Knowledge

Visual search

Source πŸ“

143:
conjunction search task. In a study done to analyze the reverse-letter effect, which is the idea that identifying the asymmetric letter among symmetric letters is more efficient than its reciprocal, researchers concluded that individuals more efficiently recognize an asymmetric letter among symmetric letters due to top-down processes. Top-down processes allowed study participants to access prior knowledge regarding shape recognition of the letter N and quickly eliminate the stimuli that matched their knowledge. In the real world, one must use prior knowledge everyday in order to accurately and efficiently locate objects such as phones, keys, etc. among a much more complex array of distractors. Despite this complexity, visual search with complex objects (and search for categories of objects, such as "phone", based on prior knowledge) appears to rely on the same active scanning processes as conjunction search with less complex, contrived laboratory stimuli, although global statistical information available in real-world scenes can also help people locate target objects. While bottom-up processes may come into play when identifying objects that are not as familiar to a person, overall top-down processing highly influences visual searches that occur in everyday life. Familiarity can play especially critical roles when parts of objects are not visible (as when objects are partly hidden from view because they are behind other objects). Visual information from hidden parts can be recalled from long-term memory and used to facilitate search for familiar objects.
397:(FFA) located in the mid fusiform gyrus in the temporal lobe. Debates are ongoing whether both faces and objects are detected and processed in different systems and whether both have category specific regions for recognition and identification. Much research to date focuses on the accuracy of the detection and the time taken to detect the face in a complex visual search array. When faces are displayed in isolation, upright faces are processed faster and more accurately than inverted faces, but this effect was observed in non-face objects as well. When faces are to be detected among inverted or jumbled faces, reaction times for intact and upright faces increase as the number of distractors within the array is increased. Hence, it is argued that the 'pop out' theory defined in feature search is not applicable in the recognition of faces in such visual search paradigm. Conversely, the opposite effect has been argued and within a natural environmental scene, the 'pop out' effect of the face is significantly shown. This could be due to evolutionary developments as the need to be able to identify faces that appear threatening to the individual or group is deemed critical in the survival of the fittest. More recently, it was found that faces can be efficiently detected in a visual search paradigm, if the distracters are non-face objects, however it is debated whether this apparent 'pop out' effect is driven by a high-level mechanism or by low-level confounding features. Furthermore, patients with developmental 499:
that autistic individuals are able to process larger amounts of perceptual information, allowing for superior parallel processing and hence faster target location. Second, autistic individuals show superior performance in discrimination tasks between similar stimuli and therefore may have an enhanced ability to differentiate between items in the visual search display. A third suggestion is that autistic individuals may have stronger top-down target excitation processing and stronger distractor inhibition processing than controls. Keehn et al. (2008) used an event-related functional magnetic resonance imaging design to study the neurofunctional correlates of visual search in autistic children and matched controls of typically developing children. Autistic children showed superior search efficiency and increased neural activation patterns in the frontal, parietal, and occipital lobes when compared to the typically developing children. Thus, autistic individuals' superior performance on visual search tasks may be due to enhanced discrimination of items on the display, which is associated with occipital activity, and increased top-down shifts of visual attention, which is associated with the frontal and parietal areas.
284:
processing of basic features produces an activation map, with every item in the visual display having its own level of activation. Attention is demanded based on peaks of activation in the activation map in a search for the target. Visual search can proceed efficiently or inefficiently. During efficient search, performance is unaffected by the number of distractor items. The reaction time functions are flat, and the search is assumed to be a parallel search. Thus, in the guided search model, a search is efficient if the target generates the highest, or one of the highest activation peaks. For example, suppose someone is searching for red, horizontal targets. Feature processing would activate all red objects and all horizontal objects. Attention is then directed to items depending on their level of activation, starting with those most activated. This explains why search times are longer when distractors share one or more features with the target stimuli. In contrast, during inefficient search, the reaction time to identify the target increases linearly with the number of distractor items present. According to the guided search model, this is because the peak generated by the target is not one of the highest.
517:
visual search where eye movements accelerate and saccades minimise, thus resulting in the consumer's quickly choosing a product with a 'pop out' effect. This study suggests that efficient search is primarily used, concluding that consumers do not focus on items that share very similar features. The more distinct or maximally visually different a product is from surrounding products, the more likely the consumer is to notice it. Janiszewski (1998) discussed two types of consumer search. One search type is goal directed search taking place when somebody uses stored knowledge of the product in order to make a purchase choice. The second is exploratory search. This occurs when the consumer has minimal previous knowledge about how to choose a product. It was found that for exploratory search, individuals would pay less attention to products that were placed in visually competitive areas such as the middle of the shelf at an optimal viewing height. This was primarily due to the competition in attention meaning that less information was maintained in visual working memory for these products.
267:
second attentive stage of the model incorporates cross-dimensional processing, and the actual identification of an object is done and information about the target object is put together. This theory has not always been what it is today; there have been disagreements and problems with its proposals that have allowed the theory to be amended and altered over time, and this criticism and revision has allowed it to become more accurate in its description of visual search. There have been disagreements over whether or not there is a clear distinction between feature detection and other searches that use a master map accounting for multiple dimensions in order to search for an object. Some psychologists support the idea that feature integration is completely separate from this type of master map search, whereas many others have decided that feature integration incorporates this use of a master map in order to locate an object in multiple dimensions.
256:
across the visual field using pre-attentive processes. Experiments show that these features include luminance, colour, orientation, motion direction, and velocity, as well as some simple aspects of form. For example, a red X can be quickly found among any number of black Xs and Os because the red X has the discriminative feature of colour and will "pop out." In contrast, this theory also suggests that in order to integrate two or more visual features belonging to the same object, a later process involving integration of information from different brain areas is needed and is coded serially using focal attention. For example, when locating an orange square among blue squares and orange triangles, neither the colour feature "orange" nor the shape feature "square" is sufficient to locate the search target. Instead, one must integrate information of both colour and shape to locate the target.
316:(TMS) to the right parietal cortex, conjunction search was impaired by 100 milliseconds after stimulus onset. This was not found during feature search. Nobre, Coull, Walsh and Frith (2003) identified using functional magnetic resonance imaging (fMRI) that the intraparietal sulcus located in the superior parietal cortex was activated specifically to feature search and the binding of individual perceptual features as opposed to conjunction search. Conversely, the authors further identify that for conjunction search, the superior parietal lobe and the right angular gyrus elicit bilaterally during fMRI experiments. 486:(PD) concerning the impairment patients with PD have on visual search tasks. In those studies, evidence was found of impairment in PD patients on the "pop-out" task, but no evidence was found on the impairment of the conjunction task. As discussed, AD patients show the exact opposite of these results: normal performance was seen on the "pop-out" task, but impairment was found on the conjunction task. This double dissociation provides evidence that PD and AD affect the visual pathway in different ways, and that the pop-out task and the conjunction task are differentially processed within that pathway. 51:
distinguish between the role of attention and other factors: a long reaction time might be the result of difficulty directing attention to the target, or slowed decision-making processes or slowed motor responses after attention is already directed to the target and the target has already been detected. Many visual search paradigms have therefore used eye movement as a means to measure the degree of attention given to stimuli. However, eyes can move independently of attention, and therefore eye movement measures do not completely capture the role of attention.
271:
whether or not focal attention can reduce the costs caused by dimension-switching in visual search, they explained that the results collected supported the mechanisms of the feature integration theory in comparison to other search-based approaches. They discovered that single dimensions allow for a much more efficient search regardless of the size of the area being searched, but once more dimensions are added it is much more difficult to efficiently search, and the bigger the area being searched the longer it takes for one to find the target.
374: 102: 205: 431:
reaction times were similar for feature visual search tasks. This suggests that there is something about the process of integrating visual features or serial searching that is difficult for children and older adults, but not for young adults. Studies have suggested numerous mechanisms involved in this difficulty in children, including peripheral visual acuity, eye movement ability, ability of attentional focal movement, and the ability to divide visual attention among multiple objects.
280:
user-driven). In the guided search model by Jeremy Wolfe, information from top-down and bottom-up processing of the stimulus is used to create a ranking of items in order of their attentional priority. In a visual search, attention will be directed to the item with the highest priority. If that item is rejected, then attention will move on to the next item and the next, and so forth. The guided search theory follows that of parallel search processing.
169: 320: 126:(RT) restraints of conjunction search tend to show improvement. In the early stages of processing, conjunction search utilizes bottom-up processes to identify pre-specified features amongst the stimuli. These processes are then overtaken by a more serial process of consciously evaluating the indicated features of the stimuli in order to properly allocate one's focal spatial attention towards the stimulus that most accurately represents the target. 312:(EEG) experiments for inefficient conjunction search, which has also been confirmed through lesion studies. Patients with lesions to the posterior parietal cortex show low accuracy and very slow reaction times during a conjunction search task but have intact feature search remaining to the ipsilesional (the same side of the body as the lesion) side of space. Ashbridge, Walsh, and Cowey in (1997) demonstrated that during the application of 471:
compared to the control group on a conjunction task. One interpretation of these results is that the visual system of AD patients has a problem with feature binding, such that it is unable to communicate the different feature descriptions for the stimulus efficiently. Binding of features is thought to be mediated by areas in the temporal and parietal cortex, and these areas are known to be affected by AD-related pathology.
446:, which is related to activity of the parietal lobes. This suggests the involvement of the parietal lobe function with an age-related decline in the speed of visual search tasks. Results also showed that older adults, when compared to young adults, had significantly less activity in the anterior cingulate cortex and many limbic and occipitotemporal regions that are involved in performing visual search tasks. 409:
frontotemporal dementia were seen to have a lower ability to recognize many different emotions. These patients were much less accurate than the control participants (and even in comparison with Alzheimer's patients) in recognizing negative emotions, but were not significantly impaired in recognizing happiness. Anger and disgust in particular were the most difficult for the dementia patients to recognize.
370:
performance in visual searches for upright human or dog faces, suggesting that visual search (particularly where the target is a face) is not peculiar to humans and that it may be a primal trait. Research has suggested that effective visual search may have developed as a necessary skill for survival, where being adept at detecting threats and identifying food was essential.
42:
of stimuli has been extensively studied over the past 40 years. Practical examples of using visual search can be seen in everyday life, such as when one is picking out a product on a supermarket shelf, when animals are searching for food among piles of leaves, when trying to find a friend in a large crowd of people, or simply when playing visual search games such as
293: 350:
attend to a particular stimuli during visual search experiments has been linked to the pulvinar nucleus (located in the midbrain) while inhibiting attention to unattended stimuli. Conversely, Bender and Butter (1987) found that during testing on monkeys, no involvement of the pulvinar nucleus was identified during visual search tasks.
