Knowledge

Vertical-cavity surface-emitting laser

Source 📝

579:, Sam McCall, Yong Hee Lee and James Harbison) that demonstrated over 1 million VCSELs on a small chip. These first all-semiconductor VCSELs introduced other design features still used in all commercial VCSELs. "This demonstration marked a turning point in the development of the surface-emitting laser. Several more research groups entered the field, and many important innovations were soon being reported from all over the world". Andrew Yang of the Defense Advanced Research Projects Agency (DARPA) quickly initiated significant funding toward VCSEL R&D, followed by other government and industrial funding efforts. VCSELs replaced edge-emitting lasers in applications for short-range fiberoptic communication such as 425:
single devices operating around 100 mW were first reported in 1993. Improvements in the epitaxial growth, processing, device design, and packaging led to individual large-aperture VCSELs emitting several hundreds of milliwatts by 1998. More than 2 W continuous-wave (CW) operation at -10 degrees Celsius heat-sink temperature was also reported in 1998 from a VCSEL array consisting of 1,000 elements, corresponding to a power density of 30 W/cm. In 2001, more than 1 W CW power and 10 W pulsed power at room temperature were reported from a 19-element array. The VCSEL array chip was mounted on a
298:"The stress results show that the activation energy and the wearout lifetime of oxide VCSEL are similar to that of implant VCSEL emitting the same amount of output power." A production concern also plagued the industry when moving the oxide VCSELs from research and development to production mode. The oxidation rate of the oxide layer was highly dependent on the aluminium content. Any slight variation in aluminium would change the oxidation rate sometimes resulting in apertures that were either too big or too small to meet the specification standards. 294:
to late 1990s, companies moved towards the technology of oxide VCSELs. The current is confined in an oxide VCSEL by oxidizing the material around the aperture of the VCSEL. A high content aluminium layer that is grown within the VCSEL structure is the layer that is oxidized. Oxide VCSELs also often employ the ion implant production step. As a result, in the oxide VCSEL, the current path is confined by the ion implant and the oxide aperture.
86: 199: 1487: 36: 293:
In the early 1990s, telecommunications companies tended to favor ion-implanted VCSELs. Ions, (often hydrogen ions, H+), were implanted into the VCSEL structure everywhere except the aperture of the VCSEL, destroying the lattice structure around the aperture, thus inhibiting the current. In the mid
424:
High-power vertical-cavity surface-emitting lasers can also be fabricated, either by increasing the emitting aperture size of a single device or by combining several elements into large two-dimensional (2D) arrays. There have been relatively few reported studies on high-power VCSELs. Large-aperture
369:
are optically pumped with conventional laser diodes. This arrangement allows a larger area of the device to be pumped and therefore more power can be extracted – as much as 30 W. The external cavity also allows intracavity techniques such as frequency doubling, single frequency operation and
297:
The initial acceptance of oxide VCSELs was plagued with concern about the apertures "popping off" due to the strain and defects of the oxidation layer. However, after much testing, the reliability of the structure has proven to be robust. As stated in one study by Hewlett Packard on oxide VCSELs,
286:
of AlGaAs does vary relatively strongly as the Al fraction is increased, minimizing the number of layers required to form an efficient Bragg mirror compared to other candidate material systems. Furthermore, at high aluminium concentrations, an oxide can be formed from AlGaAs, and this oxide can be
225:
for the laser light generation in between. The planar DBR-mirrors consist of layers with alternating high and low refractive indices. Each layer has a thickness of a quarter of the laser wavelength in the material, yielding intensity reflectivities above 99%. High reflectivity mirrors are required
176:
There are several advantages to producing VCSELs, in contrast to the production process of edge-emitting lasers. Edge-emitters cannot be tested until the end of the production process. If the edge-emitter does not function properly, whether due to bad contacts or poor material growth quality, the
409:
The small active region, compared to edge-emitting lasers, reduces the threshold current of VCSELs, resulting in low power consumption. However, as yet, VCSELs have lower emission power compared to edge-emitting lasers. The low threshold current also permits high intrinsic modulation bandwidths in
185:
material during the etch, an interim testing process will flag that the top metal layer is not making contact to the initial metal layer. Additionally, because VCSELs emit the beam perpendicular to the active region of the laser as opposed to parallel as with an edge emitter, tens of thousands of
562:
VCSEL was done by Kenichi Iga of Tokyo Institute of Technology in 1977. A simple drawing of his idea is shown in his research note. Contrary to the conventional Fabry-Perot edge-emitting semiconductor lasers, his invention comprises a short laser cavity less than 1/10 of the edge-emitting lasers
436:
In 2007, more than 200 W of CW output power was reported from a large (5 × 5mm) 2D VCSEL array emitting around the 976 nm wavelength, representing a substantial breakthrough in the field of high-power VCSELs. The high power level achieved was mostly due to improvements in
381:
are optimized as amplifiers as opposed to oscillators. VCSOAs must be operated below threshold and thus require reduced mirror reflectivities for decreased feedback. In order to maximize the signal gain, these devices contain a large number of quantum wells (optically pumped devices have been
382:
demonstrated with 21–28 wells) and as a result exhibit single-pass gain values which are significantly larger than that of a typical VCSEL (roughly 5%). These structures operate as narrow linewidth (tens of GHz) amplifiers and may be implemented as amplifying filters.
