Knowledge

Vertex configuration

Source đź“ť

549: 542: 535: 528: 521: 35: 594: 587: 366: 335: 24: 303: 289: 275: 261: 352: 608: 601: 615: 322: 1055: 409:
Different notations are used, sometimes with a comma (,) and sometimes a period (.) separator. The period operator is useful because it looks like a product and an exponent notation can be used. For example, 3.5.3.5 is sometimes written as (3.5).
657:
Faces on a vertex figure are considered to progress in one direction. Some uniform polyhedra have vertex figures with inversions where the faces progress retrograde. A vertex figure represents this in the
1495:
Pp. 58–64, Tilings of regular polygons a.b.c.... (Tilings by regular polygons and star polygons) pp. 95–97, 176, 283, 614–620, Monohedral tiling symbol . pp. 632–642 hollow tilings.
682:
the number of turns around a circle. For example, "3/2" means a triangle that has vertices that go around twice, which is the same as backwards once. Similarly "5/3" is a backwards pentagram 5/2.
459:
This notation applies to polygonal tilings as well as polyhedra. A planar vertex configuration denotes a uniform tiling just like a nonplanar vertex configuration denotes a uniform polyhedron.
714:
NOTE: The vertex figure can represent a regular or semiregular tiling on the plane if its defect is zero. It can represent a tiling of the hyperbolic plane if its defect is negative.
717:
For uniform polyhedra, the angle defect can be used to compute the number of vertices. Descartes' theorem states that all the angle defects in a topological sphere must sum to 4
695: 836:>2), 4.6.6, 4.6.8, 4.6.10, 4.6.12, 4.8.8, 5.5.5, 5.6.6, 6.6.6. In fact, all these configurations with three faces meeting at each vertex turn out to exist. 152:(the first has two triangles followed by two pentagons). Repeated elements can be collected as exponents so this example is also represented as 98:
A vertex configuration is given as a sequence of numbers representing the number of sides of the faces going around the vertex. The notation "
1288: 773:
Every enumerated vertex configuration potentially uniquely defines a semiregular polyhedron. However, not all configurations are possible.
1136: 1408: 199: 470:
has clockwise and counterclockwise forms which are identical across mirror images. Both have a 3.3.3.3.4 vertex configuration.
1194: 1506: 573: 724:
Since uniform polyhedra have all identical vertices, this relation allows us to compute the number of vertices, which is 4
1258:
Resources for Teaching Discrete Mathematics: Classroom Projects, History, modules, and articles, edited by Brian Hopkins
1543: 644: 1488: 1457: 639: 578: 634: 699: 919: 568: 562: 556: 498: 497:
of {5/2,5} which expands to an explicit vertex configuration 5/2.5/2.5/2.5/2.5/2 or combined as (5/2). The
490: 1025: 898: 489:
For example, there are 4 regular star polyhedra with regular polygon or star polygon vertex figures. The
1301:
Deza, Michel; Shtogrin, Mikhail (2000), "Uniform partitions of 3-space, their relatives and embedding",
1445: 915: 986: 691: 392: 91:
there is only one vertex type and therefore the vertex configuration fully defines the polyhedron. (
513:, {3,5/2} also has a pentagrammic vertex figure, with vertex configuration (3.3.3.3.3)/2 or (3)/2. 1014: 923: 894: 463: 231: 92: 828:. Therefore, potentially possible triples are 3.3.3, 3.4.4, 3.6.6, 3.8.8, 3.10.10, 3.12.12, 4.4. 548: 969: 886: 704: 226:
has a 3-dimensional structure since the faces are not in the same plane for polyhedra, but for
1369: 1179: 1167: 1021: 902: 878: 1210: 696:
Tiling by regular polygons § Combinations of regular polygons that can meet at a vertex
541: 1332: 1110: 1094: 1058: 890: 8: 982: 965: 1152: 1133: 136:. The notation is cyclic and therefore is equivalent with different starting points, so 1538: 1509:(p. 289 Vertex figures, uses comma separator, for Archimedean solids and tilings). 1310: 1267: 1029: 622: 534: 527: 520: 502: 501:, {5/2,3} has a triangular vertex figure and configuration (5/2.5/2.5/2) or (5/2). The 227: 88: 1468: 1350: 1101:
This notation represents a sequential count of the number of faces that exist at each
494: 414: 1522: 1502: 1484: 1453: 1346: 1102: 1043: 1010: 961: 839:
The number in parentheses is the number of vertices, determined by the angle defect.
