:
Farazande, S. and Bayindir, C., The Interaction of Von Kármán Vortices with the Solitons of the Complex GinzburgLandau Equation. International Conference on Applied Mathematics in Engineering (ICAME) September 1–3, 2021 - Balikesir,
693:
replaced by suspending the mass on cables such that it forms a pendulum system with the same resonance frequency. The mass is carefully tuned to have a natural frequency that matches the dominant frequency of the vortex shedding.
612: 2164: 807: 716:
Another solution to prevent the unwanted vibration of such cylindrical bodies is a longitudinal fin that can be fitted on the downstream side, which, provided it is longer than the diameter of the cylinder, prevents the
267:
like the body speed relative to the fluid at rest, or an inviscid flow speed, computed through the Bernoulli equation), which is the original global flow parameter, i.e. the target to be non-dimensionalised.
1293: 211: 100:
Animation of vortex street created by a cylindrical object; the flow on opposite sides of the object is given different colors, showing that the vortices are shed from alternating sides of the object
377: 97: 586: 847: 729:
Another countermeasure with tall buildings is using variation in the diameter with height, such as tapering - that prevents the entire building from being driven at the same frequency.
633:
caused, which can damage the structure, hence it is important for engineers to account for the possible effects of vortex shedding when designing a wide range of structures, from
1816: 648:. For monitoring such engineering structures, the efficient measurements of von Kármán streets can be performed using smart sensing algorithms such as compressive sensing. 689:(TMD). A tuned mass damper is a device consisting of a mass-spring system that is specifically designed and tuned to counteract the vibrations induced by vortex shedding. 611: 265: 407: 746: 436: 316: 721:
from interacting, and consequently they remain attached. Obviously, for a tall building or mast, the relative wind could come from any direction. For this reason,
1481: 287: 234: 116:
mountains. This phenomenon observed from ground level is extremely rare, as most cloud-related Kármán vortex street activity is viewed from space.
1781:"Flow visualisation of the vortex shedding mechanism on circular cylinder using hydrogen bubbles illuminated by a laser sheet in a water channel" 1761: 1387:
Etling, D. (1990-03-01). "Mesoscale vortex shedding from large islands: A comparison with laboratory experiments of rotating stratified flows".
37:
of the vortex street behind a circular cylinder in air; the flow is made visible through release of glycerol vapour in the air near the cylinder
570:
street can reach over 400 km (250 mi) from the obstacle and the diameter of the vortices are normally 20–40 km (12–25 mi).
1172:
Monkewitz, P. A., Williamson, C. H. K. and Miller, G. D., Phase dynamics of Kármán vortices in cylinder wakes. Physics of Fluids, 8, 1, 1996.
1153:
Albarède, P., & Provansal, M. Quasi-periodic cylinder wakes and the Ginzburg–Landau model. Journal of Fluid Mechanics, 291, 191-222, 1995.
159: 17: 328: 1859: 1366: 660: 1827: 812: 1618: 1568: 1527: 1044: 1036: 621:
The same cylinder, now with a fin, suppressing the vortex street by reducing the region in which the side eddies can interact
454:
or the profile thickness, or some other given widths that are in fact stable design inputs; for flow channels usually the
2145: 1107:"Effects of Turbulence Model and Numerical Time Steps on von Karman Flow Behavior and Drag Accuracy of Circular Cylinder" 498:
of the vortices is consumed by viscosity as they move further down stream, and the regular pattern disappears. Above the
1323:
Barkley, D.; Henderson, R.D. (1996). "Three-dimensional Floquet stability analysis of the wake of a circular cylinder".
1485: 1249:
Jackson, C.P. (1987). "A finite-element study of the onset of vortex shedding in flow past variously shaped bodies".
1012: 1768: 2183: 1852: 947: 486:
of the fluid. For the wake of a circular cylinder, for which the reference length is conventionally the diameter
530: 1060:
Bayındır, Cihan; Namlı, Barış (2021). "Efficient sensing of von Kármán vortices using compressive sensing".