241:
junction. In more complex structures, the p-type and n-type regions may be embedded between the mirrors, requiring a more complex semiconductor process to make electrical contact to the active region, but eliminating electrical power loss in the DBR structure.
786:
D. D. John, C. Burgner, B. Potsaid, M. Robertson, B. Lee, W. J. Choi, A. Cable, J. Fujimoto, and V. Jayaraman, "Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging", Jnl. Lightwave Tech., vol. 33, no. 16, pp. 3461 - 3468, Feb.
359:
A photodiode is integrated under the back mirror of the VCSEL. VCSEL with transversally integrated monitor diode: With suitable etching of the VCSEL's wafer, a resonant photodiode can be manufactured that may measure the light intensity of a neighboring
766:
V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J Fujimoto, and Alex Cable "Design and performance of broadly tunable, narrow linewidth, high repetition rate 1310nm VCSELs for swept source optical coherence tomography", SPIE volume 8276 paper 82760D,
776:
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meißner, and M. Amann, "Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning," Opt. Express 19, 17336-17343
1095:
Van Leeuwen, R.; Seurin, J-F.; Xu, G.; Ghosh, C. (February 2009). Clarkson, W. Andrew; Hodgson, Norman; Shori, Ramesh K (eds.). "High power pulsed intra-cavity frequency doubled vertical extended cavity blue laser arrays".
177:
production time and the processing materials have been wasted. VCSELs however, can be tested at several stages throughout the process to check for material quality and processing issues. For instance, if the
1051:
Seurin, J-F.; G. Xu; V. Khalfin; A. Miglo; J. D. Wynn; P. Pradhan; C. L. Ghosh; L. A. D'Asaro (February 2009). Choquette, Kent D; Lei, Chun (eds.). "Progress in high-power high-efficiency VCSEL arrays".
796:
V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, "High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range", Electronics Letters, vol. 48, no. 14, pp. 867–869, 2012.
253:, usually another laser. This allows a VCSEL to be demonstrated without the additional problem of achieving good electrical performance; however such devices are not practical for most applications. 406:
The larger output aperture of VCSELs, compared to most edge-emitting lasers, produces a lower divergence angle of the output beam, and makes possible high coupling efficiency with optical fibers.
444:
At that point, the VCSEL technology became useful for a variety of medical, industrial, and military applications requiring high power or high energy. Examples of such applications are:
1311:
Jewell, J.L.; Scherer, A.; McCall, S.L.; Lee, Y.H.; Walker, S.; Harbison, J.P.; Florez, L.T. (August 1989). "Low-threshold electrically pumped vertical-cavity surface-emitting microlasers".
327:
Using a tunnel junction (np), an electrically advantageous n-np-p-i-n configuration can be built that also may beneficially influence other structural elements (e.g. in the form of a
711:
1999 Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems (Cat. No.99TH8455)
558:
The surface emission from a bulk semiconductor at ultra-low temperature and magnetic carrier confinement was reported by Ivars Melngailis in 1965. The first proposal of short
1266:
Christensen, D. H.; Barnes, F. S. (February 1987). "Vertical Cavity Surface Emitting Laser in Molecular Beam Epitaxial GaAs/AlGaAs using a Multilayer Dielectric Mirror".