65: 110:
red X (target) amongst distractors composed of black Xs (same shape) and red Os (same color). Unlike feature search, conjunction search involves distractors (or groups of distractors) that may differ from each other but exhibit at least one common feature with the target. The efficiency of conjunction search in regards to
462:
spatial cueing, but this benefit is only obtained for cues with high spatial precision. Abnormal visual attention may underlie certain visuospatial difficulties in patients with (AD). People with AD have hypometabolism and neuropathology in the parietal cortex, and given the role of parietal function
72:
Feature search (also known as "disjunctive" or "efficient" search) is a visual search process that focuses on identifying a previously requested target amongst distractors that differ from the target by a unique visual feature such as color, shape, orientation, or size. An example of a feature search
41:
that typically involves an active scan of the visual environment for a particular object or feature (the target) among other objects or features (the distractors). Visual search can take place with or without eye movements. The ability to consciously locate an object or target amongst a complex array
266:
The FIT is a dichotomy because of the distinction between its two stages: the preattentive and attentive stages. Preattentive processes are those performed in the first stage of the FIT model, in which the simplest features of the object are being analyzed, such as color, size, and arrangement. The
133:
affects conjunction search by eliminating stimuli that are incongruent with one's previous knowledge of the target-description, which in the end allows for more efficient identification of the target. An example of the effect of top-down processes on a conjunction search task is when searching for a
109:
Conjunction search (also known as inefficient or serial search) is a visual search process that focuses on identifying a previously requested target surrounded by distractors possessing no distinct features from the target itself. An example of a conjunction search task is having a person identify a
88:
The "pop out" effect is an element of feature search that characterizes the target's ability to stand out from surrounding distractors due to its unique feature. Bottom-up processing, which is the processing of information that depends on input from the environment, explains how one utilizes feature
349:
is involved in the selection of the target during visual search as well as the initiation of movements. Conversely, it also suggested that activation in the superior colliculus results from disengaging attention, ensuring that the next stimulus can be internally represented. The ability to directly
470:
An experiment conducted by Tales et al. (2000) investigated the ability of patients with AD to perform various types of visual search tasks. Their results showed that search rates on "pop-out" tasks were similar for both AD and control groups, however, people with AD searched significantly slower
430:
Research indicates that performance in conjunctive visual search tasks significantly improves during childhood and declines in later life. More specifically, young adults have been shown to have faster reaction times on conjunctive visual search tasks than both children and older adults, but their
384:
The importance of evolutionarily relevant threat stimuli was demonstrated in a study by LoBue and DeLoache (2008) in which children (and adults) were able to detect snakes more rapidly than other targets amongst distractor stimuli. However, some researchers question whether evolutionarily relevant
142:
In everyday situations, people are most commonly searching their visual fields for targets that are familiar to them. When it comes to searching for familiar stimuli, top-down processing allows one to more efficiently identify targets with greater complexity than can be represented in a feature or
50:
Much previous literature on visual search used reaction time in order to measure the time it takes to detect the target amongst its distractors. An example of this could be a green square (the target) amongst a set of red circles (the distractors). However, reaction time measurements do not always
498:
individuals performed better and with lower reaction times in feature and conjunctive visual search tasks than matched controls without autism. Several explanations for these observations have been suggested. One possibility is that people with autism have enhanced perceptual capacity. This means
408:
Patients with forms of dementia can also have deficits in facial recognition and the ability to recognize human emotions in the face. In a meta-analysis of nineteen different studies comparing normal adults with dementia patients in their abilities to recognize facial emotions, the patients with
199:
Endogenous orienting is the voluntary movement that occurs in order for one to focus visual attention on a goal-driven stimulus. Thus, the focus of attention of the perceiver can be manipulated by the demands of a task. A scanning saccade is triggered endogenously for the purpose of exploring the
255:
A popular explanation for the different reaction times of feature and conjunction searches is the feature integration theory (FIT), introduced by Treisman and Gelade in 1980. This theory proposes that certain visual features are registered early, automatically, and are coded rapidly in parallel
516:
and fixations of consumers while they visually scanned/searched an array of products on a supermarket shelf. Their research suggests that consumers specifically direct their attention to products with eye-catching properties such as shape, colour or brand name. This effect is due to a pressured
270:
The FIT also explains that there is a distinction between the brain's processes that are being used in a parallel versus a focal attention task. Chan and Hayward have conducted multiple experiments supporting this idea by demonstrating the role of dimensions in visual search. While exploring
369:
There is a variety of speculation about the origin and evolution of visual search in humans. It has been shown that during visual exploration of complex natural scenes, both humans and nonhuman primates make highly stereotyped eye movements. Furthermore, chimpanzees have demonstrated improved
279:
A second main function of preattentive processes is to direct focal attention to the most "promising" information in the visual field. There are two ways in which these processes can be used to direct attention: bottom-up activation (which is stimulus-driven) and top-down activation (which is
226:
Subsequently, competing theories of attention have come to dominate visual search discourse. The environment contains a vast amount of information. We are limited in the amount of information we are able to process at any one time, so it is therefore necessary that we have mechanisms by which
283:
An activation map is a representation of visual space in which the level of activation at a location reflects the likelihood that the location contains a target. This likelihood is based on preattentive, featural information of the perceiver. According to the guided search model, the initial
434:
Studies have suggested similar mechanisms in the difficulty for older adults, such as age related optical changes that influence peripheral acuity, the ability to move attention over the visual field, the ability to disengage attention, and the ability to ignore distractors.
327:
In contrast, Leonards, Sunaert, Vam Hecke and Orban (2000) identified that significant activation is seen during fMRI experiments in the superior frontal sulcus primarily for conjunction search. This research hypothesises that activation in this region may in fact reflect
263:, or when features do not combine correctly For example, if a display of a green X and a red O are flashed on a screen so briefly that the later visual process of a serial search with focal attention cannot occur, the observer may report seeing a red X and a green O. 151:
It is also possible to measure the role of attention within visual search experiments by calculating the slope of reaction time over the number of distractors present. Generally, when high levels of attention are required when looking at a complex array of stimuli
231:
are evenly distributed across all input signals, forming a kind of "low-level" attention. Attentional processes are more selective and can only be applied to specific preattentive input. A large part of the current debate in visual search theory centres on
412:
Face recognition is a complex process that is affected by many factors, both environmental and individually internal. Other aspects to be considered include race and culture and their effects on one's ability to recognize faces. Some factors such as the
332:
for holding and maintaining stimulus information in mind in order to identify the target. Furthermore, significant frontal activation including the ventrolateral prefrontal cortex bilaterally and the right dorsolateral prefrontal cortex were seen during
73:
task is asking a participant to identify a white square (target) surrounded by black squares (distractors). In this type of visual search, the distractors are characterized by the same visual features. The efficiency of feature search in regards to
195:
Exogenous orienting is the involuntary and automatic movement that occurs to direct one's visual attention toward a sudden disruption in his peripheral vision field. Attention is therefore externally guided by a stimulus, resulting in a reflexive
507:
In the past decade, there has been extensive research into how companies can maximise sales using psychological techniques derived from visual search to determine how products should be positioned on shelves. Pieters and Warlop (1999) used
474:
Another possibility for the impairment of people with AD on conjunction searches is that there may be some damage to general attentional mechanisms in AD, and therefore any attention-related task will be affected, including visual search.
1747:
Algom, D; Eidels, A; Hawkins, R.X.D; Jefferson, B; Townsend, J. T. (2015). "Features of response times: Identification of cognitive mechanisms through mathematical modeling.". In Busemeyer, J; Wang, Z; Townsend, J. T.; Eidels, A (eds.).
160:), the slope decreases due to reaction times being fast and requiring less attention. However, the use of a reaction time slope to measure attention is controversial because non-attentional factors can also affect reaction time slope. 114:(RT) and accuracy is dependent on the distractor-ratio and the number of distractors present. As the distractors represent the differing individual features of the target more equally amongst themselves (distractor-ratio effect), 134:
red 'K' among red 'Cs' and black 'Ks', individuals ignore the black letters and focus on the remaining red letters in order to decrease the set size of possible targets and, therefore, more efficiently identify their target.
4108:
Bora, Emre; Velakoulis, Dennis; Walterfang, Mark (2016-07-01). "Meta-Analysis of Facial Emotion Recognition in Behavioral Variant Frontotemporal Dementia Comparison With Alzheimer Disease and Healthy Controls".
337:
for attentional spatial representations during visual search. The same regions associated with spatial attention in the parietal cortex coincide with the regions associated with feature search. Furthermore, the
89:
detectors to process characteristics of the stimuli and differentiate a target from its distractors. This draw of visual attention towards the target due to bottom-up processes is known as "saliency." Lastly,
4062:
Golan, T.; Bentin, S.; DeGutis, J. M.; Robertson, L. C.; Harel, A. (2014). "Association and dissociation between detection and discrimination of objects of expertise: evidence from visual search".
401:, who have impaired face identification, generally detect faces normally, suggesting that visual search for faces is facilitated by mechanisms other than the face-identification circuits of the 212:
Visual search relies primarily on endogenous orienting because participants have the goal to detect the presence or absence of a specific target object in an array of other distracting objects.
3133:
Tomonaga, Masaki (2007-01-01). "Visual search for orientation of faces by a chimpanzee (Pan troglodytes): face-specific upright superiority and the role of facial configural properties".
4213: 219:) occur during these tasks, and that these eye movements are frequently directed towards the attended locations (whether or not there are visible stimuli). These findings indicate that 176:
One obvious way to select visual information is to turn towards it, also known as visual orienting. This may be a movement of the head and/or eyes towards the visual stimulus, called a
3227:Γ–hman, A (1999). "Distinguishing unconscious from conscious emotional processes: Methodological considerations and theoretical implications.". In Dalgleish, T.; Powers, M. J. (eds.). 438:
A study by Lorenzo-LΓ³pez et al. (2008) provides neurological evidence for the fact that older adults have slower reaction times during conjunctive searches compared to young adults.
4562:
Tales, A.; S. R. Butler; J. Fossey; I. D. Gilchrist; R. W. Jones; T. Troscianko (2002). "Visual search in Alzheimer's disease: a deficiency in processing conjunctions of features".
227:
extraneous stimuli can be filtered and only relevant information attended to. In the study of attention, psychologists distinguish between pre-attentive and attentional processes.
2610:
Nobre, A.C,.; Sebestyen, G. N.; Gitelman, D. R.; Frith, C. D.; Mesulam, M. M. (2002). "Filtering of distractors during visual search studied by positron emission tomography".
393:
Over the past few decades there have been vast amounts of research into face recognition, specifying that faces endure specialized processing within a region called the
4717:
Weinstein, A.; T. Troscianko; J. Calvert (1997). "Impaired visual search mechanisms in Parkinson's disease (PD): a psychophysical and event-related potentials study".
2303:
Aglioti, S.; Smania, N.; Barbieri, C.; Corbetta, M. (1997). "Influence of stimulus salience and attentional demands on visual search patterns in hemispatial neglect".
4698:
Troscianko, T.; J. Calvert (1993). "Impaired parallel visual search mechanisms in Parkinson's disease: implications for the role of dopamine in visual attention".
3961:
Simpson, E. A., Husband, H. L., Yee, K., Fullerton, A., & Jakobsen, K. V. (2014). Visual Search Efficiency Is Greater for Human Faces Compared to Animal Faces.
208:
A plot of the saccades made while reading text. The plot shows the path of eye movements and the size of the circles represents the time spent at any one location.
4159:
Kaspar, K. (2016). Culture, group membership, and face recognition. Commentary: Will you remember me? Cultural differences in own-group face recognition biases.
2389:
Friedman-Hill, S. R.; Robertson, L. C.; Treisman, A. (1995). "Parietal contributions to visual feature binding: Evidence from a patient with bilateral lesions".
2168:
Chan, Louis K. H.; Hayward, William G. (2009). "Feature integration theory revisited: Dissociating feature detection and attentional guidance in visual search".
2524:
Nobre, A. C.; J. T. Coull; V. Walsh; C. D. Frith (2003). "Brain activations during visual search: contributions of search efficiency versus feature binding".
215:
Early research suggested that attention could be covertly (without eye movement) shifted to peripheral stimuli, but later studies found that small saccades (
357:
that the primary visual cortex (V1) creates a bottom-up saliency map to guide attention exogenously, and this V1 saliency map is read out by the superior
259:
Evidence that attention and thus later visual processing is needed to integrate two or more features of the same object is shown by the occurrence of
3429:
Grill-Spector, K.; Knouf, N.; Kanwisher, N. (2004). "The fusiform face area subserves face perception, not generic within-category identification".
3242:
LoBue, Vanessa; Judy S. DeLoache (2008-03-01). "Detecting the Snake in the Grass Attention to Fear-Relevant Stimuli by Adults and Young Children".
2948: 2834: 2653: 896: 2710: 296:
A pseudo-color image showing activation of the primary visual cortex during a perceptual task using functional magnetic resonance imaging (fMRI)
3714:
Kuehn, S. M.; Jolicoeur, P. (1994). "Impact of quality of the image, orientation, and similarity of the stimuli on visual search for faces".
2890:"Comparison of the effects of superior colliculus and pulvinar lesions on visual search and tachistoscopic pattern discrimination in monkeys" 4900:
Plaisted, Kate; Michelle O'Riordan; Simon Baron-Cohen (1998). "Enhanced Visual Search for a Conjunctive Target in Autism: A Research Note".
