Knowledge

Urbilaterian

Source đź“ť

649:
simple flatworms. This lineage lacks key bilaterian features, and if it truly does reside within the bilaterian "family", many of the features listed above are no longer common to all bilateria. Instead, some features — such as segmentation and possession of a heart — are restricted to a sub-set of the bilateria, the deuterostomes and protostomes. Their last common ancestor would still have to be large and complex, but the bilaterian ancestor could be much simpler. However, some scientists stop short of including the acoelomorph clade in the bilateria. This shifts the position of the
705: 50: 787: 906: 700:
to produce segments from the growing tip at the rear of the embryo. Further, both groups make use of "the obtuse process of 'resegmentation', whereby the phase of their metameres shifts by half a unit of wavelength, i.e. somites splitting to make vertebrae or parasegments splitting to form segments."
742:
As of 2018 there is still no consensus on whether the characteristics of the deuterostomes and protostomes evolved once or many times. Features such as a heart and a blood-circulation system may therefore not have been present even in the deuterostome-protostome ancestor, which would mean that this
1188:
Gostling, Neil J.; Thomas, Ceri-Wyn; Greenwood, Jenny M.; Dong, Xiping; Bengtson, Stefan; Raff, Elizabeth C.; Raff, Rudolf A.; Degnan, Bernard M.; Stampanoni, Marco; Donoghue, Philip C. J. (June 2008). "Deciphering the fossil record of early bilaterian embryonic development in light of experimental
680:
have genes which in bilateria control the development of a layer of cells that the cnidaria do not have. This means that even if a gene can be identified as present in the urbilaterian, we cannot necessary tell what the gene's function was. Before this was realised, genetic reconstructions implied
648:
However, as biologists' understanding of the major bilaterian lineages increases, it is beginning to appear that some of these features may have evolved independently in each lineage. Further, the bilaterian clade has recently been expanded to include the acoelomorphs — a group of relatively
589:
can generate expected dates of the divergence between the bilaterian clades, and thus an assessment of when the urbilaterian lived. These dates have huge margins of error, though they are becoming more accurate with time. More recent estimates are compatible with an Ediacaran bilaterian, although
941:
is not a polyphyletic group as would have been proposed but rather is a paraphyletic grade from which several taxa derive that may or may not conserve the ancestral clonality of basal metazoans, but instead of cloudinids having an annelid-type gut, it would instead be a U-shaped digestive tube, in
718:
The absence of a fossil record gives a starting point for the reconstruction — the urbilaterian must have been small enough not to leave any traces as it moved over or lived in the sediment surface. This means it must have been well below a centimetre in length. As all Cambrian animals are
708:
Two hypotheses of the different characters and organ systems of the urbilaterian: the "complex" and "planula-like" urbilaterian. It is important to note that none of these representations shows an animal which existed or exists, and different combinations of these two organisms can be proposed by
644:
Proponents of a complex urbilaterian point to the shared features and genetic machinery common to all bilateria. They argue that (1) since these are similar in so many respects, they could have evolved only once; and (2) since they are common to all bilateria, they must have been present in the
734:
to do the job of transporting compounds through the body. A small, narrow gut was probably present, which would have had only one opening — a combined mouth and anus. Functional considerations suggest that the surface of the bilaterian was probably covered with
817:
Consider that the urbilaterian is an organism whose adult life is sessile sedentary with a juvenile or free and pelagic larval phase. This hypothesis is a derivative of Nielsen's larval hypothesis, but now also considering the homology of the adult forms of
636:, the c-type and r-type, are found in all bilaterians, the urbilaterian must have possessed both types - although they may not have been found in a centralised eye, but used to synchronise the body clock to daily or lunar variations in lighting. 583:), but none of these have bilaterian affinities. This may reflect a genuine absence of bilateria, however it is likely this is the case as bilateria may not have laid their eggs in sediment, where they would be likely to fossilise. 611:
varies, but in general eyes must have directional sensitivity, and thus have screening pigments so only light from the target direction is detected. Thus defined, they need not consist of more than one photoreceptor cell.