1550: 884:
Grabherr, M.; R. Jager; M. Miller; C. Thalmaier; J. Herlein; R. Michalzik; K. Ebeling (August 1998). "Bottom-emitting VCSEL's for high-CW optical output power".
190:
wafer. Thus, although the VCSEL production process is more labor and material intensive, the yield can be controlled to a more predictable and higher outcome.
1399:
Towe, Elias; Leheny, Robert F.; Yang, Andrew (December 2000). "A historical perspective of the development of the vertical-cavity surface-emitting laser".
927:
Francis, D.; Chen, H.-L.; Yuen, W.; Li, G.; Chang-Hasnain, C. (October 1998). "Monolithic 2D-VCSEL array with >2 W CW and >5 W pulsed output power".
305:. VCSELs at even higher wavelengths are experimental and usually optically pumped. 1310 nm VCSELs are desirable as the dispersion of silica-based 849:
Peters, F.; M. Peters; D. Young; J. Scott; B. Thibeault; S. Corzine; L. Coldren (January 1993). "High-power vertical-cavity surface-emitting lasers".
54: 1590: 1476: 1444: 709: 708:
Lei, C.; Deng, H.; Dudley, J.J.; Lim, S.F.; Liang, B.; Tashima, M.; Herrick, R.W. (1999). "Manufacturing of oxide VCSEL at Hewlett Packard".
256:
VCSELs for wavelengths from 650 nm to 1300 nm are typically based on gallium arsenide (GaAs) wafers with DBRs formed from GaAs and
962:
Miller, M.; M. Grabherr; R. Jager; K. Ebeling (March 2001). "High-power VCSEL arrays for emission in the watt regime at room temperature".
413:
The wavelength of VCSELs may be tuned, within the gain band of the active region, by adjusting the thickness of the reflector layers.
290:
The main methods of restricting the current in a VCSEL are characterized by two types: ion-implanted VCSELs and oxide VCSELs.
301:
Longer wavelength devices, from 1300 nm to 2000 nm, have been demonstrated with at least the active region made of
140:
beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers (also called
665: 433:. A record 3 W CW output power was reported in 2005 from large diameter single devices emitting around 980 nm. 563:
vertical to a wafer surface. In 1979, a first demonstration on a short cavity VCSEL was done by Soda, Iga, Kitahara and
234: 230: 1522: 1516: 1469: 1287: 1188: 1148: 731: 72: 1247:
Koyama, Fumio; et al. (1988). "Room temperature cw operation of GaAs vertical cavity surface emitting laser".
416:
While early VCSELs emitted in multiple longitudinal modes or in filament modes, single-mode VCSELs are now common.
1661: 441:
and packaging. In 2009, >100 W power levels were reported for VCSEL arrays emitting around 808 nm.
399:
cost of the devices. It also allows VCSELs to be built not only in one-dimensional, but also in two-dimensional
50: 571:
operation at room temperature were not reported until 1988. The term VCSEL was coined in a publication of the
335: 1682: 278:
of the material does not vary strongly as the composition is changed, permitting multiple "lattice-matched"
1462: 378: 214: 181:, which are the electrical connections between layers of a circuit, have not been completely cleared of 1633: 1628: 1528: 1510: 626: 572: 469: 347:
Combination of semiconductor materials that can be fabricated using different types of substrate wafers
257: 806:
Iga, Kenichi (2000). "Surface-emitting laser—Its birth and generation of new optoelectronics field".
396: 153: 1607: 1354:
Lee, Y.H.; Jewell, J.L.; Scherer, A.; McCall, S.L.; Harbison, J.P.; Florez, L.T. (September 1989).
576: 745: 1601: 596: 715: 646: 1544: 606: 321:
Allows for differential quantum efficiency values in excess of 100% through carrier recycling
17: 1596: 1567: 1408: 1370: 1320: 1213: 1105: 1061: 971: 936: 893: 858: 815: 616: 438: 430: 245:
In laboratory investigation of VCSELs using new material systems, the active region may be
8: 1490: 621: 611: 218: 145: 1412: 1374: 1356:"Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes" 1355: 1324: 1217: 1109: 1065: 975: 940: 897: 862: 819: 1534: 1424: 1336: 1293: 1229: 1121: 1077: 987: 909: 831: 737: 449: 1539: 1340: 1297: 1283: 1233: 1204:
Soda, Haruhisa; et al. (1979). "GaInAsP/InP Surface Emitting Injection Lasers".