1075:"The gradual emergence of spatially selective target processing in visual search: From feature-specific to object-based attentional control" 917:
Zhaoping, L; Frith, U (August 2011). "A clash of bottom-up and top-down processes in visual search: the reversed letter effect revisited".
969:
Shen, J; Reingold, EM; Pomplun, M (June 2003). "Guidance of eye movements during conjunctive visual search: the distractor-ratio effect".
342:(FEF) located bilaterally in the prefrontal cortex, plays a critical role in saccadic eye movements and the control of visual attention. 704:
Murthy, A; Thompson, KG; Schall, JD (2001). "Dynamic dissociation of visual selection from saccade programming in frontal eye field".
3386:
Tarr, M. J.; Gauthier, I. (2000). "FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise".
2481:
Ashbridge, V.; Walsh, A.; Cowey, D (1997). "Temporal aspects of visual search studied by transcranial magnetic stimulation".
305: 4671:
Mendez, M. F.; M. M. Cherrier; J. S. Cymerman (1997). "Hemispatial neglect on visual search tasks in Alzheimer's disease".
4397:
Hartley, A. A.; J. M. Kieley; E. H. Slabach (1990). "Age differences and similarities in the effects of cues and prompts".
4360:
Harpur, L. L.; C. T. Scialfa; D. M. Thomas (1995). "Age differences in feature search as a function of exposure duration".
2889: 1766:
Berger, A; Henik, A; Rafal, R (May 2005). "Competition between endogenous and exogenous orienting of visual attention".
4225: 2044: 1124: 313: 4739:
O'Riordan, Michelle A.; Kate C. Plaisted; Jon Driver; Simon Baron-Cohen (2001). "Superior visual search in autism".
3184:Γ–hman, A; Mineka, S (2001). "Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning". 2567:
Leonards, U.; Suneart, S.; Van Hecke, P.; Orban, G. (2000). "Attention mechanisms in visual searchβ€”An fMRI study".
90: 82: 3086:"Goal-Related Activity in V4 during Free Viewing Visual Search: Evidence for a Ventral Stream Visual Salience Map" 1536:
Plomp, G; Nakatani, C; Bonnardel, V; Leeuwen, C. v. (2004). "Amodal completion as reflected by gaze durations".
4325:
Day, M. C. (1978). "Visual search by children: The effect of background variation and the use of visual cues".
1809:
Wurtz, Robert H.; Michael E. Goldberg; David Lee Robinson (June 1982). "Brain Mechanisms of Visual Attention".
2442:"An exploration of the role of the superior temporal gyrus in visualsearch and spatial perception using TMS.v" 819:"The temporal dynamics of visual search: evidence for parallel processing in feature and conjunction searches" 5078: 3972: 2346:
Eglin, M.; Robertson, L. C.; Knight, R. T. (1991). "Cortical substrates supporting visual search in humans".
24: 93:
is the mechanism that then allows one's feature detectors to work simultaneously in identifying the target.
1117:
Approaches to visual search: feature integration theory and guided search. The Oxford handbook of attention
334: 5028:
Janiszewski, C. (1998). "The Influence of Display Characteristics on Visual Exploratory Search Behavior".
4290:
Enns, J. T.; D. A. Brodeur (1989). "A developmental study of covert orienting to peripheral visual cues".
1618:"The capacity of visual short-term memory is set both by visual information load and by number of objects" 4362: 4616: 4247:
Miller, L. K. (1973). "Developmental differences in the field of view during covert and overt search".
482:
with their experimental results on AD and visual search. Earlier work was carried out on patients with
250: 4177:
Plude, D. J.; J. A. Doussard-Roosevelt (1989). "Aging, selective attention, and feature integration".
3757:
Brown, V.; Huey, D.; Findlay, J. M. (1997). "Face detection in peripheral vision: do faces pop out?".
3472:
Valentine, T; Bruce, V (1986). "The effects of distinctiveness in recognizing and classifying faces".
2714: 1579:
Trick, Lana M.; Enns, James T. (1998-07-01). "Lifespan changes in attention: The visual search task".
2963: 2214:
Quinlan, Philip T. (September 2003). "Visual feature integration theory: Past, present, and future".
4914: 4576: 3849: 2865: 2730:"Signal processing and distribution in cortical-brainstem pathways for smooth pursuit eye movements" 2130: 1593: 5068: 4787:"Lightening the load: perceptual load impairs visual detection in typical adults but not in autism" 439: 228: 1671:
Palmer, J. (1995). "Attention in visual search: Distinguishing four causes of a set-size effect".
983: 4909: 4571: 3844: 3339:"The fusiform face area: a module in human extrastriate cortex specialized for face perception" 2860: 2125: 1588: 978: 483: 455: 354: 309: 1291:"Are summary statistics enough? Evidence for the importance of shape in guiding visual search" 579:
Shelga, B. M.; Riggio, L.; Rizzolatti, G. (1994). "Orienting of attention and eye movements".
85:
However, the efficiency of feature search is unaffected by the number of distractors present.
2942: 2828: 2647: 260: 2851:
Trick, L. M.; Enns, J. T. (1998). "Life-span changes in attention: The visual search task".
1016:"Neural correlates of context-dependent feature conjunction learning in visual search tasks" 3030: 2741: 2398: 1818: 1400: 118:(RT) increases and accuracy decreases. As the number of distractors present increases, the 78: 20: 4504:"Neural correlates of age-related visual search decline: a combined ERP and sLORETA study" 1990:
MΓΌller, Hermann J.; Krummenacher, Joseph (2006). "Visual search and selective attention".
8: 5073: 4953:
Keehn, Brandon; Laurie Brenner; Erica Palmer; Alan J. Lincoln; Ralph-Axel MΓΌller (2008).
479: 464: 443: 358: 346: 233: 130: 4738: 4467:
Rabbitt, P. (1965). "An age-decrement in the ability to ignore irrelevant information".
3034: 2745: 2402: 1822: 1633: 1404: 458:(AD) are significantly impaired overall in visual search tasks. People with AD manifest 442:
showed longer latencies and lower amplitudes in older subjects than young adults at the
292: 5045: 4996:"Visual attention during brand choice: the impact of time pressure and task motivation" 4882: 4819: 4786: 4647: 4597: 4531: 4501: 4264: 4260: 4142: 4087: 4003: 3939: 3914: 3817: 3782: 3739: 3696: 3497: 3454: 3411: 3363: 3354: 3338: 3275: 3209: 3166: 3061: 3018: 2999: 2930: 2816: 2762: 2729: 2635: 2592: 2549: 2506: 2422: 2371: 2328: 2239: 2193: 2143: 2098: 2015: 1926: 1830: 1791: 1688: 1653: 1561: 1513: 1488: 1423: 1388: 1364: 1339: 1315: 1290: 1266: 1241: 1217: 1190: 1166: 1141: 1055: 1042: 1015: 942: 890: 843: 818: 782: 729: 604: 561: 402: 394: 44: 19:
This article is about vision in biology. For computer-based information retrieval, see
5014: 4635: 4617:"Alzheimer disease constricts the dynamic range of spatial attention in visual search" 4585: 3102: 3085: 2979: 2874: 2494: 1617: 1602: 4976: 4935: 4927: 4874: 4866: 4862: 4824: 4806: 4764: 4756: 4680: 4639: 4589: 4523: 4519: 4484: 4449: 4414: 4379: 4342: 4338: 4307: 4303: 4272: 4221: 4214:"Peripheral vision in young children: Implications for the study of visual attention" 4194: 4134: 4126: 4079: 4044: 3995: 3944: 3895: 3821: 3774: 3731: 3688: 3653: 3612: 3571: 3489: 3446: 3403: 3368: 3316: 3267: 3259: 3255: 3201: 3158: 3150: 3115: 3107: 3066: 3048: 2991: 2983: 2922: 2808: 2767: 2753: 2692: 2627: 2584: 2541: 2498: 2463: 2414: 2363: 2320: 2285: 2231: 2185: 2090: 2086: 2040: 2007: 1967: 1918: 1883: 1842: 1834: 1783: 1729: 1692: 1645: 1637: 1553: 1518: 1469: 1428: 1369: 1320: 1271: 1222: 1171: 1120: 1097: 1059: 1047: 996: 934: 848: 774: 770: 721: 686: 645: 596: 553: 549: 414: 339: 181: 5049: 4886: 4651: 4601: 4535: 4146: 3786: 3743: 3700: 3279: 3003: 2820: 2596: 2553: 2426: 2375: 2332: 2243: 2197: 2147: 1930: 1795: 1565: 1448:"Combining top-down processes to guide eye movements during real-world scene search" 946: 373: 5037: 5010: 4966: 4919: 4858: 4814: 4798: 4748: 4631: 4581: 4515: 4476: 4441: 4432:
Connelly, S. L.; L. Hasher (1993). "Aging and the inhibition of spatial location".
4406: 4371: 4334: 4299: 4256: 4186: 4118: 4091: 4071: 4034: 4007: 3987: 3934: 3926: 3885: 3854: 3809: 3800:
Lewis, Michael; Edmonds, Andrew (2005). "Searching for faces in scrambled scenes".
3766: 3723: 3680: 3643: 3602: 3561: 3528: 3501: 3481: 3458: 3438: 3415: 3395: 3358: 3350: 3306: 3251: 3213: 3193: 3170: 3142: 3097: 3056: 3038: 2975: 2934: 2912: 2904: 2870: 2798: 2757: 2749: 2682: 2639: 2619: 2576: 2533: 2510: 2490: 2453: 2406: 2355: 2312: 2275: 2223: 2177: 2135: 2082: 1999: 1957: 1910: 1873: 1826: 1775: 1719: 1680: 1657: 1629: 1598: 1545: 1508: 1500: 1459: 1418: 1408: 1359: 1351: 1310: 1302: 1261: 1253: 1212: 1202: 1161: 1153: 1089: 1037: 1027: 988: 926: 838: 830: 766: 713: 676: 635: 608: 588: 545: 156:), the slope increases as reaction times increase. For simple visual search tasks ( 3019:"Bottom-up saliency and top-down learning in the primary visual cortex of monkeys" 2102: 2019: 1338:
Wolfe, Jeremy M.; VΓ΅, Melissa L.-H.; Evans, Karla K.; Greene, Michelle R. (2011).
786: 733: 565: 4841: 4039: 4022: 3991: 3890: 3873: 3334: 2787:"Saccade target selection in the superior colliculus during a visual search task" 2687: 2673: 2668: 2034: 1962: 1945: 1684: 1413: 1306: 1157: 301: 185: 4445: 3197: 2609: 2227: 2073:
Treisman, A. M.; G. Gelade (1980). "A feature-integration theory of attention".
2053: 1779: 1242:"A summary statistic representation in peripheral vision explains visual search" 834: 122:(RT) increases and the accuracy decreases. However, with practice the original 101: 4899: 4843: 4752: 4410: 2439: 2181: 2116:
Wolfe, J. M. (1998). "What can 1 million trials tell us about visual search?".
1355: 1240:
Rosenholtz, Ruth; Huang, Jie; Raj, A.; Balas, Benjamin J.; Ilie, Livia (2012).
1142:"Effects of part-based similarity on visual search: The Frankenbear experiment" 329: 184:
on the object of interest, making the image of the visual stimulus fall on the
64: 4971: 4954: 4952: 4480: 4375: 4075: 3835:
Nelson, C. A. (2001). "The development and neural bases of face recognition".
3813: 3607: 3590: 3311: 3294: 3146: 2803: 2786: 2003: 1914: 717: 467:, which may result in difficulty with disengaging attention in visual search. 5062: 4995: 4931: 4870: 4810: 4760: 4190: 4130: 4122: 3263: 3154: 3111: 3052: 2987: 2359: 2011: 1901:
Martinez-Conde, S; Alexander, R. G. (2019). "A gaze bias in the mind's eye".
1838: 1641: 754: 533: 398: 204: 123: 119: 115: 111: 74: 4923: 4842:
Remington, Anna; John Swettenham; Ruth Campbell; Mike Coleman (2009-11-01).