708: 628: 510: 307: 194: 133: 130: 84: 28: 1246: 1032:(note that the two different orders of the same numbers give two different patterns) 34: 1437: 1320: 1279:
Structure and Form in Design: Critical Ideas for Creative Practice By Michael Hann
1191: 909: 863: 370: 1328: 1198: 1140: 1106: 1081: 80: 1084:) and so they can be identified by a similar notation which is sometimes called 882: 740: 685: 418: 1477: 1532: 1472: 1441:, Cambridge University Press (1977) The Archimedean solids. Pp. 156–167. 1065: 1054: 976: 957: 586: 339: 219: 68: 39: 1416:. Pp. 101–115, pp. 118–119 Table I, Nets of Archimedean Duals, V. 593: 486:
has the symbol {5/2}, meaning it has 5 sides going around the centre twice.
1519: 1403: 1324: 1073: 857: 659: 479: 384: 365: 356: 188: 95:
polyhedra exist in mirror-image pairs with the same vertex configuration.)
76: 999: 849: 293: 265: 1450:
The Geometrical Foundation of Natural Structure: A Source Book of Design
1222: 334: 936: 279: 72: 389:
A 0° angle defect will fill the Euclidean plane with a regular tiling.
1355: 1315: 1117:, and alternating vertices of the rhombus contain 3 or 4 faces each. 1069: 1006: 942: 483: 467: 1412:(1952), (3rd edition, 1989, Stradbroke, England: Tarquin Pub.), 3.7 1370:
Divided Spheres: Geodesics and the Orderly Subdivision of the Sphere
1234: 413:
The notation can also be considered an expansive form of the simple
23: 126: 122: 60: 1168:
Crystallography of Quasicrystals: Concepts, Methods and Structures
302: 1114: 288: 274: 260: 216: 1467: 351: 230:
all the neighboring vertices are in the same plane and so this
1098:
uses square brackets around the symbol for isohedral tilings.
614: 607: 600: 1501:
2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss,
1170:
by Walter Steurer, Sofia Deloudi, (2009) pp. 18–20 and 51–53
686:
All uniform vertex configurations of regular convex polygons
234:
can be used to visually represent the vertex configuration.
102:" describes a vertex that has 3 faces around it, faces with 853: 743:
3.8.8 has an angle defect of 30 degrees. Therefore, it has
478:
The notation also applies for nonconvex regular faces, the
326: 321: 1344: 456:. For example, an icosahedron is {3,5} = 3.3.3.3.3 or 3. 1289:
Symmetry-type graphs of Platonic and Archimedean solids
1235:
Symmetry-type graphs of Platonic and Archimedean solids
776:
Topological requirements limit existence. Specifically
700:
Uniform tiling § Expanded lists of uniform tilings
121:" indicates a vertex belonging to 4 faces, alternating 1247:
3. General Theorems: Regular and Semi-Regular Tilings