1184: 1144: 1081: 727: 587:, and are now used for link bandwidths from 1 to 400 gigabits per second or greater. 564: 459: 178: 1449: 1428: 1125: 991: 913: 835: 741: 1655: 1416: 1378: 1328: 1275: 1221: 1113: 1069: 979: 944: 901: 866: 823: 719: 580: 539: 302: 283: 275: 187: 103: 1029: 1006: 684: 575:
in 1987. In 1989, Jack Jewell led a Bell Labs / Bellcore collaboration (including
1649: 1612: 568: 488: 144:
lasers) which emit from surfaces formed by cleaving the individual chip out of a
723: 601: 559: 484: 480: 287:
used to restrict the current in a VCSEL, enabling very low threshold currents.
1676: 584: 516: 500: 476: 306: 157: 149: 130: 1454: 528: 353:
Two VCSELs on top of each other. One of them optically pumps the other one.
274:
As). The GaAs–AlGaAs system is favored for constructing VCSELs because the
222: 165: 1382: 1332: 948: 870: 1504: 1279: 1225: 463: 391:
Because VCSELs emit from the top surface of the chip, they can be tested
133: 1420: 827: 250: 182: 1117: 1073: 983: 905: 1098:
Proceedings SPIE, in Solid State Lasers XVIII: Technology and Devices
883: 669: 395:, before they are cleaved into individual devices. This reduces the 961: 1054:
Proceedings SPIE, in Vertical-Cavity Surface-Emitting Lasers XIII
543: 426: 279: 161: 226:
in VCSELs to balance the short axial length of the gain region.
848: 685:"Introduction of VCSEL: Working Principles And Characteristics" 366: 85: 121: 1050: 533: 510: 238: 198: 137: 1486: 1027: 1004: 650: 318:
Multiple active region devices (aka bipolar cascade VCSELs)
229:
In common VCSELs the upper and lower mirrors are doped as
1268:
Topical Meeting on Semiconductor Lasers, Technical Digest
112: 1094: 148:. VCSELs are used in various laser products, including 429:
heat spreader, taking advantage of diamond’s very high
334:
Tunable VCSELs with micromechanically movable mirrors (
186:
VCSELs can be processed simultaneously on a three-inch
1401:
IEEE Journal of Selected Topics in Quantum Electronics
1353: 1310: 1030:"A New Application for VCSELs: High-Power Pump Lasers" 1005:
D’Asaro, L. A.; J. Seurin and J.Wynn (February 2005).
808:
IEEE Journal of Selected Topics in Quantum Electronics
1445:
Long Wavelength Surface Emitting Lasers: Introduction
282:
layers to be grown on a GaAs substrate. However, the
118: 115: 1100:. Solid State Lasers XVIII: Technology and Devices. 1007:"High-power, high efficiency VCSELs pursue the goal" 217:(DBR) mirrors parallel to the wafer surface with an 109: 1028:Seurin, J-F.; L. A. D’Asaro; C. Ghosh (July 2007). 106: 45:
may be too technical for most readers to understand
356:VCSEL with longitudinally integrated monitor diode 1265: 1141:Semiconductor Lasers II: Materials and Structures 926: 1674: 1450:Britney's Guide to Semiconductor Physics: VCSELs 1163: 1056:. Vertical-Cavity Surface-Emitting Lasers XIII. 707: 375:Vertical-cavity semiconductor optical amplifiers 1591:Vertical-external-cavity surface-emitting-laser 455:Infrared illuminators for military/surveillance 1398: 1088: 202:A realistic VCSEL device structure. This is a 1484: 1470: 1178: 877: 682: 920: 666:"Intel made smart glasses that look normal" 341:(either optically or electrically pumped ) 249:by an external light source with a shorter 1517:Separate confinement heterostructure laser 1477: 1463: 1240: 1044: 1021: 998: 955: 842: 1138: 73:Learn how and when to remove this message 57:, without removing the technical details. 