2125: 667: 81: 1845: 944: – Swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime 502:
value of 188.5, the flow becomes three-dimensional, with periodic variation along the cylinder. Above
685:
To prevent vortex shedding and mitigate the unwanted vibration of cylindrical bodies is the use of a
659:, especially when built together in clusters. Vortex shedding caused the collapse of three towers at 630: 670:
was originally attributed to excessive vibration due to vortex shedding, but was actually caused by
562: 965: 888: 73: 1959: 1598: 1804: 1784: 1507: 525:
lateral (sideways) forces on the body in question, causing it to vibrate. If the vortex shedding
243: 1548: 385: 414: 294: 2219: 941: 929: 879:(1850–1922) who first investigated the steady humming or singing of telegraph wires in 1878. 718: 475: 1447: 1396: 1332: 1258: 1205: 1118: 709: 108:
A look at the Kármán vortex street effect from ground level, as air flows quickly from the
77: 1131: 1106: 128:
A vortex street forms only at a certain range of flow velocities, specified by a range of
8: 2193: 2153: 1937: 1438:
Irwin, Peter A. (September 2010). "Vortices and tall buildings: A recipe for resonance".
916: 671: 483: 451: 319: 1451: 1400: 1336: 1262: 1209: 1122: 915:
In his autobiography, von Kármán described how his discovery was inspired by an Italian
2131: 2031: 1868: 1574: 1420: 1348: 1274: 1226: 1195: 1183: 1136: 1087: 1069: 455: 272: 219: 34: 2165:
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
2214: 2158: 2058: 2053: 1994: 1984: 1922: 1735: 1614: 1578: 1564: 1523: 1463: 1424: 1412: 1278: 1231: 1140: 1091: 1040: 1032: 1008: 686: 597: 439: 1352: 1083: 2009: 1725: 1606: 1556: 1515: 1455: 1404: 1340: 1305: 1266: 1221: 1213: 1126: 1079: 1000: 876: 85: 971: 968: – Motions induced on bodies within a fluid flow due to vortices in the fluid 1932: 959: 953: 892: 872: 802:{\displaystyle {\text{St}}=0.198\left(1-{\frac {19.7}{{\text{Re}}_{d}}}\right)\ } 704: 546: 479: 129: 62: 58: 30: 1610: 896: 2120: 2115: 2048: 1712:
Mizota, Taketo; Zdravkovich, Mickey; Graw, Kai-U.; Leder, Alfred (March 2000).
1519: 920: 907: 538: 537:. It is this forced vibration that, at the correct frequency, causes suspended 450:
or a revolution body like a fuselage or a submarine, it is usually the profile
153: 42: 1796: 1780: 1560: 1344: 1270: 962: – Oscillating flow effect resulting from fluid passing over a blunt body 152:
in the flow of a fluid around a body or in a channel, and may be defined as a
2208: 2110: 2105: 1739: 1467: 1416: 1309: 656: 113: 109: 1969: 677:
Kármán turbulence is also a problem for airplanes, especially when landing.
521:
distribution. This means that the alternate shedding of vortices can create
2021: 1944: 1927: 1713: 1665:
Aerodynamics: Selected Topics in the Light of Their Historical Development
1235: 1217: 1004: 701:
phenomenon to determine the optimal parameters for the tuned mass damper.
96: 2139: 2097: 2016: 1912: 1907: 992: 652: 507: 2086: 2081: 1999: 1902: 1555:, Chichester, UK: John Wiley & Sons, Ltd, p. 362, 2018-10-12, 1408: 645: 542: 447: 237: 120: 1702:
Von Kármán, T. (1954). Aerodynamics (Vol. 203). Columbus: McGraw-Hill.
1459: 1184:"Stability of two-dimensional potential flows using bicomplex numbers" 2188: 2091: 1837: 1730: 1605:, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 1375–1392, 891:, he acknowledged that the vortex street had been studied earlier by 637: 634: 534: 526: 522: 149: 974: – Tendency of a fluid jet to stay attached to a convex surface 629:
vortices along object's sides can be highly undesirable, due to the
1917: 1882: 1200: 1074: 518: 514: 557: 104: 2043: 2038: 2026: 2004: 1989: 1897: 1808: 1788: 641: 474:
values varies with the size and shape of the body from which the
145: 1756: 1514:, Hoboken, NJ, USA: John Wiley & Sons, Inc., p. 1076, 1182:
Kleine, Vitor G.; Hanifi, Ardeshir; Henningson, Dan S. (2022).