1088:. Cundy and Rollett prefixed these dual symbols by a 1476: 1109:. For example, V3.4.3.4 or V(3.4) represents the 505:, {5,5/2} has a pentagrammic vertex figure, with 1530: 1182:edited by David E. Laughlin, (2014) pp. 16–20 866:3.4.4 (6), 4.4.4 (8; also listed above), 4.4. 67:is a shorthand notation for representing the 1300: 1180:Physical Metallurgy: 3-Volume Set, Volume 1 1113:which is face-transitive: every face is a 222:showing the faces around the vertex. This 1314: 1163: 1161: 707:have vertex configurations with positive 20: 16:Notation for a polyhedron's vertex figure 1444: 1053: 383:A vertex needs at least 3 faces, and an 129:. This vertex configuration defines the 1173: 692:Archimedean_solid § Classification 1531: 1158: 1134:Uniform Solution for Uniform Polyhedra 945:3.3.3.3 (6; also listed above), 3.3.3. 237: 1345: 1049: 652: 721: radians or 720 degrees. 13: 1372:6.4.1 Cundy-Rollett symbol, p. 164 784:-gon is surrounded by alternating 14: 1555: 1513: 1303:European Journal of Combinatorics 1223:Uniform Polyhedra and their Duals 395:, the number of vertices is 720°/ 206: 613: 606: 599: 592: 585: 547: 540: 533: 526: 519: 473: 364: 350: 333: 320: 301: 287: 273: 259: 33: 22: 1384: 1375: 1363: 1338: 1294: 1282: 1273: 1261: 1252: 750:In particular it follows that { 363: 332: 300: 162:It has variously been called a 1520:Consistent Vertex Descriptions 1240: 1228: 1216: 1204: 1185: 1146: 1127: 462:The notation is ambiguous for 436:-gons around each vertex. So { 241: 18: 1: 1483:. W. H. Freeman and Company. 1397: 509:is (5.5.5.5.5)/2 or (5)/2. A 318: 257: 243:Regular vertex figure nets, { 215:can also be represented as a 499:great stellated dodecahedron 491:small stellated dodecahedron 7: 1452:. Dover Publications, Inc. 678:is the number of sides and 144:The order is important, so 10: 1560: 1464:Uses Cundy-Rollett symbol. 689: 1544:Polytope notation systems 1414:The Archimedean Polyhedra 421:. The Schläfli notation { 382: 1499:The Symmetries of Things 1390:Cundy and Rollett (1952) 1120: 466:forms. For example, the 228:vertex-uniform polyhedra 1381:Laughlin (2014), p. 16 1325:10.1006/eujc.1999.0385 1155:Roman E. Maeder (1995) 1061: 193:for its usage for the 186:. It is also called a 1237:, Jurij KoviÄŤ, (2011) 1192:Archimedean Polyhedra 1153:The Uniform Polyhedra 1057: 705:Semiregular polyhedra 1479:Tilings and Patterns 1249:Kevin Mitchell, 1995 1111:rhombic dodecahedron 1095:Tilings and patterns 1064:The uniform dual or 1059:Rhombic dodecahedron 1020:semiregular tilings 981:semiregular tilings 914:semiregular tilings 507:vertex configuration 444:} can be written as 213:vertex configuration 65:vertex configuration 1409:Mathematical Models 1351:"Archimedean solid" 1005:Archimedean solids 956:Archimedean solids 877:Archimedean solids 255: 238:Variations and uses 200:Mathematical Models 197:in their 1952 book 79:as the sequence of 1430:vertically-regular 1347:Weisstein, Eric W. 1197:2017-07-05 at the 1139:2015-11-27 at the 1086:face configuration 1078:vertically-regular 1062: 1050:Face configuration 662:notation of sides 503:great dodecahedron 393:Descartes' theorem 242: 195:Archimedean solids 191:and Rollett symbol 176:vertex arrangement 164:vertex description 