1197: 549:Lidar for automobile collision avoidance 197: 171: 84: 1394: 1392: 644: 363:VCSELs with external cavities (VECSELs) 14: 1675: 1585:Vertical-cavity surface-emitting laser 1246: 350:Monolithically optically pumped VCSELs 95:vertical-cavity surface-emitting laser 1458: 1274:. Optical Society of America: WA7-1. 799: 647:"Faces light up over VCSEL prospects" 542:(e.g. the "dot projector" for iPhone 309:is minimal in this wavelength range. 55:make it understandable to non-experts 1389: 1203: 663: 506:Analog broadband signal transmission 419: 213:The laser resonator consists of two 89:Diagram of a simple VCSEL structure. 29: 1206:Japanese Journal of Applied Physics 1181:Fiber Optics Illustrated Dictionary 805: 24: 386: 25: 1694: 1523:Distributed Bragg reflector laser 1438: 964:IEEE Photonics Technology Letters 886:IEEE Photonics Technology Letters 344:Wafer-bonded or wafer-fused VCSEL 27:Type of semiconductor laser diode 1485: 664:Bohn, Dieter (5 February 2018). 312: 102: 34: 1662:List of semiconductor materials 1347: 1304: 1259: 1172: 1157: 1132: 494: 790: 780: 770: 760: 701: 676: 657: 645:Extance, Andy (9 April 2018). 638: 370:femtosecond pulse modelocking. 13: 1: 632: 1511:Double heterostructure laser 324:VCSELs with tunnel junctions 193: 7: 1166:Physics of Photonic Devices 683:SEO_INPHENIX (2021-09-24). 590: 215:distributed Bragg reflector 10: 1699: 1634:Laser diode rate equations 1629:Semiconductor laser theory 1529:Distributed-feedback laser 724:10.1109/LEOSST.1999.794691 627:Parallel optical interface 573:Optical Society of America 553: 524:Biological tissue analysis 470:second harmonic generation 258:aluminium gallium arsenide 221:consisting of one or more 154:fiber optic communications 1642: 1621: 1577: 1560: 1497: 1164:Shun Lien Chuang (2009). 509:Absorption spectroscopy ( 1608:Semiconductor ring laser 1183:. Taylor & Francis. 718:. pp. III11–III12. 1602:Interband cascade laser 597:Interconnect bottleneck 468:High-power/high-energy 452:, laser wrinkle removal 1179:J.K. Peterson (2002). 716:IEEE Photonics Society 329:Buried Tunnel Junction 210: 90: 1551:External-cavity laser 1545:Quantum-cascade laser 607:Optical communication 536:for cellphone cameras 237:materials, forming a 207:multiple-quantum-well 201: 172:Production advantages 88: 1683:Semiconductor lasers 1597:Hybrid silicon laser 1568:Volume Bragg grating 1491:Semiconductor lasers 1280:10.1364/SLA.1987.WA7 1226:10.1143/JJAP.18.2329 617:Optical interconnect 439:wall-plug efficiency 431:thermal conductivity 1421:10.1109/2944.902201 1413:2000IJSTQ...6.1458T 1383:10.1049/el:19890921 1375:1989ElL....25.1377L 1363:Electronics Letters 1333:10.1049/el:19890754 1325:1989ElL....25.1123J 1313:Electronics Letters 1218:1979JaJAP..18.2329S 1110:2009SPIE.7193E..1DV 1066:2009SPIE.7229E..03S 976:2001IPTL...13..173M 949:10.1049/el:19981517 941:1998ElL....34.2132F 929:Electronics Letters 898:1998IPTL...10.1061G 871:10.1049/el:19930134 863:1993ElL....29..200P 851:Electronics Letters 828:10.1109/2944.902168 820:2000IJSTQ...6.1201I 748:on 10 November 2016 622:Optical microcavity 612:Optical fiber cable 448:Medical/cosmetics: 1535:Quantum well laser 1139:Eli Kapon (1998). 