3043: 2580: 2410: 2139: 236:
and what the visual system is capable of achieving without focal attention.
188:
of the eye, the central part of the retina with the sharpest visual acuity.
4980: 4878: 4828: 4768: 4643: 4593: 4527: 4503: 4488: 4138: 4083: 4048: 3999: 3948: 3899: 3616: 3450: 3407: 3320: 3271: 3205: 3162: 3119: 3070: 2995: 2812: 2771: 2696: 2631: 2623: 2588: 2545: 2537: 2467: 2458: 2441: 2316: 2289: 2235: 2189: 1971: 1922: 1887: 1787: 1733: 1649: 1557: 1522: 1473: 1432: 1373: 1324: 1275: 1226: 1175: 1101: 1051: 1000: 938: 852: 725: 509: 216: 4939: 4684: 4502:
Lorenzo-LΓ³pez, L.; E. Amenedo; R. D. Pascual-Marqui; F. Cadaveira (2008).
4453: 4418: 4383: 4311: 4276: 4198: 3778: 3735: 3692: 3657: 3575: 3493: 3372: 2926: 2502: 2418: 2367: 2324: 2094: 1846: 1808: 1489:"Occluded information is restored at preview but not during visual search" 778: 690: 649: 600: 557: 4614: 4561: 4346: 2917: 2566: 2388: 2302: 1878: 1861: 1074: 536:; Gelade, G (January 1980). "A feature-integration theory of attention". 345:
Moreover, research into monkeys and single cell recording found that the
3671:
Nothdurft, H. C. (1993). "Faces and facial expressions do not pop out".
1389:"Oculomotor evidence for top-down control following the initial saccade" 4268: 3648: 3631: 3566: 3549: 3533: 3516: 2908: 2280: 2263: 681: 664: 640: 623: 592: 34: 1340:"Visual search in scenes involves selective and nonselective pathways" 1032: 319: 168: 4844:"Selective Attention and Perceptual Load in Autism Spectrum Disorder" 4802: 4784: 3930: 1093: 992: 930: 220: 38: 4741:
Journal of Experimental Psychology: Human Perception and Performance
4434:
Journal of Experimental Psychology: Human Perception and Performance
4399:
Journal of Experimental Psychology: Human Perception and Performance
3858: 3770: 3727: 3684: 3485: 2669:"On the role of frontal eye field in guiding attention and saccades" 2170:
Journal of Experimental Psychology: Human Perception and Performance
1724: 1707: 1504: 1289:
Alexander, Robert G.; Schmidt, Joseph; Zelinsky, Gregory J. (2014).
1257: 1082:
Journal of Experimental Psychology: Human Perception and Performance
919:
Journal of Experimental Psychology: Human Perception and Performance
823:
Journal of Experimental Psychology: Human Perception and Performance
5041: 3442: 2523: 1549: 1464: 1447: 1207: 513: 4670: 4023:"With a careful look: Still no low-level confound to face pop-out" 3399: 2440:
Ellison, A.; Schindler, I.; Pattison, L. L.; Milner, A. D (2004).
2345: 2050: 757:; Gelade, G (1980). "A feature-integration theory of attention". 177: 4716: 4396: 3973:"On second glance: Still no high-level pop-out effect for faces" 3632:"The object-detection effect: Configuration enhances perception" 1750:
The Oxford handbook of computational and mathematical psychology
4359: 495: 4785:
Remington, Anna M; John G Swettenham; Nilli Lavie (May 2012).
3550:"The face-detection effect: Configuration enhances perception" 578: 4176: 1535: 417:
can influence one's ability to recognize and remember faces.
323:
Visual search primarily activates areas of the parietal lobe.
3912: 4673:
Neuropsychiatry, Neuropsychology & Behavioral Neurology
4061: 3913:
Hershler, O.; Golan, T.; Bentin, S.; Hochstein, S. (2010).
3591:"The neural basis of the behavioural face-inversion effect" 3428: 1746: 4615:
Parasuraman, R.; P. M. Greenwood; G. E. Alexander (2000).
2480: 1859: 1014:
Reavis, EA; Frank, SM; Greenlee, MW; Tse, PU (June 2016).
885:(6 ed.). Pearson Education, Inc. – via online. 4955:"Functional brain organization for visual search in ASD" 4107: 1387:
Siebold, Alisha; Van Zoest, Wieske; Donk, Mieke (2011).
1288: 624:"The role of visual attention in saccadic eye movements" 4959:
Journal of the International Neuropsychological Society
3874:"At first sight: A high-level pop out effect for faces" 1900: 1239: 3333: 1013: 223:
plays a critical role in understanding visual search.
3241: 1943: 1860:
Laubrock, J; Kliegl, R; Rolfs, M; Engbert, R (2010).
621: 4697: 2264:"Guided search 2.0 A revised model of visual search" 1386: 703: 3295:"The visual detection of threat: A cautionary tale" 3083: 2887: 2784: 1487:Alexander, Robert G.; Zelinsky, Gregory J. (2018). 1189:Alexander, Robert G.; Zelinsky, Gregory J. (2011). 1140:Alexander, Robert G.; Zelinsky, Gregory J. (2012). 1119:. Oxford: Oxford University Press. pp. 11–50. 968: 881:Radvansky, Gabriel, A.; Ashcraft, Mark, H. (2016). 244: 77:(RT) and accuracy depends on the "pop out" effect, 1989: 1337: 4993: 4431: 4289: 4218:The development of attention: Research and theory 4020: 3871: 2072: 1862:"When do microsaccades follow spatial attention?" 1486: 1191:"Visual Similarity Effects in Categorical Search" 1188: 1139: 880: 753: 163: 5060: 3756: 2850: 1765: 1445: 964: 962: 960: 958: 956: 463:for visual attention, patients with AD may have 3231:. Chichester, England: Wiley. pp. 321–352. 3023:Proceedings of the National Academy of Sciences 1946:"Microsaccade dynamics during covert attention" 1615: 816: 300:During visual search experiments the posterior 180:. Through a process called foveation, the eyes 5003:International Journal of Research in Marketing 3713: 3629: 3588: 3547: 3514: 3471: 532: 4780: 4778: 4111:Journal of Geriatric Psychiatry and Neurology 3084:Mazer, James A; Jack L Gallant (2003-12-18). 3017:Yan, Yin; Zhaoping, Li; Li, Wu (2018-10-09). 3016: 2727: 1761: 1759: 953: 916: 3799: 3385: 2947:: CS1 maint: multiple names: authors list ( 2833:: CS1 maint: multiple names: authors list ( 2652:: CS1 maint: multiple names: authors list ( 1108: 1072: 895:: CS1 maint: multiple names: authors list ( 662: 361:which receives monosynaptic inputs from V1. 5027: 4734: 4732: 4608: 3337:; McDermott, Josh; Chun, Marvin M. (1997). 3183: 2167: 1768:Journal of Experimental Psychology: General 1673:Current Directions in Psychological Science 1616:Alvarez, G. A.; Cavanagh, P. (2004-02-01). 971:Canadian Journal of Experimental Psychology 749: 747: 745: 743: 385:threat stimuli are detected automatically. 137: 16:Type of perceptual task requiring attention 4902:Journal of Child Psychology and Psychiatry 4835: 4775: 4064:Attention, Perception, & Psychophysics 2666: 1866:Attention, Perception, & Psychophysics 1756: 665:"Search performance without eye movements" 4970: 4913: 4818: 4575: 4038: 3970: 3938: 3889: 3848: 3670: 3647: 3606: 3565: 3532: 3362: 3310: 3101: 3060: 3042: 2964:"A saliency map in primary visual cortex" 2916: 2864: 2802: 2761: 2686: 2517: 2457: 2279: 2257: 2255: 2253: 2129: 1985: 1983: 1981: 1961: 1877: 1723: 1592: 1578: 1512: 1463: 1446:Malcolm, G. L.; Henderson, J. M. (2010). 1422: 1412: 1363: 1314: 1265: 1216: 1206: 1165: 1041: 1031: 982: 842: 817:McElree, B; Carrasco, M (December 1999). 680: 639: 4729: 4557: 4555: 4553: 4551: 4327:Journal of Experimental Child Psychology 4292:Journal of Experimental Child Psychology 3132: 2846: 2844: 1705: 740: 372: 318: 291: 203: 167: 100: 63: 4466: 3292: 2213: 2032: 622:Hoffman, J. E.; B. Subramaniam (1995). 153: 5061: 4664: 4246: 4211: 4103: 4101: 3834: 2728:Mustari MJ, Ono S, Das VE (May 2009). 2660: 2250: 1978: 1670: 502: 449: 274: 146: 4548: 3226: 2888:Bender, D.B,.; Butter, C. M. (1987). 2841: 2785:McPeek, R.M,.; Keller, E. L. (2002). 2261: 2209: 2207: 2163: 2161: 2159: 2157: 2115: 1802: 1114: 1073:Eimer, M; Grubert, A (October 2014). 912: 910: 908: 906: 812: 810: 808: 806: 804: 802: 800: 798: 796: 494:Studies have consistently shown that 306:functional magnetic resonance imaging 172:A photograph that simulates foveation 96: 4021:Hershler, O.; Hochstein, S. (2006). 3872:Hershler, O.; Hochstein, S. (2005). 876: 874: 872: 870: 868: 866: 864: 862: 454:Research has found that people with 304:has elicited much activation during 4324: 4098: 3915:"The wide window of face detection" 3630:Purcell, D G; Stewart, A L (1991). 3548:Purcell, D G; Stewart, A L (1988). 3521:Bulletin of the Psychonomic Society 3515:Purcell, D G; Stewart, A L (1986). 1634:10.1111/j.0963-7214.2004.01502006.x 388: 287: 157: 13: 4261:10.1111/j.1467-8624.1973.tb02147.x 3355:10.1523/JNEUROSCI.17-11-04302.1997 2961: 2204: 2154: 1944:Laubrock; Engbert; Kliegl (2005). 1831:10.1038/scientificamerican0682-124 1066: 1007: 903: 793: 191:There are two types of orienting: 14: 5090: 3589:Yovel, G.; Kanwisher, N. (2005). 