148:is different from 1523:Stella (software) 1507:978-1-56881-220-5 1406:and Rollett, A., 1211:Uniform Polyhedra 792:-gons, so either 653:Inverted polygons 650: 649: 511:great icosahedron 482:. For example, a 419:regular polyhedra 407: 406: 399:(4Ď€ radians/ 134:icosidodecahedron 131:vertex-transitive 89:uniform polyhedra 57: 56: 29:Icosidodecahedron 1551: 1494: 1482: 1469:GrĂĽnbaum, Branko 1463: 1446:Williams, Robert 1435:Peter Cromwell, 1391: 1388: 1382: 1379: 1373: 1367: 1361: 1360: 1359: 1342: 1336: 1335: 1318: 1298: 1292: 1286: 1280: 1277: 1271: 1270:Robert Whittaker 1265: 1259: 1256: 1250: 1244: 1238: 1232: 1226: 1220: 1214: 1208: 1202: 1189: 1183: 1177: 1171: 1165: 1156: 1150: 1144: 1131: 1068:, including the 848:Platonic solids 769: 746: 617: 610: 603: 596: 589: 551: 544: 537: 530: 523: 516: 515: 368: 354: 337: 324: 305: 291: 277: 263: 256: 232:plane projection 158: 151: 147: 143: 139: 120: 113: 109: 105: 101: 53: 46: 37: 26: 19: 1559: 1558: 1554: 1553: 1552: 1550: 1549: 1548: 1529: 1528: 1516: 1491: 1473:Shephard, G. C. 1460: 1400: 1395: 1394: 1389: 1385: 1380: 1376: 1368: 1364: 1343: 1339: 1299: 1295: 1287: 1283: 1278: 1274: 1266: 1262: 1257: 1253: 1245: 1241: 1233: 1229: 1221: 1217: 1209: 1205: 1199:Wayback Machine 1190: 1186: 1178: 1174: 1166: 1159: 1151: 1147: 1141:Wayback Machine 1132: 1128: 1123: 1092:. In contrast, 1082:face-transitive 1052: 1042:regular tiling 998:Platonic solid 975:regular tiling 935:Platonic solid 908:regular tiling 780:implies that a 759: 744: 702: 688: 655: 495:Schläfli symbol 476: 415:Schläfli symbol 390: 388: 376: 369: 360: 355: 345: 338: 329: 325: 313: 306: 297: 292: 283: 278: 269: 264: 240: 209: 157: 153: 149: 145: 141: 140:is the same as 137: 118: 111: 107: 103: 99: 52: 48: 44: 43: 38: 27: 17: 12: 11: 5: 1557: 1547: 1546: 1541: 1527: 1526: 1515: 1514:External links 1512: 1511: 1510: 1496: 1489: 1465: 1458: 1442: 1433: 1399: 1396: 1393: 1392: 1383: 1374: 1362: 1337: 1309:(6): 807–814, 1293: 1281: 1272: 1260: 1251: 1239: 1227: 1215: 1203: 1184: 1172: 1157: 1145: 1125: 1124: 1122: 1119: 1066:Catalan solids 1051: 1048: 1047: 1046: 1039: 1038: 1034: 1033: 1018: 1003: 995: 994: 990: 989: 979: 973: 954: 940: 932: 931: 927: 926: 912: 906: 875: 861: 845: 844: 741:truncated cube 687: 684: 654: 651: 648: 647: 642: 637: 632: 626: 619: 618: 611: 604: 597: 590: 582: 581: 576: 571: 566: 560: 553: 552: 545: 538: 531: 524: 475: 472: 405: 404: 380: 379: 362: 348: 331: 317: 316: 299: 285: 271: 239: 236: 208: 207:Vertex figures 205: 180:vertex pattern 155: 117:For example, " 55: 54: 50: 42:represented as 31: 15: 9: 6: 4: 3: 2: 1556: 1545: 1542: 1540: 1537: 1536: 1534: 1525:, Robert Webb 1524: 1521: 1518: 1517: 1508: 1504: 1500: 1497: 1492: 1490:0-7167-1193-1 1486: 1481: 1480: 1474: 1470: 1466: 1461: 1459:0-486-23729-X 1455: 1451: 1447: 1443: 1440: 1439: 1434: 1431: 1427: 1423: 1419: 1415: 1411: 1410: 1405: 1402: 1401: 