495: 54: 1508:"Aerodynamic Sound Sources in Vehicles—Prediction and Control" 956: – Ratio of inertial to viscous forces acting on a liquid 2076: 1642:
Math. Phys. Klasse pp. 509–517 (1911) and pp. 547–556 (1912).
1597:
Crocker, Malcolm J. (2007-09-19), Crocker, Malcolm J. (ed.),
1294:"Bénard-von Kármán instability: transient and forced regimes" 924: 722: 66: 510:, vortex shedding becomes irregular and turbulence sets in. 462:(i.e. as usual in thin airfoil theory, one would employ the 1954: 1892: 1887: 737:
This formula generally holds true for the range 250 < Re
490:
of the circular cylinder, the lower limit of this range is
1711: 289:= a characteristic length parameter of the body or channel 144:) Reynolds number for a flow is a measure of the ratio of 1599:"Vibration Response of Structures to Fluid Flow and Wind" 1367:"Rapid Response - LANCE - Terra/MODIS 2010/226 14:55 UTC" 1506:
Ahmed, Syed R. (2007-09-19), Crocker, Malcolm J. (ed.),
206:{\displaystyle \mathrm {Re} _{L}={\frac {UL}{\nu _{0}}}} 561:
Kármán vortex street caused by wind flowing around the
156:
parameter of the global speed of the whole fluid flow:
1181: 372:{\displaystyle \nu _{0}={\frac {\mu _{0}}{\rho _{0}}}} 815: 749: 549:
on a car to vibrate more strongly at certain speeds.
417: 388: 331: 297: 275: 246: 222: 162: 1291: 72:
It is named after the engineer and fluid dynamicist
1104: 517:flow pattern forms around the body and changes the 322:
parameter of the fluid, which in turn is the ratio:
240:(i.e. the flow speed far from the fluid boundaries 841: 801: 430: 401: 371: 310: 281: 259: 228: 205: 2206: 1553:Noise and Vibration Control in Automotive Bodies 1322: 871:This dimensionless parameter St is known as the 76:, and is responsible for such phenomena as the " 1797:"Guadalupe Island Produces von Kármán Vortices" 1105:Amalia, E.; Moelyadi, M. A.; Ihsan, M. (2018). 928:century that can be found in the museum of the 1667:(Cornell University Press, Ithaca), pp. 68–69. 1853: 1676:A. Mallock, 1907: On the resistance of air. 1292:Provansal, M.; Mathis, C.; Boyer, L. (1987). 1059: 1807:from the original on 2021-12-22 – via 1787:from the original on 2021-12-22 – via 124:A vortex street in a 2D liquid of hard disks 1446:(9). American Institute of Physics: 68–69. 990: 842:{\displaystyle {\text{St}}={\frac {fd}{U}}} 1860: 1846: 1729: 1691:Comptes Rendus de l'Académie des Sciences 1225: 1199: 1130: 1073: 1693:(Paris), vol. 147, pp. 839–842, 970–972. 875:and is named after the Czech physicist, 703: 556: 119: 103: 95: 61:, which is responsible for the unsteady 29: 1603:Handbook of Noise and Vibration Control 1596: 1512:Handbook of Noise and Vibration Control 1248: 573: 14: 2207: 1867: 1817:"Various Views of von Karman Vortices" 1386: 1055: 1053: 27:Repeating pattern of swirling vortices 1841: 1651:T. von Kármán: and H. Rubach, 1912: 1505: 1437: 1111:Journal of Physics: Conference Series 950: – Phenomenon of fluid mechanics 899:. Kármán tells the story in his book 53:) is a repeating pattern of swirling 1482:"Airport Opening Ceremony Postponed" 991:J.E. Cooper (2001). S. Braun (ed.). 