730:
was probably dispersed, but with a small central "brain". Since acoelomorphs lack a heart, coelom or organs, the urbilaterian probably did too — it would presumably have been small enough for
518:— long after the urbilaterian would have lived. This leads to suggestions of a small urbilaterian (around 1 mm) which is the supposed state of the ancestor of protostomes, deuterostomes and 759:
The proposal that bilaterals arose from the fusion between pennatulacean-like cnidarian zooids was granted by Dewel, implies that the body plans of bilaterals originated from a colonial ancestor.
857:
The current strong bias towards a mobile urbilaterian is considered to cause problems with palaeontological and morphological data in relation to groups within and outside Bilateria.
762:
This proposal has little or no support in the existing data, and has been commonly used as a justification against the sedentary/semi-sedentary models of urbilaterians as a whole.
625:
genes) common to eye formation in all bilaterians suggests that this machinery - and hence eyes - was present in the urbilaterian. The most likely candidate eye type is the simple
722:
Furthermore, a reconstruction of the urbilateria must rest on identifying morphological similarities between all bilateria. While some bilateria live attached to a
709:
some authors (for example, an unsegmented urbilaterian with a centralized nervous system). These two representations are only two "extremes" of different hypotheses.
2027:"Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shaanxi Province, South China" 811: 807: 953:
The hypothesis of annelid-like ancestor is rejected, due to the independent evolution of segmentation and complete metamerism of several groups of bilaterians (
590:
it is possible, especially if early bilaterians were small, that the bilateria had a long cryptic history before they left any evidence in the fossil record.
2119:
Schiffbauer, James D.; Selly, Tara; Jacquet, Sarah M.; Merz, Rachel A.; Nelson, Lyle L.; Strange, Michael A.; Cai, Yaoping; Smith, Emily F. (2020-01-10).
1061:
The common ancestor of modern bilaterals would then be more similar to modern pterobranchs, although they would not be completely identical to them.
1549: 938: 878: 826:). It also considers various phylogenetic, paleontological and molecular data, relates the adult and ancestral form of anthozoans (from which 926: 1119: 930: 872: 1584: 1068:) should not change the hypothesis since it has been left aside taking only into account the molecular and morphological development of 672:
common to all bilateria, but problems arise because very similar genes can be co-opted for different functions. For instance, the gene
1732:
Schultz, Darrin T.; Haddock, Steven H. D.; Bredeson, Jessen V.; Green, Richard E.; Simakov, Oleg; Rokhsar, Daniel S. (2023-06-17).
2187:
Solène Song, Viktor Starunov, Xavier Bailly, Christine Ruta, Pierre Kerner, Annemiek J. M. Cornelissen, Guillaume Balavoine:
1797:
Zhao, Yang; Parry, Luke A.; Vinther, Jakob; Dunn, Frances S.; Li, Yu-jing; Wei, Fan; Hou, Xian-guang; Cong, Pei-yun (2021-12-24),
909:
Potential homology between nephrozoans through a sedentary-pelagic ancestor, among which the embryonic structure similar to a
2235: 1532: 1470: 1888: 860:
So members of Proarticulata are an evolutionary dead end rather than the ancestors of nephrozoans. It is possible that the
985:, a semi-metamerism derived from the formation of mesoderm from the gastrovascular cavity of an anthozoan-like animal. 701:
Held comments that all this makes it difficult to imagine that their urbilaterian common ancestor was not segmented.
1010:
The basal location of priapulids among ecdysozoans. Followed by the zero similarity between the priapulids with the
802:, this structure along with other characteristics could have been present in the common ancestor of the bilaterals. 446:
Its appearance is a matter of debate, for no representative has been (or may or may not ever be) identified in the
263: 1032:
The qualities of the common ancestor of mollusks as an animal with a single shell rather than a qiton-like animal.