1387: 1378: 1371: 1366: 1358: 1357: 1352: 1348: 1341: 1334: 1330: 1326: 1322: 1317: 1312: 1308: 1304: 1297: 1290: 1285: 1276: 1269: 1268:Vertex Symbol 1264: 1255: 1248: 1243: 1236: 1231: 1224: 1219: 1212: 1207: 1200: 1196: 1193: 1188: 1181: 1176: 1169: 1164: 1162: 1154: 1149: 1142: 1138: 1135: 1130: 1126: 1118: 1116: 1112: 1108: 1104: 1099: 1097: 1096: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1060: 1056: 1045: 1041: 1040: 1036: 1035: 1031: 1027: 1023: 1019: 1016: 1012: 1008: 1004: 1001: 997: 996: 992: 991: 988: 984: 980: 978: 974: 971: 967: 963: 959: 955: 952: 948: 944: 941: 938: 934: 933: 929: 928: 925: 921: 917: 913: 911: 907: 904: 900: 896: 892: 888: 884: 880: 876: 873: 869: 865: 862: 859: 855: 851: 847: 846: 842: 841: 840: 837: 835: 831: 827: 823: 819: 815: 811: 807: 803: 799: 795: 791: 787: 783: 779: 774: 771: 767: 763: 757: 753: 748: 742: 737: 735: 731: 727: 722: 720: 715: 712: 710: 706: 701: 697: 693: 683: 681: 677: 673: 669: 665: 661: 646: 643: 641: 638: 636: 633: 630: 627: 624: 621: 620: 616: 612: 609: 605: 602: 598: 595: 591: 588: 584: 583: 580: 577: 575: 572: 570: 567: 564: 561: 558: 555: 554: 550: 546: 543: 539: 536: 532: 529: 525: 522: 518: 517: 514: 512: 508: 504: 500: 496: 492: 487: 485: 481: 480:star polygons 474:Star polygons 471: 469: 465: 460: 457: 455: 451: 447: 443: 439: 435: 432: 428: 424: 420: 416: 411: 402: 398: 394: 386: 381: 378: 372: 367: 358: 353: 349: 347: 341: 336: 328: 323: 319: 315: 309: 304: 295: 290: 286: 281: 276: 272: 267: 262: 258: 254: 250: 246: 235: 233: 229: 225: 224:vertex figure 221: 220:vertex figure 218: 214: 204: 202: 201: 196: 192: 190: 185: 181: 177: 173: 172:vertex symbol 169: 165: 160: 135: 132: 128: 124: 115: 96: 94: 90: 86: 82: 78: 74: 70: 69:vertex figure 66: 62: 41: 40:Vertex figure 36: 32: 30: 25: 21: 1498: 1478: 1449: 1436: 1429: 1425: 1421: 1417: 1413: 1407: 1386: 1377: 1365: 1354: 1340: 1316:math/9906034 1306: 1302: 1296: 1284: 1275: 1263: 1254: 1242: 1230: 1218: 1206: 1201:Steven Dutch 1187: 1175: 1148: 1129: 1100: 1093: 1089: 1085: 1077: 1074:trapezohedra 1063: 950: 946: 871: 867: 838: 833: 829: 825: 821: 817: 813: 809: 805: 804:. Similarly 801: 797: 793: 789: 785: 781: 777: 775: 772: 765: 761: 755: 751: 749: 738: 733: 729: 725: 723: 718: 716: 713: 709:angle defect 703: 679: 675: 671: 667: 663: 660:star polygon 656: 506: 488: 477: 461: 458: 453: 449: 445: 441: 437: 433: 430: 426: 422: 412: 408: 400: 396: 385:angle defect 374: 343: 311: 284:Defect 120° 270:Defect 180° 252: 248: 244: 223: 212: 210: 198: 187: 183: 179: 175: 171: 167: 163: 161: 116: 97: 64: 58: 1291:Jurij KoviÄŤ 1225:Robert Webb 1213:Jim McNeill 1044:3.3.3.3.3.3 1013:(60) (both 820:is even or 808:is even or 796:is even or 745:720/30 = 24 739:Example: A 361:Defect 36° 330:Defect 90° 298:Defect 60° 184:face-vector 168:vertex type 1533:Categories 1398:References 1070:bipyramids 1024:(chiral), 993:Quintuples 943:antiprisms 930:Quadruples 788:-gons and 770:vertices. 