2146:The Chemical Basis of Morphogenesis 1640:Nachr. Ges. Wissenschaft. Göttingen 1389:Meteorology and Atmospheric Physics 1050: 24: 533:of a body or structure, it causes 458:about which the fluid is flowing. 252: 168: 165: 25: 2231: 1749: 596:Simulated vortex street around a 552: 513:When a single vortex is shed, an 1968: 1755: 607: 582: 1705: 1696: 1683: 1670: 1657: 1645: 1632: 1590: 1541: 1499: 1474: 1431: 1380: 1359: 1316: 1285: 1132:10.1088/1742-6596/1005/1/012012 1084:10.1016/j.compfluid.2021.104975 57:, caused by a process known as 1653:Phys. Z.", vol. 13, pp. 49–59. 1242: 1175: 1166: 1156: 1147: 1098: 1021: 984: 668:original Tacoma Narrows Bridge 409:= the reference fluid density. 136:), typically above a limiting 13: 1: 1369:. Rapidfire.sci.gsfc.nasa.gov 978: 1769:"von Karman vortex shedding" 948:Kelvin–Helmholtz instability 855:= vortex shedding frequency. 680: 7: 1773:Encyclopedia of Mathematics 1611:10.1002/9780470209707.ch116 935: 712:fitted to break up vortices 663:in 1965 during high winds. 661:Ferrybridge Power Station C 655:can be created in concrete 260:{\displaystyle U_{\infty }} 91: 10: 2236: 1520:10.1002/9780470209707.ch87 1325:Journal of Fluid Mechanics 1298:Journal of Fluid Mechanics 1251:Journal of Fluid Mechanics 882: 861:= diameter of the cylinder 732: 506:on the order of 10 at the 2176: 2126:D'Arcy Wentworth Thompson 2069: 1977: 1966: 1875: 1762:Von Kármán vortex streets 1561:10.1002/9781119515500.ch6 1345:10.1017/S0022112096002777 1271:10.1017/S0022112087002234 997:Encyclopedia of Vibration 631:vortex-induced vibrations 402:{\displaystyle \rho _{0}} 1310:10.1017/S002211208700223 966:Vortex-induced vibration 438:= the free stream fluid 431:{\displaystyle \mu _{0}} 311:{\displaystyle \nu _{0}} 140:value of about 90. The ( 82:Ginzburg–Landau equation 51:von Kármán vortex street 18:Von Kármán vortex street 600:cylindrical obstruction 1218:10.1098/rspa.2022.0165 1062:Computers & Fluids 1031:. McGraw-Hill (1963): 1005:10.1006/rwvb.2001.0125 993:"Aeroelastic Response" 913: 843: 803: 713: 566: 563:Juan Fernández Islands 482:, as well as with the 432: 403: 373: 312: 283: 261: 230: 207: 125: 117: 101: 38: 1960:Widmanstätten pattern 1027:Theodore von Kármán, 942:Eddy (fluid dynamics) 905: 887:Although named after 844: 804: 707: 565:off the Chilean coast 560: 433: 404: 374: 313: 284: 262: 231: 208: 123: 107: 99: 69:around blunt bodies. 33: 1764:at Wikimedia Commons 1714:"Science in culture" 813: 747: 574:Engineering problems 415: 386: 329: 295: 273: 244: 220: 160: 47:Kármán vortex street 2194:Mathematics and art 2184:Pattern recognition 2154:Aristid Lindenmayer 1680:, A79, pp. 262–265. 1452:2010PhT....63i..68I 1401:1990MAP....43..145E 1337:1996JFM...322..215B 1263:1987JFM...182...23J 1210:2022RSPSA.47820165K 1123:2018JPhCS1005a2012A 999:. Elsevier: 87–97. 932:church in Bologna. 