3299:Psychonomic Bulletin & Review 3229:Handbook of cognition and emotion 2569:Journal of Cognitive Neuroscience 2268:Psychonomic Bulletin & Review 859: 420: 314:transcranial magnetic stimulation 59: 5021: 4994:Pieters, R.; Warlop, L. (1999). 4987: 4946: 4893: 4863:10.1111/j.1467-9280.2009.02454.x 4520:10.1016/j.neuroimage.2008.02.041 3256:10.1111/j.1467-9280.2008.02081.x 2754:10.1111/j.1749-6632.2009.03859.x 1708:"Visual search: A retrospective" 245:Feature integration theory (FIT) 4710: 4691: 4495: 4460: 4425: 4390: 4353: 4318: 4283: 4240: 4205: 4170: 4153: 4055: 4014: 3964: 3955: 3906: 3865: 3828: 3793: 3750: 3707: 3664: 3623: 3582: 3541: 3508: 3465: 3422: 3379: 3327: 3286: 3235: 3220: 3177: 3126: 3077: 3010: 2955: 2881: 2778: 2721: 2703: 2603: 2560: 2474: 2433: 2382: 2339: 2296: 2109: 2066: 2039:. Meredith Publishing Company. 2026: 1937: 1894: 1853: 1740: 1699: 1664: 1609: 1572: 1529: 1480: 1439: 1380: 1331: 1282: 1233: 1182: 1133: 478:Tales et al. (2000) detected a 440:Event-related potentials (ERPs) 54: 4791:Journal of Abnormal Psychology 4220:. Elsevier. pp. 245–262. 3636:Perception & Psychophysics 3554:Perception & Psychophysics 697: 656: 615: 572: 526: 164:Visual orienting and attention 105:Conjunctive based search task. 1: 5015:10.1016/s0167-8116(98)00022-6 4636:10.1016/s0028-3932(00)00024-5 4586:10.1016/S0028-3932(02)00073-8 3103:10.1016/S0896-6273(03)00764-5 2980:10.1016/S1364-6613(00)01817-9 2875:10.1016/s0885-2014(98)90016-8 2495:10.1016/s0028-3932(97)00003-1 1603:10.1016/S0885-2014(98)90016-8 663:Klein, R; Farrell, M (1989). 520: 25:content-based image retrieval 5030:Journal of Consumer Research 4339:10.1016/0022-0965(78)90034-6 4304:10.1016/0022-0965(89)90001-5 4040:10.1016/j.visres.2006.03.023 3992:10.1016/j.visres.2005.07.009 3891:10.1016/j.visres.2004.12.021 3837:Infant and Child Development 2968:Trends in Cognitive Sciences 2688:10.1016/j.visres.2003.10.025 2087:10.1016/0010-0285(80)90005-5 1963:10.1016/j.visres.2004.09.029 1685:10.1111/1467-8721.ep10772534 1414:10.1371/journal.pone.0023552 1344:Trends in Cognitive Sciences 1307:10.1080/13506285.2014.890989 1158:10.1016/j.visres.2011.12.004 771:10.1016/0010-0285(80)90005-5 628:Perception and Psychophysics 550:10.1016/0010-0285(80)90005-5 364: 335:positron emission tomography 7: 4719:Journal of Psychophysiology 4446:10.1037/0096-1523.19.6.1238 4363:Experimental Aging Research 3517:"The face-detection effect" 3343:The Journal of Neuroscience 3293:Quinlan, Philip T. (2013). 3198:10.1037/0033-295X.108.3.483 2962:Li, Zhaoping (2002-01-01). 2897:Experimental Brain Research 2228:10.1037/0033-2909.129.5.643 1780:10.1037/0096-3445.134.2.207 835:10.1037/0096-1523.25.6.1517 581:Experimental Brain Research 10: 5095: 4753:10.1037/0096-1523.27.3.719 4411:10.1037/0096-1523.16.3.523 2791:Journal of Neurophysiology 2182:10.1037/0096-1523.35.1.119 1752:. Oxford University Press. 1356:10.1016/j.tics.2010.12.001 353:There is evidence for the 251:Feature integration theory 248: 18: 4972:10.1017/S1355617708081356 4376:10.1080/03610739508254264 4076:10.3758/s13414-013-0562-6 3814:10.1080/13506280444000535 3608:10.1016/j.cub.2005.10.072 3312:10.3758/s13423-013-0421-4 3147:10.1007/s10329-006-0011-4 2804:10.1152/jn.2002.88.4.2019 2004:10.1080/13506280500527676 1915:10.1038/s41562-019-0546-1 718:10.1152/jn.2001.86.5.2634 489: 425: 239: 68:feature based search task 4700:Clinical Vision Sciences 4191:10.1037/0882-7974.4.1.98 4123:10.1177/0891988716640375 1706:Eckstein, M. P. (2011). 138:Real world visual search 4924:10.1111/1469-7610.00376 4481:10.1093/geronj/20.2.233 4161:Frontiers in Psychology 3044:10.1073/pnas.1803854115 2711:"Medical Neurosciences" 2581:10.1162/089892900564073 2411:10.1126/science.7638604 2140:10.1111/1467-9280.00006 2033:Neisser, Ulric (1967). 229:Pre-attentive processes 4469:Journal of Gerontology 2624:10.1006/nimg.2002.1137 2538:10.1006/nimg.2002.1329 2360:10.1093/cercor/1.3.262 2317:10.1006/brcg.1997.0915 2216:Psychological Bulletin 1903:Nature Human Behaviour 381: 355:V1 Saliency Hypothesis 324: 310:electroencephalography 297: 209: 173: 106: 69: 4851:Psychological Science 3971:VanRullen, R (2006). 3244:Psychological Science 2853:Cognitive Development 2262:Wolfe, J. M. (1994). 2118:Psychological Science 1622:Psychological Science 1581:Cognitive Development 376: 322: 295: 261:illusory conjunctions 207: 171: 104: 67: 5079:Cognitive psychology 4179:Psychology and Aging 3186:Psychological Review 2734:Ann. N. Y. Acad. Sci 2459:10.1093/brain/awh244 2075:Cognitive Psychology 2036:Cognitive Psychology 1879:10.3758/APP.72.3.683 1115:Wolfe, J.M. (2014). 759:Cognitive Psychology 83:parallel processing. 79:bottom-up processing 21:visual search engine 4212:Akhtar, N. (1990). 3431:Nature Neuroscience 3388:Nature Neuroscience 3035:2018PNAS..11510499Y 3029:(41): 10499–10504. 2746:2009NYASA1164..147M 2667:Schall JD. (2004). 2403:1995Sci...269..853F 2305:Brain and Cognition 1823:1982SciAm.246f.124W 1811:Scientific American 1405:2011PLoSO...623552S 1020:Human Brain Mapping 503:Consumer psychology 484:Parkinson's disease 480:double dissociation 465:hemispatial neglect 456:Alzheimer's disease 450:Alzheimer's disease 347:superior colliculus 275:Guided search model 234:selective attention 200:visual environment. 147:Reaction time slope 131:top-down processing 91:parallel processing 3649:10.3758/bf03206744 3567:10.3758/bf03208806 3534:10.3758/bf03330521 2909:10.1007/bf00247037 2281:10.3758/bf03200774 682:10.3758/BF03210863 669:Percept Psychophys 641:10.3758/bf03206794 593:10.1007/bf00233988 512:devices to assess 403:fusiform face area 395:fusiform face area 382: 325: 298: 210: 174: 154:conjunction search 107: 97:Conjunction search 70: 4857:(11): 1388–1393. 4570:(12): 1849–1857. 4249:Child Development 4033:(18): 3028–3035. 3986:(18): 3017–3027. 3919:Journal of Vision 3884:(13): 1707–1724. 3765:(12): 1555–1570. 3601:(24): 2256–2262. 3349:(11): 4302–4311. 2681:(12): 1453–1467. 2452:(10): 2307–2315. 2397:(5225): 853–855. 1712:Journal of Vision 1544:(10): 1185–1200. 1452:Journal of Vision 1246:Journal of Vision 1195:Journal of Vision 1033:10.1002/hbm.23176 415:cross-race effect 340:frontal eye field 5086: 5054: 5053: 5025: 5019: 5018: 5000: 4991: 4985: 4984: 4974: 4950: 4944: 4943: 4917: 4897: 4891: 4890: 4848: 4839: 4833: 4832: 4822: 4803:10.1037/a0027670 4782: 4773: 4772: 4736: 4727: 4726: 4714: 4708: 4707: 4695: 4689: 4688: 4668: 4662: 4661: 4659: 4658: 4630:(8): 1126–1135. 4624:Neuropsychologia 4621: 4612: 4606: 4605: 4579: 4564:Neuropsychologia 4559: 4546: 4545: 4543: 4542: 4499: 4493: 4492: 4464: 4458: 4457: 4440:(6): 1238–1250. 4429: 4423: 4422: 4394: 4388: 4387: 4357: 4351: 4350: 4322: 4316: 4315: 4287: 4281: 4280: 4244: 4238: 4237: 4235: 4234: 4209: 4203: 4202: 4174: 4168: 4157: 4151: 4150: 4105: 4096: 4095: 4059: 4053: 4052: 4042: 4018: 4012: 4011: 3977: 3968: 3962: 3959: 3953: 3952: 3942: 3931:10.1167/10.10.21 3910: 3904: 3903: 3893: 3869: 3863: 3862: 3852: 3832: 3826: 3825: 3808:(7): 1309–1336. 3802:Visual Cognition 3797: 3791: 3790: 3754: 3748: 3747: 3711: 3705: 3704: 3668: 3662: 3661: 3651: 3627: 3621: 3620: 3610: 3586: 3580: 3579: 3569: 3545: 3539: 3538: 3536: 3512: 3506: 3505: 3469: 3463: 3462: 3426: 3420: 3419: 3383: 3377: 3376: 3366: 3335:Kanwisher, Nancy 3331: 3325: 3324: 3314: 3305:(6): 1080–1101. 3290: 3284: 3283: 3239: 3233: 3232: 3224: 3218: 3217: 3181: 3175: 3174: 3130: 3124: 3123: 3105: 3096:(6): 1241–1250. 3081: 3075: 3074: 3064: 3046: 3014: 3008: 3007: 2959: 2953: 2952: 2946: 2938: 2920: 2894: 2885: 2879: 2878: 2868: 2848: 2839: 2838: 2832: 2824: 2806: 2797:(4): 2019–2034. 2782: 2776: 2775: 2765: 2725: 2719: 2718: 2713:. Archived from 2707: 2701: 2700: 2690: 2664: 2658: 2657: 2651: 2643: 2607: 2601: 2600: 2564: 2558: 2557: 2521: 2515: 2514: 2489:(8): 1121–1131. 2483:Neuropsychologia 2478: 2472: 2471: 2461: 2437: 2431: 2430: 2386: 2380: 2379: 2343: 2337: 2336: 2300: 2294: 2293: 2283: 2259: 2248: 2247: 2211: 2202: 2201: 2165: 2152: 2151: 2133: 2113: 2107: 2106: 2070: 2064: 2063: 2061: 2060: 2030: 2024: 2023: 1998:(4–8): 389–410. 1992:Visual Cognition 1987: 1976: 1975: 1965: 1941: 1935: 1934: 1898: 1892: 1891: 1881: 1857: 1851: 1850: 1806: 1800: 1799: 1763: 1754: 1753: 1744: 1738: 1737: 1727: 1703: 1697: 1696: 1668: 1662: 1661: 1613: 1607: 1606: 1596: 1576: 1570: 1569: 1533: 1527: 1526: 1516: 1484: 1478: 1477: 1467: 1443: 1437: 1436: 1426: 1416: 1384: 1378: 1377: 1367: 1335: 1329: 1328: 1318: 1301:(3–4): 595–609. 