977:
among other groups conserve, a stolon that holds the organism inside a tube secreted from the embryonic form as a
1953: 1238: 1096: 2230: 2220: 210: 2188: 2189:
Globins in the marine annelid Platynereis dumerilii shed new light on hemoglobin evolution in bilaterians
1518: 17: 1929: 1569:"Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity" 1524: 882:) are basal (and therefore bilateral) nephrozoans, because they have considerable similarity with the 626: 1798: 1691: 781: 138: 2225: 2073: 2026: 1980:"Life history and autecology of an Ediacaran index fossil: Development and dispersal of Cloudina" 1979: 697: 2121:"Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period" 1187: 2192: 2074:"Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China" 568:
has been interpreted as a bilaterian, but may simply represent a fortuitously infilled bubble.
491: 2202: 1113: 776: 726:, this appears to be a secondary adaptation, and the urbilaterian was probably mobile. Its 2132: 2085: 2038: 1991: 1941: 1930:"Borings in Cloudina Shells: Complex Predator-Prey Dynamics in the Terminal Neoproterozoic" 1832:"A non-bilaterian perspective on the development and evolution of animal digestive systems" 1745: 1627: 1616:"Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea?" 1359: 653:
which is being discussed; consequently the urbilaterian in this context is farther out the
451: 420: 256: 229: 81: 1978:
Cortijo, Iván; Cai, Yaoping; Hua, Hong; Schiffbauer, James D.; Xiao, Shuhai (2015-08-01).
992:
Smooths the transition between anthozoan-like polypoids and various groups of bilaterians.
754: 8: 723: 454:
can be considered: first, the less complex ancestral form forming the common ancestor to
2136: 2089: 2042: 1995: 1945: 1774: 1749: 1733: 1631: 1363: 2161: 2120: 1864: 1831: 1658: 1615: 1446: 1421: 1385: 1323: 1290: 1266: 1254: 1214: 1108: 435: 178: 71: 41: 668:
Genetic reconstructions are unfortunately not much help. They work by considering the
2166: 2148: 2101: 2054: 2007: 1957: 1910: 1869: 1851: 1779: 1761: 1711: 1663: 1645: 1596: 1588: 1528: 1482: 1451: 1377: 1328: 1310: 1258: 1206: 1202: 1069: 654: 514:
in which they moved, and evidence of such traces first appear relatively late in the
2097: 2050: 1389: 1270: 1218: 969:); On the other hand, the urbilaterian would be an animal with a U-shaped gut, with 49: 2156: 2140: 2093: 2046: 1999: 1949: 1900: 1859: 1843: 1804: 1769: 1753: 1703: 1653: 1635: 1580: 1441: 1433: 1367: 1318: 1302: 1250: 1198: 1089: 843: 510:
ought also to have been macroscopic. However, such large animals should have left
1800:
An early Cambrian polyp reveals an anemone-like ancestor for medusozoan cnidarians
1490: 1054: 704: 676:
has a function in eye development, but is absent in some animals with eyes; some
586: 455: 300: 249: 99: 782:
Cloudinomorpha hypothesis: (Biphasic Sedentary sessile adult and Pelagic larvae)
770: 2191:. In: BMC Evolutionary Biology Vol. 20, Issue 165. 29 December 2020. 2144: 1889:"Following the logic behind biological interpretations of the Ediacaran biotas" 1847: 1757: 1692:"Renewed perspectives on the sedentary-pelagic last common bilaterian ancestor" 1175: 1161: 1147: 914: 727: 569: 564: 507: 336: 130: 1905: 1808: 1707: 1372: 1347: 2214: 2152: 2105: 2058: 2011: 2003: 1961: 1914: 1855: 1765: 1715: 1649: 1640: 1592: 1514: 1314: 996: 974: 966: 958: 887: 839: 799: 751:
It is possible that the common ancestor of all bilaterals looked similar to:
495: 170: 76: 66: 2072:
Cai, Yaoping; Cortijo, Iván; Schiffbauer, James D.; Hua, Hong (2017-09-01).