923:carrying the child 889:Theodore von Kármán 672:aeroelastic flutter 666:The failure of the 484:kinematic viscosity 320:kinematic viscosity 74:Theodore von Kármán 2132:On Growth and Form 2032:Logarithmic spiral 1869:Patterns in nature 1833:on March 12, 2016. 1689:H. Bénard, 1908: 1409:10.1007/BF01028117 839: 799: 714: 651:Even more serious 567: 545:to "sing" and the 529:is similar to the 456:hydraulic diameter 428: 399: 369: 318:= the free stream 308: 279: 257: 236:= the free stream 226: 203: 126: 118: 102: 86:bicomplex variable 63:separation of flow 39: 2202: 2201: 2159:Benoît Mandelbrot 2059:Self-organization 1995:Natural selection 1985:Pattern formation 1760:Media related to 1663:T. Kármán, 1954. 1620:978-0-470-20970-7 1570:978-1-119-51550-0 1529:978-0-470-20970-7 1460:10.1063/1.3490510 1045:978-0-486-43485-8 1037:978-0-07-067602-2 837: 819: 798: 789: 781: 753: 687:tuned mass damper 616: 591: 531:natural frequency 440:dynamic viscosity 367: 282:{\displaystyle L} 229:{\displaystyle U} 201: 84:, or by use of a 16:(Redirected from 2227: 2010:Sexual selection 1972: 1862: 1855: 1848: 1839: 1838: 1834: 1832: 1826:. Archived from 1821: 1812: 1792: 1776: 1759: 1744: 1743: 1733: 1731:10.1038/35005158 1709: 1703: 1700: 1694: 1687: 1681: 1678:Proc. Royal Soc. 1674: 1668: 1661: 1655: 1649: 1643: 1638:T. von Kármán: 1636: 1630: 1629: 1628: 1627: 1594: 1588: 1587: 1586: 1585: 1545: 1539: 1538: 1537: 1536: 1503: 1497: 1496: 1494: 1493: 1484:. Archived from 1478: 1472: 1471: 1435: 1429: 1428: 1384: 1378: 1377: 1375: 1374: 1363: 1357: 1356: 1320: 1314: 1313: 1289: 1283: 1282: 1246: 1240: 1239: 1229: 1203: 1179: 1173: 1170: 1164: 1160: 1154: 1151: 1145: 1144: 1134: 1102: 1096: 1095: 1077: 1057: 1048: 1039:. Dover (1994): 1025: 1019: 1018: 988: 877:Vincenc Strouhal 867:= flow velocity. 848: 846: 845: 840: 838: 833: 825: 820: 817: 808: 806: 805: 800: 796: 795: 791: 790: 788: 787: 782: 779: 773: 754: 751: 618: 617: 593: 592: 437: 435: 434: 429: 427: 426: 408: 406: 405: 400: 398: 397: 378: 376: 375: 370: 368: 366: 365: 356: 355: 346: 341: 340: 317: 315: 314: 309: 307: 306: 288: 286: 285: 280: 266: 264: 263: 258: 256: 255: 235: 233: 232: 227: 212: 210: 209: 204: 202: 200: 199: 190: 182: 177: 176: 171: 130:Reynolds numbers 21: 2235: 2234: 2230: 2229: 2228: 2226: 2225: 2224: 2205: 2204: 2203: 2198: 2172: 2065: 1973: 1964: 1871: 1866: 1830: 1819: 1815: 1795: 1779: 1767: 1752: 1747: 1710: 1706: 1701: 1697: 1688: 1684: 1675: 1671: 1662: 1658: 1650: 1646: 1637: 1633: 1625: 1623: 1621: 1595: 1591: 1583: 1581: 1571: 1547: 1546: 1542: 1534: 1532: 1530: 1504: 1500: 1491: 1489: 1480: 1479: 1475: 1436: 1432: 1385: 1381: 1372: 1370: 1365: 1364: 1360: 1321: 1317: 1290: 1286: 1247: 1243: 1188:Proc. R. Soc. A 1180: 1176: 1171: 1167: 1161: 1157: 1152: 1148: 1103: 1099: 1058: 1051: 1026: 1022: 1015: 989: 985: 981: 960:Vortex shedding 954:Reynolds number 938: 893:Arnulph Mallock 885: 873:Strouhal number 826: 824: 816: 814: 811: 810: 783: 778: 777: 772: 765: 761: 750: 748: 745: 744: 742: 735: 683: 626: 625: 624: 623: 622: 619: 608: 603: 602: 601: 594: 583: 576: 555: 422: 