1295:Visual Cognition 1286: 1280: 1279: 1269: 1237: 1231: 1230: 1220: 1210: 1186: 1180: 1179: 1169: 1137: 1131: 1130: 1112: 1106: 1105: 1094:10.1037/a0037387 1079: 1070: 1064: 1063: 1045: 1035: 1011: 1005: 1004: 993:10.1037/h0087415 986: 966: 951: 950: 931:10.1037/a0023099 914: 901: 900: 894: 886: 878: 857: 856: 846: 814: 791: 790: 751: 738: 737: 701: 695: 694: 684: 660: 654: 653: 643: 619: 613: 612: 576: 570: 569: 530: 389:Face recognition 379:Jungle with Lion 377:Henri Rousseau, 288:Biological basis 5094: 5093: 5089: 5088: 5087: 5085: 5084: 5083: 5069:Neuropsychology 5059: 5058: 5057: 5026: 5022: 4998: 4992: 4988: 4965:(6): 990–1003. 4951: 4947: 4915:10.1.1.464.6677 4898: 4894: 4846: 4840: 4836: 4783: 4776: 4737: 4730: 4715: 4711: 4696: 4692: 4669: 4665: 4656: 4654: 4619: 4613: 4609: 4577:10.1.1.538.4618 4560: 4549: 4540: 4538: 4500: 4496: 4465: 4461: 4430: 4426: 4395: 4391: 4358: 4354: 4323: 4319: 4288: 4284: 4245: 4241: 4232: 4230: 4228: 4210: 4206: 4175: 4171: 4158: 4154: 4106: 4099: 4060: 4056: 4027:Vision Research 4019: 4015: 3980:Vision Research 3975: 3969: 3965: 3960: 3956: 3911: 3907: 3878:Vision Research 3870: 3866: 3859:10.1002/icd.239 3850:10.1.1.130.8912 3833: 3829: 3798: 3794: 3771:10.1068/p261555 3755: 3751: 3728:10.1068/p230095 3712: 3708: 3685:10.1068/p221287 3679:(11): 1287–98. 3669: 3665: 3628: 3624: 3595:Current Biology 3587: 3583: 3546: 3542: 3513: 3509: 3486:10.1068/p150525 3470: 3466: 3427: 3423: 3384: 3380: 3332: 3328: 3291: 3287: 3240: 3236: 3225: 3221: 3182: 3178: 3131: 3127: 3082: 3078: 3015: 3011: 2960: 2956: 2940: 2939: 2892: 2886: 2882: 2866:10.1.1.522.1907 2849: 2842: 2826: 2825: 2783: 2779: 2726: 2722: 2709: 2708: 2704: 2674:Vision Research 2665: 2661: 2645: 2644: 2608: 2604: 2565: 2561: 2522: 2518: 2479: 2475: 2438: 2434: 2387: 2383: 2348:Cerebral Cortex 2344: 2340: 2301: 2297: 2260: 2251: 2212: 2205: 2166: 2155: 2131:10.1.1.148.6975 2114: 2110: 2071: 2067: 2058: 2056: 2047: 2031: 2027: 1988: 1979: 1950:Vision Research 1942: 1938: 1899: 1895: 1858: 1854: 1807: 1803: 1764: 1757: 1745: 1741: 1725:10.1167/11.5.14 1704: 1700: 1669: 1665: 1614: 1610: 1594:10.1.1.522.1907 1577: 1573: 1534: 1530: 1505:10.1167/18.11.4 1485: 1481: 1444: 1440: 1385: 1381: 1336: 1332: 1287: 1283: 1258:10.1167/12.4.14 1238: 1234: 1187: 1183: 1146:Vision Research 1138: 1134: 1127: 1113: 1109: 1077: 1071: 1067: 1012: 1008: 967: 954: 925:(4): 997–1006. 915: 904: 888: 887: 879: 860: 815: 794: 755:Treisman, A. M. 752: 741: 702: 698: 661: 657: 620: 616: 577: 573: 531: 527: 523: 505: 492: 452: 428: 423: 391: 367: 302:parietal cortex 290: 277: 253: 247: 242: 166: 149: 140: 129:In many cases, 99: 62: 57: 37:task requiring 28: 17: 12: 11: 5: 5092: 5082: 5081: 5076: 5071: 5056: 5055: 5042:10.1086/209540 5036:(3): 290–301. 5020: 4986: 4945: 4908:(5): 777–783. 4892: 4834: 4797:(2): 544–551. 4774: 4747:(3): 719–730. 4728: 4709: 4690: 4663: 4607: 4547: 4514:(2): 511–524. 4494: 4475:(2): 233–238. 4459: 4424: 4405:(3): 523–537. 4389: 4352: 4317: 4298:(2): 171–189. 4282: 4255:(2): 247–252. 4239: 4226: 4204: 4169: 4152: 4117:(4): 205–211. 4097: 4070:(2): 391–406. 4054: 4013: 3963: 3954: 3905: 3864: 3827: 3792: 3749: 3706: 3663: 3642:(3): 215–224. 3622: 3581: 3560:(4): 355–366. 3540: 3527:(2): 118–120. 3507: 3480:(5): 525–533. 3464: 3443:10.1038/nn1224 3437:(5): 555–562. 3421: 3394:(8): 764–770. 3378: 3326: 3285: 3250:(3): 284–289. 3234: 3219: 3192:(3): 483–522. 3176: 3125: 3076: 3009: 2954: 2903:(1): 140–154. 2880: 2859:(3): 369–386. 2840: 2777: 2720: 2717:on 2011-11-09. 2702: 2659: 2618:(4): 968–976. 2602: 2559: 2516: 2473: 2432: 2381: 2354:(3): 262–272. 2338: 2311:(3): 388–403. 2295: 2274:(2): 202–238. 2249: 2222:(5): 643–673. 2203: 2176:(1): 119–132. 2153: 2108: 2065: 2054:1967-35031-000 2045: 2025: 1977: 1956:(6): 721–730. 1936: 1909:(5): 424–425. 1893: 1872:(3): 683–694. 1852: 1817:(6): 124–135. 1801: 1755: 1739: 1698: 1679:(4): 118–123. 1663: 1628:(2): 106–111. 1608: 1587:(3): 369–386. 1571: 1550:10.1068/p5342x 1528: 1479: 1465:10.1167/10.2.4 1438: 1379: 1330: 1281: 1232: 1208:10.1167/11.8.9 1181: 1132: 1125: 1107: 1088:(5): 1819–31. 1065: 1026:(6): 2319–30. 1006: 952: 902: 858: 829:(6): 1517–39. 792: 739: 706:J Neurophysiol 696: 655: 634:(6): 787–795. 614: 587:(3): 507–522. 571: 524: 522: 519: 504: 501: 491: 488: 451: 448: 427: 424: 422: 421:Considerations 419: 390: 387: 366: 363: 330:working memory 289: 286: 276: 273: 249:Main article: 246: 243: 241: 238: 202: 201: 197: 165: 162: 158:feature search 148: 145: 139: 136: 98: 95: 61: 60:Feature search 58: 56: 53: 45:Where's Wally? 15: 9: 6: 4: 3: 2: 5091: 5080: 5077: 5075: 5072: 5070: 5067: 5066: 5064: 5051: 5047: 5043: 5039: 5035: 5031: 5024: 5016: 5012: 5008: 5004: 4997: 4990: 4982: 4978: 4973: 4968: 4964: 4960: 4956: 4949: 4941: 4937: 4933: 4929: 4925: 4921: 4916: 4911: 4907: 4903: 4896: 4888: 4884: 4880: 4876: 4872: 4868: 4864: 4860: 4856: 4852: 4845: 4838: 4830: 4826: 4821: 4816: 4812: 4808: 4804: 4800: 4796: 4792: 4788: 4781: 4779: 4770: 4766: 4762: 4758: 4754: 4750: 4746: 4742: 4735: 4733: 4724: 4720: 4713: 4706:(3): 281–287. 4705: 4701: 4694: 4686: 4682: 4678: 4674: 4667: 4653: 4649: 4645: 4641: 4637: 4633: 4629: 4625: 4618: 4611: 4603: 4599: 4595: 4591: 4587: 4583: 4578: 4573: 4569: 4565: 4558: 4556: 4554: 4552: 4537: 4533: 4529: 4525: 4521: 4517: 4513: 4509: 4505: 4498: 4490: 4486: 4482: 4478: 4474: 4470: 4463: 4455: 4451: 4447: 4443: 4439: 4435: 4428: 4420: 4416: 4412: 4408: 4404: 4400: 4393: 4385: 4381: 4377: 4373: 4369: 4365: 4364: 4356: 4348: 4344: 4340: 4336: 4332: 4328: 4321: 4313: 4309: 4305: 4301: 4297: 4293: 4286: 4278: 4274: 4270: 4266: 4262: 4258: 4254: 4250: 4243: 4229: 4227:9780080867236 4223: 4219: 4215: 4208: 4200: 4196: 4192: 4188: 4185:(1): 98–105. 4184: 4180: 4173: 4166: 4162: 4156: 4148: 4144: 4140: 4136: 4132: 4128: 4124: 4120: 4116: 4112: 4104: 4102: 4093: 4089: 4085: 4081: 4077: 4073: 4069: 4065: 4058: 4050: 4046: 4041: 4036: 4032: 4028: 4024: 4017: 4009: 4005: 4001: 3997: 3993: 3989: 3985: 3981: 3974: 3967: 3958: 3950: 3946: 3941: 3936: 3932: 3928: 3924: 3920: 3916: 3909: 3901: 3897: 3892: 3887: 3883: 3879: 3875: 3868: 3860: 3856: 3851: 3846: 3843:(1–2): 3–18. 3842: 3838: 3831: 3823: 3819: 3815: 3811: 3807: 3803: 3796: 3788: 3784: 3780: 3776: 3772: 3768: 3764: 3760: 3753: 3745: 3741: 3737: 3733: 3729: 3725: 3722:(1): 95–122. 3721: 3717: 3710: 3702: 3698: 3694: 3690: 3686: 3682: 3678: 3674: 3667: 3659: 3655: 3650: 3645: 3641: 3637: 3633: 3626: 3618: 3614: 3609: 3604: 3600: 3596: 3592: 3585: 3577: 3573: 3568: 3563: 3559: 3555: 3551: 3544: 3535: 3530: 3526: 3522: 3518: 3511: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3475: 3468: 3460: 3456: 3452: 3448: 3444: 3440: 3436: 3432: 3425: 3417: 3413: 3409: 3405: 3401: 3400:10.1038/77666 3397: 3393: 3389: 3382: 3374: 3370: 3365: 3360: 3356: 3352: 3348: 3344: 3340: 3336: 3330: 3322: 3318: 3313: 3308: 3304: 3300: 3296: 3289: 3281: 3277: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3245: 3238: 3230: 3223: 3215: 3211: 3207: 3203: 3199: 3195: 3191: 3187: 3180: 3172: 3168: 3164: 3160: 3156: 3152: 3148: 3144: 3140: 3136: 3129: 3121: 3117: 3113: 3109: 3104: 3099: 3095: 3091: 3087: 3080: 3072: 3068: 3063: 3058: 3054: 3050: 3045: 3040: 3036: 3032: 3028: 3024: 3020: 3013: 3005: 3001: 2997: 2993: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2958: 2950: 2944: 2936: 2932: 2928: 2924: 2919: 2918:2027.42/46559 2914: 2910: 2906: 2902: 2898: 2891: 2884: 2876: 2872: 2867: 2862: 2858: 2854: 2847: 2845: 2836: 2830: 2822: 2818: 2814: 2810: 2805: 2800: 2796: 2792: 2788: 2781: 2773: 2769: 2764: 2759: 2755: 2751: 2747: 2743: 2740:(1): 147–54. 2739: 2735: 2731: 2724: 2716: 2712: 2706: 2698: 2694: 2689: 2684: 2680: 2676: 2675: 2670: 2663: 2655: 2649: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2606: 2598: 2594: 2590: 2586: 2582: 2578: 2574: 2570: 2563: 2555: 2551: 2547: 2543: 2539: 2535: 2532:(1): 91–103. 2531: 2527: 2520: 2512: 2508: 2504: 2500: 2496: 2492: 2488: 2484: 2477: 2469: 2465: 2460: 2455: 2451: 2447: 2443: 2436: 2428: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2396: 2392: 2385: 2377: 2373: 2369: 2365: 2361: 2357: 2353: 2349: 2342: 2334: 2330: 2326: 2322: 2318: 2314: 2310: 2306: 2299: 2291: 2287: 2282: 2277: 2273: 2269: 2265: 2258: 2256: 2254: 2245: 2241: 2237: 2233: 2229: 2225: 2221: 2217: 2210: 2208: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2164: 2162: 2160: 2158: 2149: 2145: 2141: 2137: 2132: 2127: 2123: 2119: 2112: 2104: 2100: 2096: 2092: 2088: 2084: 2081:(1): 97–136. 