567:, but devices for 472:(blue/green light) 460:solid-state lasers 450:laser hair removal 211: 91: 1670: 1669: 1540:Quantum dot laser 1369:(20): 1377–1378. 1319:(17): 1123–1124. 1212:(12): 2329–2330. 1118:10.1117/12.816035 1074:10.1117/12.808294 1034:Photonics Spectra 1011:Photonics Spectra 984:10.1109/68.914311 935:(22): 2132–2133. 906:10.1109/68.701502 503:data transmission 475:Laser machining: 420:High-power VCSELs 83: 82: 75: 16:(Redirected from 1690: 1656:Gallium arsenide 1489: 1479: 1472: 1465: 1456: 1455: 1433: 1432: 1407:(6): 1458–1464. 1396: 1387: 1386: 1360: 1351: 1345: 1344: 1308: 1302: 1301: 1263: 1257: 1256: 1255:(11): 1089–1090. 1244: 1238: 1237: 1201: 1195: 1194: 1176: 1170: 1169: 1161: 1155: 1154: 1136: 1130: 1129: 1092: 1086: 1085: 1048: 1042: 1041: 1025: 1019: 1018: 1002: 996: 995: 959: 953: 952: 924: 918: 917: 892:(8): 1061–1063. 881: 875: 874: 846: 840: 839: 814:(6): 1201–1215. 803: 797: 794: 788: 784: 778: 774: 768: 764: 758: 757: 755: 753: 744:. Archived from 705: 699: 698: 696: 695: 680: 674: 673: 661: 655: 654: 642: 581:Gigabit Ethernet 540:Structured light 303:indium phosphide 284:refractive index 276:lattice constant 188:gallium arsenide 128: 127: 124: 123: 120: 117: 114: 111: 108: 78: 71: 67: 64: 58: 38: 37: 30: 21: 1698: 1697: 1693: 1692: 1691: 1689: 1688: 1687: 1673: 1672: 1671: 1666: 1650:Indium arsenide 1638: 1617: 1613:Polariton laser 1573: 1556: 1493: 1483: 1441: 1436: 1397: 1390: 1358: 1352: 1348: 1309: 1305: 1290: 1264: 1260: 1245: 1241: 1202: 1198: 1191: 1177: 1173: 1162: 1158: 1151: 1137: 1133: 1104:: 771931D–1–9. 1093: 1089: 1060:: 722903–1–11. 1049: 1045: 1026: 1022: 1003: 999: 960: 956: 925: 921: 882: 878: 847: 843: 804: 800: 795: 791: 785: 781: 775: 771: 765: 761: 751: 749: 734: 706: 702: 693: 691: 681: 677: 662: 658: 643: 639: 635: 593: 556: 497: 489:laser engraving 422: 389: 387:Characteristics 315: 273: 265: 204:bottom-emitting 196: 174: 129:) is a type of 105: 101: 79: 68: 62: 59: 51:help improve it 48: 39: 35: 28: 23: 22: 15: 12: 11: 5: 1696: 1686: 1685: 1668: 1667: 1665: 1664: 1659: 1653: 1646: 1644: 1640: 1639: 1637: 1636: 1631: 1625: 1623: 1619: 1618: 1616: 1615: 1610: 1605: 1599: 1594: 1588: 1581: 1579: 1575: 1574: 1572: 1571: 1564: 1562: 1558: 1557: 1555: 1554: 1548: 1542: 1537: 1532: 1526: 1520: 1514: 1508: 1501: 1499: 1495: 1494: 1482: 1481: 1474: 1467: 1459: 1453: 1452: 1447: 1440: 1439:External links 1437: 1435: 1434: 1388: 1346: 1303: 1288: 1258: 1239: 1196: 1189: 1171: 1156: 1149: 1131: 1087: 1043: 1020: 997: 970:(3): 173–175. 954: 919: 876: 857:(2): 200–201. 