418: 416: 413: 412: 393: 389: 387: 384: 383: 361: 357: 351: 347: 345: 336: 332: 330: 327: 326: 302: 298: 296: 293: 292: 274: 271: 270: 251: 247: 245: 242: 241: 221: 218: 217: 195: 191: 183: 181: 172: 164: 163: 161: 158: 157: 94: 59:vortex shedding 28: 23: 22: 15: 12: 11: 5: 2233: 2223: 2222: 2217: 2200: 2199: 2197: 2196: 2191: 2186: 2180: 2178: 2174: 2173: 2171: 2170: 2169: 2168: 2156: 2151: 2150: 2149: 2137: 2136: 2135: 2123: 2121:Wilson Bentley 2118: 2116:Joseph Plateau 2113: 2108: 2103: 2102: 2101: 2089: 2084: 2079: 2073: 2071: 2067: 2066: 2064: 2063: 2062: 2061: 2056: 2054:Plateau's laws 2051: 2049:Fluid dynamics 2046: 2036: 2035: 2034: 2029: 2024: 2014: 2013: 2012: 2007: 2002: 1997: 1987: 1981: 1979: 1975: 1974: 1967: 1965: 1963: 1962: 1957: 1952: 1947: 1942: 1941: 1940: 1935: 1930: 1925: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1879: 1877: 1873: 1872: 1865: 1864: 1857: 1850: 1842: 1836: 1835: 1813: 1801:NOAASatellites 1793: 1777: 1765: 1751: 1750:External links 1748: 1746: 1745: 1704: 1695: 1682: 1669: 1656: 1644: 1631: 1619: 1589: 1569: 1540: 1528: 1498: 1473: 1430: 1395:(1): 145–151. 1379: 1358: 1315: 1284: 1241: 1174: 1165: 1155: 1146: 1097: 1049: 1020: 1013: 982: 980: 977: 976: 975: 969: 963: 957: 951: 945: 937: 934: 921:St Christopher 884: 881: 869: 868: 862: 856: 836: 832: 829: 823: 794: 786: 776: 771: 768: 764: 760: 757: 738: 734: 731: 708:Chimneys with 682: 679: 657:cooling towers 640:to industrial 620: 606: 605: 604: 595: 581: 580: 579: 578: 577: 575: 572: 554: 553:In meteorology 551: 464:chord Reynolds 443: 442: 425: 421: 410: 396: 392: 364: 360: 354: 350: 344: 339: 335: 324: 323: 305: 301: 290: 278: 268: 254: 250: 225: 198: 194: 189: 186: 180: 175: 170: 167: 154:nondimensional 150:viscous forces 112:eastward over 93: 90: 43:fluid dynamics 26: 9: 6: 4: 3: 2: 2232: 2221: 2218: 2216: 2213: 2212: 2210: 2195: 2192: 2190: 2187: 2185: 2182: 2181: 2179: 2175: 2167: 2166: 2162: 2161: 2160: 2157: 2155: 2152: 2148: 2147: 2143: 2142: 2141: 2138: 2134: 2133: 2129: 2128: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2111:Ernst Haeckel 2109: 2107: 2106:Adolf Zeising 2104: 2100: 2099: 2095: 2094: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2074: 2072: 2068: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2041: 2040: 2037: 2033: 2030: 2028: 2025: 2023: 2020: 2019: 2018: 2015: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1992: 1991: 1988: 1986: 1983: 1982: 1980: 1976: 1971: 1961: 1958: 1956: 1953: 1951: 1950:Vortex street 1948: 1946: 1943: 1939: 1936: 1934: 1931: 1929: 1928:Quasicrystals 1926: 1924: 1921: 1920: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1880: 1878: 1874: 1870: 1863: 1858: 1856: 1851: 1849: 1844: 1843: 1840: 1829: 1825: 1818: 1814: 1810: 1806: 1802: 1798: 1794: 1790: 1786: 1782: 1778: 1774: 1770: 1766: 1763: 1758: 1754: 1753: 1741: 1737: 1732: 1727: 1724:(6775): 226. 