2080: 2076: 2069: 2055: 2052: 2048: 2046:9781317566182 2042: 2038: 2037: 2029: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1986: 1984: 1982: 1973: 1969: 1964: 1959: 1955: 1951: 1947: 1940: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1904: 1897: 1889: 1885: 1880: 1875: 1871: 1867: 1863: 1856: 1848: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1805: 1797: 1793: 1789: 1785: 1781: 1777: 1774:(2): 207–21. 1773: 1769: 1762: 1760: 1751: 1743: 1735: 1731: 1726: 1721: 1717: 1713: 1709: 1702: 1694: 1690: 1686: 1682: 1678: 1674: 1667: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1612: 1604: 1600: 1595: 1590: 1586: 1582: 1575: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1532: 1524: 1520: 1515: 1510: 1506: 1502: 1498: 1494: 1490: 1483: 1475: 1471: 1466: 1461: 1458:(2): 4.1–11. 1457: 1453: 1449: 1442: 1434: 1430: 1425: 1420: 1415: 1410: 1406: 1402: 1399:(9): e23552. 1398: 1394: 1390: 1383: 1375: 1371: 1366: 1361: 1357: 1353: 1349: 1345: 1341: 1334: 1326: 1322: 1317: 1312: 1308: 1304: 1300: 1296: 1292: 1285: 1277: 1273: 1268: 1263: 1259: 1255: 1251: 1247: 1243: 1236: 1228: 1224: 1219: 1214: 1209: 1204: 1200: 1196: 1192: 1185: 1177: 1173: 1168: 1163: 1159: 1155: 1151: 1147: 1143: 1136: 1128: 1126:9780199675111 1122: 1118: 1111: 1103: 1099: 1095: 1091: 1087: 1083: 1076: 1069: 1061: 1057: 1053: 1049: 1044: 1039: 1034: 1029: 1025: 1021: 1017: 1010: 1002: 998: 994: 990: 985: 984:10.1.1.59.251 980: 976: 972: 965: 963: 961: 959: 957: 948: 944: 940: 936: 932: 928: 924: 920: 913: 911: 909: 907: 898: 892: 884: 877: 875: 873: 871: 869: 867: 865: 863: 854: 850: 845: 840: 836: 832: 828: 824: 820: 813: 811: 809: 807: 805: 803: 801: 799: 797: 788: 784: 780: 776: 772: 768: 765:(1): 97–136. 764: 760: 756: 750: 748: 746: 744: 735: 731: 727: 723: 719: 715: 712:(5): 2634–7. 711: 707: 700: 692: 688: 683: 678: 675:(5): 476–82. 674: 670: 666: 659: 651: 647: 642: 637: 633: 629: 625: 618: 610: 606: 602: 598: 594: 590: 586: 582: 575: 567: 563: 559: 555: 551: 547: 544:(1): 97–136. 543: 539: 535: 529: 525: 518: 515: 511: 500: 497: 487: 485: 481: 476: 472: 468: 466: 461: 457: 447: 445: 441: 436: 432: 418: 416: 410: 406: 404: 400: 399:prosopagnosia 396: 386: 380: 375: 371: 362: 360: 356: 351: 348: 343: 341: 336: 331: 321: 317: 315: 311: 307: 303: 294: 285: 281: 272: 268: 264: 262: 257: 252: 237: 235: 230: 224: 222: 218: 217:microsaccades 213: 206: 198: 194: 193: 192: 189: 187: 183: 179: 170: 161: 159: 155: 144: 135: 132: 127: 125: 124:reaction time 121: 120:reaction time 117: 116:reaction time 113: 112:reaction time 103: 94: 92: 86: 84: 80: 76: 75:reaction time 66: 52: 48: 47: 46: 40: 36: 33:is a type of 32: 31:Visual search 26: 22: 5033: 5029: 5023: 5006: 5002: 4989: 4962: 4958: 4948: 4905: 4901: 4895: 4854: 4850: 4837: 4794: 4790: 4744: 4740: 4722: 4718: 4712: 4703: 4699: 4693: 4679:(3): 203–8. 4676: 4672: 4666: 4655:. Retrieved 4627: 4623: 4610: 4567: 4563: 4539:. Retrieved 4511: 4507: 4497: 4472: 4468: 4462: 4437: 4433: 4427: 4402: 4398: 4392: 4367: 4361: 4355: 4330: 4326: 4320: 4295: 4291: 4285: 4252: 4248: 4242: 4231:. Retrieved 4217: 4207: 4182: 4178: 4172: 4164: 4160: 4155: 4114: 4110: 4067: 4063: 4057: 4030: 4026: 4016: 3983: 3979: 3966: 3957: 3922: 3918: 3908: 3881: 3877: 3867: 3840: 3836: 3830: 3805: 3801: 3795: 3762: 3758: 3752: 3719: 3715: 3709: 3676: 3672: 3666: 3639: 3635: 3625: 3598: 3594: 3584: 3557: 3553: 3543: 3524: 3520: 3510: 3477: 3473: 3467: 3434: 3430: 3424: 3391: 3387: 3381: 3346: 3342: 3329: 3302: 3298: 3288: 3247: 3243: 3237: 3228: 3222: 3189: 3185: 3179: 3138: 3134: 3128: 3093: 3089: 3079: 3026: 3022: 3012: 2971: 2967: 2957: 2943:cite journal 2900: 2896: 2883: 2856: 2852: 2829:cite journal 2794: 2790: 2780: 2737: 2733: 2723: 2715:the original 2705: 2678: 2672: 2662: 2648:cite journal 2615: 2611: 2605: 2572: 2568: 2562: 2529: 2525: 2519: 2486: 2482: 2476: 2449: 2445: 2435: 2394: 2390: 2384: 2351: 2347: 2341: 2308: 2304: 2298: 2271: 2267: 2219: 2215: 2173: 2169: 2124:(1): 33–39. 2121: 2117: 2111: 2078: 2074: 2068: 2057:. Retrieved 2035: 2028: 1995: 1991: 1953: 1949: 1939: 1906: 1902: 1896: 1869: 1865: 1855: 1814: 1810: 1804: 1771: 1767: 1749: 1742: 1715: 1711: 1701: 1676: 1672: 1666: 1625: 1621: 1611: 1584: 1580: 1574: 1541: 1537: 1531: 1496: 1492: 1482: 1455: 1451: 1441: 1396: 1392: 1382: 1350:(2): 77–84. 1347: 1343: 1333: 1298: 1294: 1284: 1249: 1245: 1235: 1198: 1194: 1184: 1149: 1145: 1135: 1116: 1110: 1085: 1081: 1068: 1023: 1019: 1009: 977:(2): 76–96. 974: 970: 922: 918: 882: 826: 822: 762: 758: 709: 705: 699: 672: 668: 658: 631: 627: 617: 584: 580: 574: 541: 538:Cogn Psychol 537: 534:Treisman, AM 528: 510:eye tracking 506: 493: 477: 473: 469: 459: 453: 444:P3 component 437: 433: 429: 411: 407: 392: 383: 378: 368: 352: 344: 326: 299: 282: 278: 269: 265: 258: 254: 225: 214: 211: 190: 175: 150: 141: 128: 108: 87: 71: 55:Search types 49: 43: 30: 29: 4370:(1): 1–15. 4333:(1): 1–16. 3141:(1): 1–12. 2974:(1): 9–16. 308:(fMRI) and 5074:Perception 5063:Categories 4657:2012-11-19 4541:2012-11-19 4508:NeuroImage 4233:2012-11-19 3925:(10): 21. 3759:Perception 3716:Perception 3673:Perception 3474:Perception 2612:NeuroImage 2526:NeuroImage 2059:2012-11-17 1538:Perception 521:References 359:colliculus 35:perceptual 4932:1469-7610 4910:CiteSeerX 4871:0956-7976 4811:1939-1846 4761:1939-1277 4572:CiteSeerX 4131:0891-9887 3845:CiteSeerX 3822:144115983 3264:0956-7976 3155:0032-8332 3112:0896-6273 3053:0027-8424 2988:1364-6613 2861:CiteSeerX 2575:: 61–75. 2126:CiteSeerX 2012:1350-6285 1839:0036-8733 1718:(5): 14. 1693:145161732 1642:0956-7976 1589:CiteSeerX 1499:(11): 4. 1252:(4): 14. 1152:: 20–30. 1060:205849752 979:CiteSeerX 891:cite book 883:Cognition 365:Evolution 221:attention 39:attention 5050:33778354 5009:: 1–16. 4981:18954479 4887:17119998 4879:19843262 4829:22428792 4769:11424657 4725:: 33–47. 4652:28425852 4644:10838147 4602:16310213 4594:12207983 4536:10314546 4528:18395470 4489:14284802 4147:36274369 4139:27056068 4084:24338355 4049:16698058 4000:16125749 3949:20884486 3900:15792845 3787:39634780 3744:20262065 3701:33911653 3617:16360687 3451:15077112 3408:10903568 3321:23504916 3280:12776572 3272:18315802 3206:11488376 3163:16969584 3135:Primates 3120:14687556 3071:30254154 3004:13411369 2996:11849610 2821:16885851 2813:12364525 2772:19645893 2697:15066404 2632:12202084 2597:35061939 2589:11506648 2554:32757191 2546:12507447 2468:15292055 2427:42706447 2376:12364128 2333:13138212 2290:24203471 2244:25206656 2236:12956538 2198:22704624 2190:19170475 2148:11042813 1972:15639499 1931:71148025 1923:31089295 1888:20348575 1796:19087912 1788:15869346 1734:22209816 1650:14738517 1566:35581448 1558:15693664 1523:30347091 1474:20462305 1433:21931603 1393:PLOS ONE 1374:21227734 1325:26180505 1276:22523401 1227:21757505 1201:(8): 9. 1176:22227607 1102:24999612 1052:26970441 1001:12822838 947:12986008 939:21574744 853:10641310 726:11698551 514:saccades 496:autistic 460:enhanced 196:saccade. 