841: 798: 789: 779: 769: 759: 732: 700: 675: 656: 636: 634: 631: 630: 629: 624: 619: 614: 609: 604: 602:Optical cavity 599: 592: 589: 555: 552: 551: 550: 547: 537: 531: 525: 522: 521:Computer mouse 519: 517:Laser printers 514: 507: 504: 496: 493: 492: 491: 485:laser ablation 481:laser drilling 473: 466: 456: 453: 421: 418: 388: 385: 384: 383: 376: 372: 371: 364: 361: 357: 354: 351: 348: 345: 342: 339: 332: 325: 322: 319: 314: 311: 267: 261: 195: 192: 173: 170: 158:laser printers 81: 80: 42: 40: 33: 26: 9: 6: 4: 3: 2: 1695: 1684: 1681: 1680: 1678: 1663: 1660: 1657: 1654: 1651: 1648: 1647: 1645: 1641: 1635: 1632: 1630: 1627: 1626: 1624: 1620: 1614: 1611: 1609: 1606: 1603: 1600: 1598: 1595: 1592: 1589: 1586: 1583: 1582: 1580: 1576: 1569: 1566: 1565: 1563: 1559: 1552: 1549: 1546: 1543: 1541: 1538: 1536: 1533: 1530: 1527: 1524: 1521: 1518: 1515: 1512: 1509: 1506: 1503: 1502: 1500: 1496: 1492: 1488: 1480: 1475: 1473: 1468: 1466: 1461: 1460: 1457: 1451: 1448: 1446: 1443: 1442: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1395: 1393: 1384: 1380: 1376: 1372: 1368: 1364: 1357: 1350: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1307: 1299: 1295: 1291: 1289:0-936659-39-4 1285: 1281: 1277: 1273: 1269: 1262: 1254: 1250: 1243: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1200: 1192: 1190:9780849313493 1186: 1182: 1175: 1167: 1160: 1152: 1150:9780080516967 1146: 1142: 1135: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1091: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1047: 1039: 1035: 1031: 1024: 1016: 1012: 1008: 1001: 993: 989: 985: 981: 977: 973: 969: 965: 958: 950: 946: 942: 938: 934: 930: 923: 915: 911: 907: 903: 899: 895: 891: 887: 880: 872: 868: 864: 860: 856: 852: 845: 837: 833: 829: 825: 821: 817: 813: 809: 802: 793: 783: 773: 763: 747: 743: 739: 735: 733:0-7803-5633-0 729: 725: 721: 717: 713: 712: 704: 690: 686: 679: 671: 667: 660: 652: 648: 641: 637: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 594: 588: 586: 585:Fibre Channel 582: 578: 574: 570: 566: 561: 548: 545: 541: 538: 535: 532: 530: 526: 523: 520: 518: 515: 512: 508: 505: 502: 501:Optical fiber 499: 498: 490: 486: 482: 478: 477:laser cutting 474: 471: 467: 465: 461: 457: 454: 451: 447: 446: 445: 442: 440: 434: 432: 428: 417: 414: 411: 407: 404: 402: 398: 394: 380: 377: 374: 373: 368: 365: 362: 358: 355: 352: 349: 346: 343: 340: 337: 333: 330: 326: 323: 320: 317: 316: 313:Special forms 310: 308: 307:optical fiber 304: 299: 295: 291: 288: 285: 281: 277: 271: 264: 259: 254: 252: 248: 243: 240: 236: 232: 227: 224: 223:quantum wells 220: 219:active region 216: 208: 205: 200: 191: 189: 184: 180: 169: 167: 163: 159: 155: 151: 150:computer mice 147: 143: 139: 135: 132: 131:semiconductor 126: 100: 96: 87: 77: 74: 66: 63:February 2017 56: 52: 46: 43:This article 41: 32: 31: 19: 1584: 1561:Hybrid types 1404: 1400: 1366: 1362: 1349: 1316: 1312: 1306: 1271: 1267: 1261: 1252: 1249:Trans. IEICE 1248: 1242: 1209: 1205: 1199: 1180: 1174: 1165: 1159: 1143:. Elsevier. 1140: 1134: 1101: 1097: 1090: 1057: 1053: 1046: 1037: 1033: 1023: 1014: 1010: 1000: 967: 963: 957: 932: 928: 922: 889: 885: 879: 854: 850: 844: 811: 807: 801: 792: 782: 772: 762: 750:. Retrieved 746:the original 710: 703: 692:. Retrieved 688: 678: 659: 640: 577:Axel Scherer 557: 529:atomic clock 495:Applications 464:fiber lasers 443: 435: 423: 415: 412: 408: 405: 400: 392: 390: 328: 300: 296: 292: 289: 269: 262: 255: 246: 244: 228: 212: 206: 203: 175: 166:smartglasses 141: 98: 94: 92: 69: 60: 44: 1578:Other Types 1505:Laser diode 1498:Basic types 1017:(2): 62–66. 