1568: 842:
are derived), in turn derived from an ancestral organization shared between
2170: 2025:
Cai, Yaoping; Schiffbauer, James D.; Hua, Hong; Xiao, Shuhai (2011-11-01).
1873: 1783: 1667: 1600: 1486: 1455: 1437: 1381: 1332: 1306: 1262: 1210: 1082: 1018: 1004: 1000: 970: 658: 531: 519: 511: 479: 471: 375: 185: 121: 786: 1585:
10.1002/(SICI)1097-4687(200001)243:1<35::AID-JMOR3>3.0.CO;2-#
861: 851: 795: 503: 235: 107: 1520:
How the Snake Lost its Legs. Curious Tales from the Frontier of Evo-Devo
765: 743:
too could have been small (hence explaining the lack of fossil record).
603:
Light detection (photosensitivity) is present in organisms as simple as
416: 1124: 1026: 1011: 982: 978: 910: 823: 791: 755:
Colonial-Pennatulacean hypothesis: (Colonialy fusion of cnidarian-like)
685: 650: 551: 475: 467: 323: 224: 157: 114: 1734:"Ancient gene linkages support ctenophores as sister to other animals" 1239:"A critical reappraisal of the fossil record of the bilaterian phyla" 1036: 835: 827: 819: 731: 689: 578: 557: 540: 535: 483: 459: 424: 351: 312: 152: 1102: 1065: 1050: 1043: 962: 899: 895: 883: 866: 831: 677: 163: 146: 1022: 1014:
that at the time were pointed out as ancestors of the arthropods.
954: 947: 719:
marine, one can reasonably assume that the urbilaterian was too.
604: 499: 487: 1099: â€“ Most recent common ancestor of all current life on Earth 530:
The first evidence of bilateria in the fossil record comes from
1422:"Acoel development supports a simple planula-like urbilaterian" 918: 847: 515: 463: 447: 431: 1481:(7/8). University of the Basque Country Press; 1999: 479–490. 1690:
Martynov, Alexander V.; Korshunova, Tatiana A. (2022-08-11).
891: 771:
Panarticulata hypothesis: (Segmentated annelid-like ancestor)
736: 693: 633: 427: 1471:"The place of phylogeny and cladistics in Evo-Devo research" 905: 2118: 1954:
10.1669/0883-1351(2003)018<0454:BICSCP>2.0.CO;2
1731: 1426:
Philosophical Transactions of the Royal Society of London B
1295:
Philosophical Transactions of the Royal Society of London B
922: 902:, this taking into account the ontogeny of the cloudinids. 814:
revives the idea of a sessile sedentary biphasic ancestor.