4940:9690940 4820:3357114 4685:9297714 4454:8294889 4419:2144568 4384:7744167 4312:2794852 4277:4705552 4269:1128043 4199:2803617 4092:1639650 4008:1180752 3940:2981506 3779:9616483 3736:7936979 3693:8047415 3658:1754362 3576:3362664 3502:9641249 3494:3588212 3459:2204107 3416:8355344 3373:9151747 3364:6573547 3214:7920871 3171:7313319 3062:6187116 3031:Bibcode 2935:2333254 2927:3436384 2763:3057571 2742:Bibcode 2640:1702722 2511:7305220 2503:9256377 2419:7638604 2399:Bibcode 2391:Science 2368:1822736 2325:9292188 2095:7351125 2051:PsycNET 1847:7100892 1819:Bibcode 1658:2286443 1514:6181188 1424:3169564 1401:Bibcode 1365:3035167 1316:4500174 1267:4032502 1218:8409006 1167:3345177 1043:6867346 844:3313830 779:7351125 691:2813033 650:7651803 609:2280537 601:8056071 558:7351125 178:saccade 5048:  4979:  4938:  4930:  4912:  4885:  4877:  4869:  4827:  4817:  4809:  4767:  4759:  4683:  4650:  4642:  4600:  4592:  4574:  4534:  4526:  4487:  4452:  4417:  4382:  4347:641439 4345:  4310:  4275:  4267:  4224:  4197:  4145:  4137:  4129:  4090:  4082:  4047:  4006:  3998:  3947:  3937:  3898:  3847:  3820:  3785:  3777:  3742:  3734:  3699:  3691:  3656:  3615:  3574:  3500:  3492:  3457:  3449:  3414:  3406:  3371:  3361:  3319:  3278:  3270:  3262:  3212:  3204:  3169:  3161:  3153:  3118:  3110:  3090:Neuron 3069:  3059:  3051:  3002:  2994:  2986:  2933:  2925:  2863:  2819:  2811:  2770:  2760:  2695:  2638:  2630:  2595:  2587:  2552:  2544:  2509:  2501:  2466:  2425:  2417:  2374:  2366:  2331:  2323:  2288:  2242:  2234:  2196:  2188:  2146:  2128:  2103:353246 2101:  2093:  2043:  2020:671170 2018:  2010:  1970:  1929:  1921:  1886:  1845:  1837:  1794:  1786:  1732:  1691:  1656:  1648:  1640:  1591:  1564:  1556:  1521:  1511:  1472:  1431:  1421:  1372:  1362:  1323:  1313:  1274:  1264:  1225:  1215:  1174:  1164:  1123:  1100:  1058:  1050:  1040:  999:  981:  945:  937:  851:  841:  787:353246 785:  777:  734:653798 732:  724:  689:  648:  607:  599:  566:353246 564:  556:  490:Autism 426:Ageing 240:Theory 182:fixate 81:, and 5046:S2CID 4999:(PDF) 4883:S2CID 4847:(PDF) 4648:S2CID 4620:(PDF) 4598:S2CID 4532:S2CID 4265:JSTOR 4143:S2CID 4088:S2CID 4004:S2CID 3976:(PDF) 3818:S2CID 3783:S2CID 3740:S2CID 3697:S2CID 3498:S2CID 3455:S2CID 3412:S2CID 3276:S2CID 3210:S2CID 3167:S2CID 3000:S2CID 2931:S2CID 2893:(PDF) 2817:S2CID 2636:S2CID 2593:S2CID 2550:S2CID 2507:S2CID 2446:Brain 2423:S2CID 2372:S2CID 2329:S2CID 2240:S2CID 2194:S2CID 2144:S2CID 2099:S2CID 2016:S2CID 1927:S2CID 1792:S2CID 1689:S2CID 1654:S2CID 1562:S2CID 1493:J Vis 1078:(PDF) 1056:S2CID 943:S2CID 783:S2CID 730:S2CID 605:S2CID 562:S2CID 186:fovea 4977:PMID 4936:PMID 4928:ISSN 4875:PMID 4867:ISSN 4825:PMID 4807:ISSN 4765:PMID 4757:ISSN 4681:PMID 4640:PMID 4590:PMID 4524:PMID 4485:PMID 4450:PMID 4415:PMID 4380:PMID 4343:PMID 4308:PMID 4273:PMID 4222:ISBN 4195:PMID 4135:PMID 4127:ISSN 4080:PMID 4045:PMID 3996:PMID 3945:PMID 3896:PMID 3775:PMID 3732:PMID 3689:PMID 3654:PMID 3613:PMID 3572:PMID 3490:PMID 3447:PMID 3404:PMID 3369:PMID 3317:PMID 3268:PMID 3260:ISSN 3202:PMID 3159:PMID 3151:ISSN 3116:PMID 3108:ISSN 3067:PMID 3049:ISSN 2992:PMID 2984:ISSN 2949:link 2923:PMID 2835:link 2809:PMID 2768:PMID 2738:1164 2693:PMID 2654:link 2628:PMID 2585:PMID 2542:PMID 2499:PMID 2464:PMID 2415:PMID 2364:PMID 2321:PMID 2286:PMID 2232:PMID 2186:PMID 2091:PMID 2041:ISBN 2008:ISSN 1968:PMID 1919:PMID 1884:PMID 1843:PMID 1835:ISSN 1784:PMID 1730:PMID 1646:PMID 1638:ISSN 1554:PMID 1519:PMID 1470:PMID 1429:PMID 1370:PMID 1321:PMID 1272:PMID 1223:PMID 1172:PMID 1121:ISBN 1098:PMID 1048:PMID 997:PMID 935:PMID 897:link 849:PMID 775:PMID 722:PMID 687:PMID 646:PMID 597:PMID 554:PMID 23:and 5038:doi 5011:doi 4967:doi 4920:doi 4859:doi 4815:PMC 4799:doi 4795:121 4749:doi 4632:doi 4582:doi 4516:doi 4477:doi 4442:doi 4407:doi 4372:doi 4335:doi 4300:doi 4257:doi 4187:doi 4119:doi 4072:doi 4035:doi 3988:doi 3935:PMC 3927:doi 3886:doi 3855:doi 3810:doi 3767:doi 3724:doi 3681:doi 3644:doi 3603:doi 3562:doi 3529:doi 3482:doi 3439:doi 3396:doi 3359:PMC 3351:doi 3307:doi 3252:doi 3194:doi 3190:108 3143:doi 3098:doi 3057:PMC 3039:doi 3027:115 2976:doi 2913:hdl 2905:doi 2871:doi 2799:doi 2758:PMC 2750:doi 2683:doi 2620:doi 2577:doi 2534:doi 2491:doi 2454:doi 2450:127 2407:doi 2395:269 2356:doi 2313:doi 2276:doi 2224:doi 2220:129 2178:doi 2136:doi 2083:doi 2000:doi 1958:doi 1911:doi 1874:doi 1827:doi 1815:246 1776:doi 1772:134 1720:doi 1681:doi 1630:doi 1599:doi 1546:doi 1509:PMC 1501:doi 1460:doi 1419:PMC 1409:doi 1360:PMC 1352:doi 1311:PMC 1303:doi 1262:PMC 1254:doi 1213:PMC 1203:doi 1162:PMC 1154:doi 1090:doi 1038:PMC 1028:doi 989:doi 927:doi 839:PMC 831:doi 767:doi 714:doi 677:doi 636:doi 589:doi 546:doi 5065:: 5044:. 5034:25 5032:. 5007:16 5005:. 5001:. 4975:. 4963:14 4961:. 4957:. 4934:. 4926:. 4918:. 4906:39 4904:. 4881:. 4873:. 4865:. 4855:20 4853:. 4849:. 4823:. 4813:. 4805:. 4793:. 4789:. 4777:^ 4763:. 4755:. 4745:27 4743:. 4731:^ 4723:11 4721:. 4702:. 4677:10 4675:. 4646:. 4638:. 4628:38 4626:. 4622:. 4596:. 4588:. 4580:. 4568:40 4566:. 4550:^ 4530:. 4522:. 4512:41 4510:. 4506:. 4483:. 4473:20 4471:. 4448:. 4438:19 4436:. 4413:. 4403:16 4401:. 4378:. 4368:21 4366:. 4341:. 4331:25 4329:. 4306:. 4296:48 4294:. 4271:. 4263:. 4253:44 4251:. 4216:. 4193:. 4181:. 4163:, 4141:. 4133:. 4125:. 4115:29 4113:. 4100:^ 4086:. 4078:. 4068:76 4066:. 4043:. 4031:46 4029:. 4025:. 4002:. 3994:. 3984:46 3982:. 3978:. 3943:. 3933:. 3923:10 3921:. 3917:. 3894:. 3882:45 3880:. 3876:. 3853:. 3841:10 3839:. 3816:. 3806:12 3804:. 3781:. 3773:. 3763:26 3761:. 3738:. 3730:. 3720:23 3718:. 3695:. 3687:. 3677:22 3675:. 3652:. 3640:50 3638:. 3634:. 3611:. 3599:15 3597:. 3593:. 3570:. 3558:43 3556:. 3552:. 3525:24 3523:. 3519:. 3496:. 3488:. 3478:15 3476:. 3453:. 3445:. 3433:. 3410:. 3402:. 3390:. 3367:. 3357:. 3347:17 3345:. 3341:. 3315:. 3303:20 3301:. 3297:. 3274:. 3266:. 3258:. 3248:19 3246:. 3208:. 3200:. 3188:. 3165:. 3157:. 3149:. 3139:48 3137:. 3114:. 3106:. 3094:40 3092:. 3088:. 3065:. 3055:. 3047:. 3037:. 3025:. 3021:. 2998:. 2990:. 2982:. 2970:. 2966:. 2945:}} 2941:{{ 2929:. 2921:. 2911:. 2901:69 2899:. 2895:. 2869:. 2857:13 2855:. 2843:^ 2831:}} 2827:{{ 2815:. 2807:. 2795:18 2793:. 2789:. 2766:. 2756:. 2748:. 2736:. 2732:. 2691:. 2679:44 2677:. 2671:. 2650:}} 2646:{{ 2634:. 2626:. 2616:16 2614:. 2591:. 2583:. 2573:12 2571:. 2548:. 2540:. 2530:18 2528:. 2505:. 2497:. 2487:35 2485:. 2462:. 2448:. 2444:. 2421:. 2413:. 2405:. 2393:. 2370:. 2362:. 2350:. 2327:. 2319:. 2309:34 2307:. 2284:. 2270:. 2266:. 2252:^ 2238:. 2230:. 2218:. 2206:^ 2192:. 2184:. 2174:35 2172:. 2156:^ 2142:. 2134:. 2120:. 2097:. 2089:. 2079:12 2077:. 2049:. 2014:. 2006:. 1996:14 1994:. 1980:^ 1966:. 1954:45 1952:. 1948:. 1925:. 1917:. 1905:. 1882:. 1870:72 1868:. 1864:. 1841:. 1833:. 1825:. 1813:. 1790:. 1782:. 1770:. 1758:^ 1728:. 1716:11 1714:. 1710:. 1687:. 1675:. 1652:. 1644:. 1636:. 1626:15 1624:. 1620:. 1597:. 1585:13 1583:. 1560:. 1552:. 1542:33 1540:. 1517:. 1507:. 1497:18 1495:. 1491:. 1468:. 1456:10 1454:. 1450:. 1427:. 1417:. 1407:. 1395:. 1391:. 1368:. 1358:. 1348:15 1346:. 1342:. 1319:. 1309:. 1299:22 1297:. 1293:. 1270:. 1260:. 1250:12 1248:. 1244:. 1221:. 1211:. 1199:11 1197:. 1193:. 1170:. 1160:. 1150:54 1148:. 1144:. 1096:. 1086:40 1084:. 1080:. 1054:. 1046:. 1036:. 1024:37 1022:. 1018:. 995:. 987:. 975:57 973:. 955:^ 941:. 933:. 923:37 921:. 905:^ 893:}} 889:{{ 861:^ 847:. 837:. 827:25 825:. 821:. 795:^ 781:. 773:. 763:12 761:. 742:^ 728:. 720:. 710:86 708:. 685:. 673:46 671:. 667:. 644:. 632:57 630:. 626:. 603:. 595:. 585:98 583:. 560:. 552:. 542:12 540:. 405:. 5052:. 5040:: 5017:. 5013:: 4983:. 4969:: 4942:. 4922:: 4889:. 4861:: 4831:. 4801:: 4771:. 4751:: 4704:8 4687:. 4660:. 4634:: 4604:. 4584:: 4544:. 4518:: 4491:. 4479:: 4456:. 4444:: 4421:. 4409:: 4386:. 4374:: 4349:. 4337:: 4314:. 4302:: 4279:. 4259:: 4236:. 4201:. 4189:: 4183:4 4167:. 4165:7 4149:. 4121:: 4094:. 4074:: 4051:. 4037:: 4010:. 3990:: 3951:. 3929:: 3902:. 3888:: 3861:. 3857:: 3824:. 3812:: 3789:. 3769:: 3746:. 3726:: 3703:. 3683:: 3660:. 3646:: 3619:. 3605:: 3578:. 3564:: 3537:. 3531:: 3504:. 3484:: 3461:. 3441:: 3435:7 3418:. 3398:: 3392:3 3375:. 3353:: 3323:. 3309:: 3282:. 3254:: 3216:. 3196:: 3173:. 3145:: 3122:. 3100:: 3073:. 3041:: 3033:: 3006:. 2978:: 2972:6 2951:) 2937:. 2915:: 2907:: 2877:. 2873:: 2837:) 2823:. 2801:: 2774:. 2752:: 2744:: 2699:. 2685:: 2656:) 2642:. 2622:: 2599:. 2579:: 2556:. 2536:: 2513:. 2493:: 2470:. 2456:: 2429:. 2409:: 2401:: 2378:. 2358:: 2352:1 2335:. 2315:: 2292:. 2278:: 2272:1 2246:. 2226:: 2200:. 2180:: 2150:. 2138:: 2122:9 2105:. 2085:: 2062:. 2022:. 2002:: 1974:. 1960:: 1933:. 1913:: 1907:3 1890:. 1876:: 1849:. 1829:: 1821:: 1798:. 1778:: 1736:. 1722:: 1695:. 1683:: 1677:4 1660:. 1632:: 1605:. 1601:: 1568:. 1548:: 1525:. 1503:: 1476:. 1462:: 1435:. 1411:: 1403:: 1397:6 1376:. 1354:: 1327:. 1305:: 1278:. 1256:: 1229:. 1205:: 1178:. 1156:: 1129:. 1104:. 1092:: 1062:. 1030:: 1003:. 991:: 949:. 929:: 899:) 855:. 833:: 789:. 769:: 736:. 716:: 693:. 679:: 652:. 638:: 611:. 591:: 568:. 548:: 152:( 27:.

Index

visual search engine
content-based image retrieval
perceptual
attention
Where's Wally?

reaction time
bottom-up processing
parallel processing.
parallel processing

reaction time
reaction time
reaction time
reaction time
top-down processing
conjunction search
feature search

saccade
fixate
fovea

microsaccades
attention
Pre-attentive processes
selective attention
Feature integration theory
illusory conjunctions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