747:vertices. 690:See also: 666:such that 645:V(3.5/2)/2 452:times) or 377:Defect 0° 346:Defect 0° 314:Defect 0° 73:polyhedron 1539:Polyhedra 1438:Polyhedra 1404:Cundy, H. 1356:MathWorld 1105:around a 1037:Sextuples 1030:3.3.4.3.4 1026:3.3.3.4.4 1022:3.3.3.3.6 1011:3.3.3.3.5 1007:3.3.3.3.4 1000:3.3.3.3.3 832:(for any 760:4 / (2 - 579:(3.5/2)/2 484:pentagram 468:snub cube 217:polygonal 127:pentagons 123:triangles 83:around a 1475:(1987). 1448:(1979). 1432:symbols. 1195:Archived 1137:Archived 674:, where 631:= (3)/2 625:= (5)/2 565:= (5/2) 559:= (5/2) 493:has the 446:p.p.p... 429:} means 142:5.3.5.3. 61:geometry 1428:... as 1333:1791208 1115:rhombus 987:3.4.6.4 983:3.6.3.6 977:4.4.4.4 970:3.4.5.4 966:3.4.4.4 962:3.5.3.5 958:3.4.3.4 937:3.3.3.3 916:3.12.12 901:(120), 887:3.10.10 843:Triples 824:equals 812:equals 800:equals 764:(1 - 2/ 732:or 720/ 635:V.3.5/2 629:{3,5/2} 623:{5,5/2} 563:{5/2,3} 557:{5/2,5} 150:3.5.3.5 146:3.3.5.5 138:3.5.3.5 119:3.5.3.5 114:sides. 45:3.5.3.5 1505:  1487:  1456:  1331:  1143:(1993) 1103:vertex 1076:, are 1015:chiral 1009:(24), 968:(24), 964:(30), 960:(12), 920:4.6.12 899:4.6.10 897:(48), 893:(24), 889:(60), 885:(24), 881:(12), 864:prisms 816:, and 758:} has 734:defect 730:defect 698:, and 640:V3.5/3 464:chiral 401:defect 397:defect 110:, and 93:Chiral 87:. For 85:vertex 77:tiling 1311:arXiv 1121:Notes 924:4.8.8 910:6.6.6 905:(60). 903:5.6.6 895:4.6.8 891:4.6.6 883:3.8.8 879:3.6.6 858:5.5.5 856:(8), 854:4.4.4 852:(4), 850:3.3.3 778:p.q.r 670:<2 574:3.5/3 569:3.5/2 371:{6,3} 357:{5,3} 340:{4,4} 327:{4,3} 308:{3,6} 294:{3,5} 280:{3,4} 266:{3,3} 189:Cundy 154:(3.5) 100:a.b.c 81:faces 71:of a 49:(3.5) 1503:ISBN 1485:ISBN 1454:ISBN 1107:face 1072:and 1002:(12) 972:(60) 860:(20) 417:for 251:} = 125:and 63:, a 1321:doi 939:(6) 664:p/q 403:). 391:By 359:= 5 296:= 3 282:= 3 268:= 3 75:or 59:In 47:or 1535:: 1471:; 1353:, 1349:, 1329:MR 1327:, 1319:, 1307:21 1305:, 1160:^ 1028:, 985:, 949:(2 922:, 918:, 870:(2 768:)) 736:. 711:. 694:, 373:= 342:= 310:= 211:A 203:. 182:, 178:, 174:, 170:, 166:, 159:. 106:, 1493:. 1462:. 1426:c 1424:. 1422:b 1420:. 1418:a 1323:: 1313:: 1090:V 1080:( 1017:) 953:) 951:n 947:n 874:) 872:n 868:n 834:n 830:n 826:q 822:p 818:r 814:r 810:p 806:q 802:r 798:q 794:p 790:r 786:q 782:p 766:a 762:b 756:b 754:, 752:a 728:/ 726:Ď€ 719:Ď€ 680:q 676:p 672:q 668:p 454:p 450:q 448:( 442:q 440:, 438:p 434:p 431:q 427:q 425:, 423:p 387:. 375:6 344:4 312:3 253:p 249:q 247:, 245:p 156:2 112:c 108:b 104:a 51:2

Index


Icosidodecahedron

Vertex figure
geometry
vertex figure
polyhedron
tiling
faces
vertex
uniform polyhedra
Chiral
triangles
pentagons
vertex-transitive
icosidodecahedron
Cundy
Archimedean solids
Mathematical Models
polygonal
vertex figure
vertex-uniform polyhedra
plane projection

{3,3}

{3,4}

{3,5}

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