673: 617: 474:, sometimes referred to as the "urnephrozoan". Since most 1550:"Évolution animale : les pĂ©ripĂ©ties de la phylogĂ©nie" 1419: 1085: â€“ Possible very early animal found in ancient rocks 608: 2071: 1977: 1127: â€“ Hypothetical last common ancestor of all animals 1049:
The derived and non-ancestral position of the annelids,
1468: 661:
than the common ancestor of deuterostomes, protostomes
545:), and the first fully accepted fossil of a bilaterian 746: 739:, which it could have used for locomotion or feeding. 593: 2024: 766:
Larval Hypothesis (Pelagic larvae and adult ancestor)
1796: 1236: 629:, which is the most widespread among the bilateria. 2203:A single gene 'invented' haemoglobin several times 1116: â€“ Overview of and topical guide to life forms 1928:Hua, H.; Pratt, B. R.; Zhang, L.-Y. (2003-10-01). 1689: 1039:with still conserved deuterostome characteristics. 713: 2212: 2205:. On: EurekAlert! 29 December 2020. Source: CNRS 1092: â€“ Early bilaterian organism fossil species 790:Presence of an embryonic structure similar to a 1288: 1475:International Journal of Developmental Biology 1927: 1345: 257: 1509: 1507: 1415: 1413: 1411: 1409: 1407: 1405: 1403: 1401: 1399: 1284: 1282: 1280: 1120:Timeline of the evolutionary history of life 929:and potential derivatives (yellow), and the 562:. There are earlier, controversial fossils: 502:— that are useful only in relatively large ( 1181: 696:use the oscillating mechanism based on the 1462: 1232: 1230: 1228: 1035:The location of basal polychaetes such as 1017:The hastily rejected possible homology of 525: 279:Phylogenetic position of the urbilaterian 264: 250: 2160: 1904: 1863: 1829: 1773: 1657: 1639: 1504: 1445: 1396: 1371: 1322: 1277: 684:The evolutionary developmental biologist 1886: 1291:"Reconstructing the eyes of Urbilateria" 904: 785: 703: 1830:Steinmetz, Patrick R. H. (2019-09-01). 1613: 1547: 1225: 615:The presence of genetic machinery (the 14: 2213: 1289:Arendt, D.; Wittbrodt, J. (Oct 2001). 1973: 1971: 1825: 1823: 1727: 1725: 1685: 1683: 1681: 1679: 1677: 1566: 1420:Hejnol, A.; Martindale, M.Q. (2008). 1348:"Eye Evolution: the Blurry Beginning" 995:Taking into account the paraphyly of 681:an implausibly complex urbilaterian. 639: 27:Possible simple urbilateran candidate 1513: 1346:Nilsson, E.; Arendt, D. (Dec 2008). 534:in sediments towards the end of the 1105: â€“ Individual living life form 747:Possible models of the Urbilaterian 594:Characteristics of the urbilaterian 24: 1968: 1820: 1722: 1674: 1469:Telford, M.J.; Budd, G.E. (2003). 1255:10.1111/j.1469-185X.1999.tb00046.x 572:are known from around the time of 48: 25: 2247: 2181: 1174:Further details are available at 1159:Further details are available at 1145:Further details are available at 466:) urbilaterian ancestral to both 450:. Two reconstructed urbilaterian 1203:10.1111/j.1525-142X.2008.00242.x 462:; and second, the more complex ( 419:'original') is the hypothetical 2112: 2098:10.1016/j.precamres.2017.05.016 2065: 2051:10.1016/j.precamres.2011.09.002 2018: 1921: 1880: 1790: 1607: 1560: 1541: 1237:Budd, G.E.; Jensen, S. (2000). 