527:Chip scale 458:Pumping of 397:fabrication 134:laser diode 694:2023-12-21 633:References 251:wavelength 183:dielectric 1643:Materials 1341:111035374 1298:257137192 1234:122958383 1082:109520958 670:The Verge 280:epitaxial 194:Structure 1677:Category 1593:(VECSEL) 1429:46544782 1126:21109187 992:22964703 914:22839700 836:10550809 742:39634122 689:INPHENIX 591:See also 565:Suematsu 410:VCSELs. 393:on-wafer 142:in-plane 1587:(VCSEL) 1409:Bibcode 1371:Bibcode 1321:Bibcode 1214:Bibcode 1106:Bibcode 1062:Bibcode 972:Bibcode 937:Bibcode 894:Bibcode 859:Bibcode 816:Bibcode 554:History 544:Face ID 427:diamond 367:VECSELs 331:(BTJ)). 162:Face ID 49:Please 1658:(GaAs) 1652:(InAs) 1622:Theory 1427:  1339:  1296:  1286:  1232:  1187:  1147:  1124:  1080:  990:  912:  834:  752:3 June 740:  730:  560:cavity 401:arrays 379:VCSOAs 360:VCSEL. 247:pumped 235:n-type 231:p-type 209:VCSEL. 164:, and 1604:(ICL) 1570:laser 1553:(ECL) 1547:(QCL) 1531:(DFB) 1525:(DBR) 1519:(SCH) 1425:S2CID 1359:(PDF) 1337:S2CID 1294:S2CID 1230:S2CID 1122:S2CID 1078:S2CID 988:S2CID 910:S2CID 832:S2CID 787:2015. 738:S2CID 534:Lidar 511:TDLAS 239:diode 146:wafer 138:laser 136:with 99:VCSEL 18:VCSEL 1513:(DH) 1507:(LD) 1284:ISBN 1185:ISBN 1145:ISBN 1102:7193 1058:7229 1040:(7). 777:2011 767:2012 754:2021 728:ISBN 651:SPIE 583:and 462:and 336:MEMS 233:and 179:vias 93:The 1417:doi 1379:doi 1329:doi 1276:doi 1253:E71 1222:doi 1114:doi 1070:doi 980:doi 945:doi 902:doi 867:doi 824:doi 720:doi 268:(1− 260:(Al 53:to 1679:: 1423:. 1415:. 1403:. 1391:^ 1377:. 1367:25 1365:. 1361:. 1335:. 1327:. 1317:25 1315:. 1292:. 1282:. 1270:. 1251:. 1228:. 1220:. 1210:18 1208:. 1120:. 1112:. 1076:. 1068:. 1038:41 1036:. 1032:. 1015:39 1013:. 1009:. 986:. 978:. 968:13 966:. 943:. 933:34 931:. 908:. 900:. 890:10 888:. 865:. 855:29 853:. 830:. 822:. 810:. 736:. 726:. 714:. 687:. 668:. 649:. 569:CW 487:, 483:, 479:, 403:. 266:Ga 168:. 160:, 156:, 152:, 122:əl 1478:e 1471:t 1464:v 1431:. 1419:: 1411:: 1405:6 1385:. 1381:: 1373:: 1343:. 1331:: 1323:: 1300:. 1278:: 1272:6 1236:. 1224:: 1216:: 1193:. 1168:. 1153:. 1128:. 1116:: 1108:: 1084:. 1072:: 1064:: 994:. 982:: 974:: 951:. 947:: 939:: 916:. 904:: 896:: 873:. 869:: 861:: 838:. 826:: 818:: 812:6 756:. 722:: 697:. 672:. 653:. 546:) 513:) 338:) 272:) 270:x 263:x 125:/ 119:s 116:k 113:ɪ 110:v 107:ˈ 104:/ 97:( 76:) 70:( 65:) 61:( 47:. 20:)

Index

VCSEL
help improve it
make it understandable to non-experts
Learn how and when to remove this message

/ˈvɪksəl/
semiconductor
laser diode
laser
wafer
computer mice
fiber optic communications
laser printers
Face ID
smartglasses
vias
dielectric
gallium arsenide

distributed Bragg reflector
active region
quantum wells
p-type
n-type
diode
wavelength
aluminium gallium arsenide
lattice constant
epitaxial
refractive index

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.