1723: 1719: 1715: 1708: 1699: 1692: 1686: 1679: 1673: 1666: 1660: 1654: 1648: 1641: 1635: 1622: 1616: 1612: 1608: 1604: 1600: 1593: 1580: 1576: 1572: 1566: 1562: 1558: 1554: 1550: 1544: 1531: 1525: 1521: 1517: 1513: 1509: 1502: 1488:on 2016-07-26 1487: 1483: 1477: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1440:Physics Today 1434: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1383: 1368: 1362: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1319: 1311: 1307: 1303: 1299: 1295: 1288: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1245: 1237: 1233: 1228: 1223: 1219: 1215: 1211: 1207: 1202: 1197: 1193: 1189: 1185: 1178: 1169: 1159: 1150: 1142: 1138: 1133: 1128: 1124: 1120: 1117:(1): 012012. 1116: 1112: 1108: 1101: 1093: 1089: 1085: 1081: 1076: 1071: 1067: 1063: 1056: 1054: 1046: 1042: 1038: 1034: 1030: 1024: 1016: 1014:9780122270857 1010: 1006: 1002: 998: 994: 987: 983: 973: 972:Coandă effect 970: 967: 964: 961: 958: 955: 952: 949: 946: 943: 940: 939: 933: 931: 926: 922: 918: 912: 909: 904: 902: 898: 894: 890: 880: 878: 874: 866: 863: 860: 857: 854: 851: 850: 849: 834: 830: 827: 821: 792: 784: 774: 769: 766: 762: 758: 755: 743:< 200000: 741: 730: 727: 724: 720: 711: 706: 702: 698: 694: 690: 688: 678: 675: 673: 669: 664: 662: 658: 654: 649: 647: 643: 639: 636: 632: 599: 571: 564: 559: 550: 548: 544: 540: 536: 532: 528: 524: 520: 516: 511: 509: 505: 501: 497: 493: 489: 485: 481: 477: 473: 470:The range of 468: 465: 459: 457: 453: 449: 441: 423: 419: 411: 394: 390: 382: 381: 380: 362: 358: 352: 348: 342: 337: 333: 321: 303: 299: 291: 276: 269: 248: 239: 223: 216: 215: 214: 196: 192: 187: 184: 178: 173: 155: 151: 147: 143: 139: 135: 131: 122: 115: 114:Mojave Desert 111: 110:Pacific Ocean 106: 98: 89: 87: 83: 79: 75: 70: 68: 64: 60: 56: 52: 48: 44: 36: 35:Visualisation 32: 19: 2220:Aerodynamics 2163: 2144: 2130: 2096: 2022:Chaos theory 1949: 1945:Tessellation 1828:the original 1823: 1800: 1772: 1721: 1717: 1707: 1698: 1690: 1685: 1677: 1672: 1664: 1659: 1652: 1647: 1639: 1634: 1624:, retrieved 1602: 1592: 1582:, retrieved 1552: 1549:"Wind Noise" 1543: 1533:, retrieved 1511: 1501: 1490:. Retrieved 1486:the original 1476: 1443: 1439: 1433: 1392: 1388: 1382: 1371:. Retrieved 1361: 1328: 1324: 1318: 1301: 1297: 1287: 1254: 1250: 1244: 1194:(20220165). 1191: 1187: 1177: 1168: 1158: 1149: 1114: 1110: 1100: 1065: 1061: 1029:Aerodynamics 1028: 1023: 996: 986: 930:San Domenico 914: 906: 901:Aerodynamics 900: 897:Henri Bénard 886: 870: 864: 858: 852: 739: 736: 728: 715: 699: 695: 691: 684: 676: 665: 650: 627: 568: 515:asymmetrical 512: 503: 499: 491: 487: 471: 469: 463: 460: 444: 325: 141: 137: 133: 127: 71: 50: 46: 40: 2140:Alan Turing 2098:Liber Abaci 2017:Mathematics 1923:in crystals 1913:Soap bubble 1908:Phyllotaxis 1331:: 215–241. 653:instability 646:skyscrapers 543:power lines 508:drag crisis 2209:Categories 2087:Empedocles 2082:Pythagoras 2000:Camouflage 1938:in biology 1933:in flowers 1903:Parastichy 1626:2023-08-11 1584:2023-08-11 1535:2023-08-11 1492:2016-10-18 1373:2013-12-20 1201:2203.05857 1075:2005.08325 1068:: 104975. 