714:Reconstructing the urbilaterian 2193:doi:10.1186/s12862-020-01714-4 1887:Runnegar, Bruce (2021-07-12). 1339: 1168: 1153: 1139: 942:fact the relationship between 13: 1: 1614:Nielsen, Claus (2013-08-16). 1567:Dewel, R. A. (January 2000). 1132: 971:deuterostomic characteristics 645:ancestral bilaterian animal. 441: 211:Cambrian substrate revolution 2236:Most recent common ancestors 1064:The location of Ctenophora ( 7: 1191:Evolution & Development 1075: 988:This form of urbilaterian: 607:; the definition of a true 10: 2252: 2145:10.1038/s41467-019-13882-z 1848:10.1007/s00441-019-03075-x 1758:10.1038/s41586-023-05936-6 1525:Cambridge University Press 774: 1906:10.1017/S0016756821000443 1809:10.1101/2021.12.24.474121 1708:10.1163/18759866-bja10034 1373:10.1016/j.cub.2008.10.025 1072:, Porifera and Cnidaria. 1042:The similarities between 373: 349: 334: 327: 317: 298: 291: 2004:10.1016/j.gr.2014.05.001 1836:Cell and Tissue Research 1696:Contributions to Zoology 1641:10.1186/1471-2148-13-171 1620:BMC Evolutionary Biology 1554:Encyclopædia Universalis 1548:MichaĂ«l, Manuel (2009). 973:that hemichordates and 698:Notch signaling pathway 598: 581: million years ago 560: million years ago 543: million years ago 526:Dating the urbilaterian 1438:10.1098/rstb.2007.2239 1307:10.1098/rstb.2001.0971 937:This implies that the 934: 890:, as well as with the 803: 710: 512:traces in the sediment 482:share features — e.g. 53: 2125:Nature Communications 1573:Journal of Morphology 1114:Outline of life forms 908: 812:Tatiana A. Korshunova 808:Alexander V. Martynov 789: 777:Articulata hypothesis 707: 198:Evolutionary concepts 52: 2231:Evolutionary biology 2221:Evolution of animals 2078:Precambrian Research 2031:Precambrian Research 806:The recent model by 794:(embryonic dome) in 587:Molecular techniques 421:last common ancestor 289:Urbilaterian â†“ 230:Convergent evolution 2137:2020NatCo..11..205S 2090:2017PreR..298..146C 2043:2011PreR..191...46C 1996:2015GondR..28..419C 1946:2003Palai..18..454H 1893:Geological Magazine 1750:2023Natur.618..110S 1632:2013BMCEE..13..171N 1432:(1496): 1493–1501. 1364:2008CBio...18R1096N 1358:(23): R1096–R1098. 1301:(1414): 1545–1563. 1066:Myriazoa hypothesis 632:Since two types of 506:) organisms, their 34:Part of a series on 1243:Biological Reviews 1109:Outline of biology 935: 804: 711: 640:Complex or simple? 436:bilateral symmetry 179:Small shelly fauna 54: 42:Cambrian explosion 1984:Gondwana Research 1744:(7963): 110–117. 1534:978-1-107-62139-8 1070:Choanoflagellatea 844:choanoflagellates 655:evolutionary tree 486:(and the derived 409: 408: 404: 403: 395: 394: 386: 385: 362: 361: 274: 273: 61:Fossil localities 16:(Redirected from 2243: 2175: 2174: 2164: 2116: 2110: 2109: 2069: 2063: 2062: 2022: 2016: 2015: 1975: 1966: 1965: 1940:(4–5): 454–459. 1925: 1919: 1918: 1908: 1899:(7): 1093–1117. 1884: 1878: 1877: 1867: 1827: 1818: 1817: 1816: 1815: 1794: 1788: 1787: 1777: 1729: 1720: 1719: 1702:(4–5): 285–352. 1687: 1672: 1671: 1661: 1643: 1611: 1605: 1604: 1564: 1558: 1557: 1545: 1539: 1538: 1511: 1502: 1501: 1499: 1498: 1489:. Archived from 1466: 1460: 1459: 1449: 1417: 1394: 1393: 1375: 1343: 1337: 1336: 1326: 1286: 1275: 1274: 1234: 1223: 1222: 1185: 1179: 1172: 1166: 1157: 1151: 1143: 1090:Ikaria wariootia 1053:and perhaps the 1003:and potentially 688:notes that both 582: 561: 544: 536:Ediacaran period 330: 329: 320: 319: 294: 293: 286: 285: 276: 275: 266: 259: 252: 30: 29: 21: 2251: 2250: 2246: 2245: 2244: 2242: 2241: 2240: 2211: 2210: 2184: 2179: 2178: 2117: 2113: 2070: 2066: 2023: 2019: 1976: 1969: 1926: 1922: 1885: 1881: 1828: 1821: 1813: 1811: 1795: 1791: 1730: 1723: 1688: 1675: 1612: 1608: 1565: 1561: 1546: 1542: 1535: 1512: 1505: 1496: 1494: 1467: 1463: 1418: 1397: 1352:Current Biology 1344: 1340: 1287: 1278: 1235: 1226: 1186: 1182: 1173: 1169: 1158: 1154: 1144: 1140: 1135: 1130: 1078: 1055:xenacoelomorphs 894:of semi-mobile 784: 779: 773: 768: 757: 749: 716: 642: 627:pigment-cup eye 601: 596: 577: 556: 539: 528: 508:common ancestor 456:Xenacoelomorpha 444: 405: 396: 387: 363: 301:Xenacoelomorpha 270: 241: 240: 199: 191: 190: 100:Ediacaran biota 95: 87: 86: 62: 28: 23: 22: 15: 12: 11: 5: 2249: 2239: 2238: 2233: 2228: 2226:Ediacaran life 2223: 2209: 2208: 2207: 2206: 2197: 2196: 2183: 2182:External links 2180: 2177: 2176: 2111: 2064: 2017: 1990:(1): 419–424. 1967: 1920: 1879: 1842:(3): 321–339. 1819: 1789: 1721: 1673: 1606: 1559: 1540: 1533: 1527:. p. 11. 1515:Held, Lewis I. 1503: 1461: 1395: 1338: 1276: 1249:(2): 253–295. 1224: 1197:(3): 339–349. 1180: 1176:Fossil embryos 1167: 1162:Vernanimalcula 1152: 1148:Ediacara biota 1137: 1136: 1134: 1131: 1129: 1128: 1122: 1117: 1111: 1106: 1100: 1094: 1086: 1079: 1077: 1074: 1059: 1058: 1047: 1040: 1033: 1030: 1015: 1008: 993: 967:proarticulates 939:Cloudinomorpha 915:digestive tube 913:(violet), the 879:Multiconotubus 838:, and perhaps 783: 780: 772: 769: 767: 764: 756: 753: 748: 745: 728:nervous system 715: 712: 665:acoelomorphs. 651:cladistic node 641: 638: 600: 597: 595: 592: 574:Vernanimalcula 570:Fossil embryos 565:Vernanimalcula 527: 524: 443: 440: 407: 406: 402: 401: 398: 397: 393: 392: 389: 388: 384: 383: 380: 379: 372: 369: 368: 365: 364: 360: 359: 356: 355: 348: 345: 344: 341: 340: 337:Lophotrochozoa 333: 328: 326: 318: 316: 309: 308: 305: 304: 297: 292: 290: 284: 281: 280: 272: 271: 269: 268: 261: 254: 246: 243: 242: 239: 238: 232: 227: 221: 220: 218: 214: 213: 207: 206: 204: 200: 197: 196: 193: 192: 189: 188: 182: 181: 175: 174: 167: 160: 155: 150: 142: 141: 135: 134: 131:Vernanimalcula 127: 126: 125: 111: 103: 102: 96: 93: 92: 89: 88: 85: 84: 79: 74: 69: 63: 60: 59: 56: 55: 45: 44: 37: 36: 26: 9: 6: 4: 3: 2: 2248: 2237: 2234: 2232: 2229: 2227: 2224: 2222: 2219: 2218: 2216: 2204: 2201: 2200: 2199: 2198: 2194: 2190: 2186: 2185: 2172: 2168: 2163: 2158: 2154: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2115: 2107: 2103: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2068: 2060: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2021: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1974: 1972: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1935: 1931: 1924: 1916: 1912: 1907: 1902: 1898: 1894: 1890: 1883: 1875: 1871: 1866: 1861: 1857: 1853: 1849: 1845: 1841: 1837: 1833: 1826: 1824: 1810: 1806: 1802: 1801: 1793: 1785: 1781: 