979:References 638:periscopes 448:bluff body 238:flow speed 2189:Emergence 2092:Fibonacci 1824:NASA page 1740:1476-4687 1579:240055532 1468:0031-9228 1425:122276209 1417:1436-5065 1279:123071463 1257:: 23–45. 1141:126372504 1092:234828962 770:− 681:Solutions 635:submarine 539:telephone 535:resonance 527:frequency 420:μ 391:ρ 379:between: 359:ρ 349:μ 334:ν 300:ν 253:∞ 193:ν 2215:Vortices 1918:Symmetry 1876:Patterns 1805:Archived 1785:Archived 1353:53610776 1304:: 1–22. 1236:35702595 936:See also 917:painting 642:chimneys 523:periodic 519:pressure 146:inertial 92:Analysis 55:vortices 2177:Related 2044:Crystal 2039:Physics 2027:Fractal 2005:Mimicry 1990:Biology 1898:Meander 1809:YouTube 1789:YouTube 1448:Bibcode 1397:Bibcode 1333:Bibcode 1259:Bibcode 1227:9185835 1206:Bibcode 1119:Bibcode 908:Prandtl 883:History 809:where: 733:Formula 723:helical 710:strakes 598:no-slip 547:antenna 213:where: 78:singing 2070:People 1978:Causes 1738:  1718:Nature 1617:  1577:  1567:  1526:  1466:  1423:  1415:  1351:  1277:  1234:  1224:  1163:Turkey 1139:  1090:  1043:  1035:  1011:  797:  719:eddies 496:energy 476:eddies 142:global 49:(or a 2077:Plato 1883:Crack 1831:(PDF) 1820:(PDF) 1575:S2CID 1421:S2CID 1349:S2CID 1275:S2CID 1196:arXiv 1137:S2CID 1088:S2CID 1070:arXiv 925:Jesus 759:0.198 452:chord 67:fluid 65:of a 1955:Wave 1893:Foam 1888:Dune 1736:ISSN 1615:ISBN 1565:ISBN 1524:ISBN 1464:ISSN 1413:ISSN 1232:PMID 1115:1005 1041:ISBN 1033:ISBN 1009:ISBN 895:and 775:19.7 644:and 480:shed 478:are 45:, a 1726:doi 1722:404 1607:doi 1557:doi 1516:doi 1456:doi 1405:doi 1341:doi 1329:322 1306:doi 1302:182 1267:doi 1255:182 1222:PMC 1214:doi 1192:478 1127:doi 1080:doi 1066:226 1001:doi 919:of 541:or 500:Re 148:to 41:In 2211:: 1822:. 1803:. 1799:. 1783:. 1771:. 1734:. 1720:. 1716:. 1613:, 1601:, 1573:, 1563:, 1551:, 1522:, 1510:, 1462:. 1454:. 1444:63 1442:. 1419:. 1411:. 1403:. 1393:43 1391:. 1347:. 1339:. 1327:. 1300:. 1296:. 1273:. 1265:. 1253:. 1230:. 1220:. 1212:. 1204:. 1190:. 1186:. 1135:. 1125:. 1113:. 1109:. 1086:. 1078:. 1064:. 1052:^ 1007:. 995:. 903:: 818:St 780:Re 752:St 674:. 504:Re 492:Re 472:Re 138:Re 134:Re 88:. 1861:e 1854:t 1847:v 1811:. 1791:. 1775:. 1742:. 1728:: 1609:: 1559:: 1518:: 1495:. 1470:. 1458:: 1450:: 1427:. 1407:: 1399:: 1376:. 1355:. 1343:: 1335:: 1312:. 1308:: 1281:. 1269:: 1261:: 1238:. 1216:: 1208:: 1198:: 1143:. 1129:: 1121:: 1094:. 1082:: 1072:: 1047:. 1017:. 1003:: 865:U 859:d 853:f 835:U 831:d 828:f 822:= 793:) 785:d 767:1 763:( 756:= 740:d 488:d 424:0 395:0 363:0 353:0 343:= 338:0 304:0 277:L 249:U 224:U 197:0 188:L 185:U 179:= 174:L 169:e 166:R 132:( 20:)

Index

Von Kármán vortex street

Visualisation
fluid dynamics
vortices
vortex shedding
separation of flow
fluid
Theodore von Kármán
singing
Ginzburg–Landau equation
bicomplex variable


Pacific Ocean
Mojave Desert

Reynolds numbers
inertial
viscous forces
nondimensional
flow speed
kinematic viscosity
dynamic viscosity
bluff body
chord
hydraulic diameter
eddies
shed
kinematic viscosity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.