1776: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1728: 1726: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1686: 1684: 1682: 1680: 1678: 1669: 1665: 1660: 1655: 1651: 1647: 1642: 1637: 1633: 1629: 1625: 1621: 1617: 1610: 1602: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1563: 1555: 1551: 1544: 1536: 1530: 1526: 1522: 1521: 1516: 1510: 1508: 1493:on 2011-07-16 1492: 1488: 1484: 1480: 1476: 1472: 1465: 1457: 1453: 1448: 1443: 1439: 1435: 1431: 1427: 1423: 1416: 1414: 1412: 1410: 1408: 1406: 1404: 1402: 1400: 1391: 1387: 1383: 1379: 1374: 1369: 1365: 1361: 1357: 1353: 1349: 1342: 1334: 1330: 1325: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1285: 1283: 1281: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1233: 1231: 1229: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1184: 1177: 1171: 1164: 1163: 1156: 1150: 1149: 1142: 1138: 1126: 1123: 1121: 1118: 1115: 1112: 1110: 1107: 1104: 1101: 1098: 1095: 1093: 1091: 1087: 1084: 1081: 1080: 1073: 1071: 1067: 1062: 1056: 1052: 1048: 1046:and mollusks. 1045: 1041: 1038: 1034: 1031: 1028: 1024: 1020: 1019:ambulacrarian 1016: 1013: 1009: 1006: 1005:Deuterostomia 1002: 998: 997:Cycloneuralia 994: 991: 990: 989: 986: 984: 980: 976: 975:lophophorates 972: 968: 964: 960: 959:panarthropods 956: 951: 949: 945: 940: 932: 928: 924: 920: 916: 912: 907: 903: 901: 897: 893: 889: 886:of sedentary 885: 881: 880: 875: 874: 869: 868: 863: 858: 855: 853: 852:parahoxozoans 849: 845: 841: 840:proarticulate 837: 833: 829: 825: 821: 815: 813: 809: 801: 800:Pterobranchia 797: 793: 788: 778: 763: 760: 752: 744: 740: 738: 733: 729: 725: 720: 706: 702: 699: 695: 691: 687: 682: 679: 675: 671: 666: 664: 660: 656: 652: 646: 637: 635: 630: 628: 624: 620: 619: 613: 610: 606: 591: 588: 584: 580: 575: 571: 567: 566: 559: 554: 553: 548: 542: 537: 533: 532:trace fossils 523: 521: 517: 516:fossil record 513: 509: 505: 501: 497: 496:blood vessels 493: 489: 485: 481: 480:deuterostomes 477: 473: 472:deuterostomes 469: 465: 461: 457: 453: 449: 448:fossil record 439: 437: 433: 429: 426: 422: 418: 415:(from German 414: 400: 399: 391: 390: 382: 381: 378: 377: 376:Deuterostomes 371: 370: 367: 366: 358: 357: 354: 353: 347: 346: 343: 342: 339: 338: 332: 331: 325: 322: 321: 314: 311: 310: 307: 306: 303: 302: 296: 295: 288: 287: 283: 282: 278: 277: 267: 262: 260: 255: 253: 248: 247: 245: 244: 237: 233: 231: 228: 226: 223: 222: 219: 216: 215: 212: 209: 208: 205: 202: 201: 195: 194: 187: 186:Helcionellids 184: 183: 180: 177: 176: 173: 172: 171:Odontogriphus 168: 166: 165: 161: 159: 156: 154: 151: 149: 148: 144: 143: 140: 137: 136: 133: 132: 128: 124: 123: 119: 118: 117: 116: 112: 110: 109: 105: 104: 101: 98: 97: 94:Key organisms 91: 90: 83: 80: 78: 77:Sirius Passet 75: 73: 70: 68: 67:Burgess Shale 65: 64: 58: 57: 51: 47: 46: 43: 39: 38: 35: 32: 31: 19: 2128: 2124: 2114: 2081: 2077: 2067: 2037:(1): 46–57. 2034: 2030: 2020: 1987: 1983: 1937: 1933: 1923: 1896: 1892: 1882: 1839: 1835: 1812:, retrieved 1799: 1792: 1741: 1737: 1699: 1695: 1623: 1619: 1609: 1579:(1): 35–74. 1576: 1572: 1562: 1556:(in French). 1553: 1543: 1519: 1495:. Retrieved 1491:the original 1478: 1474: 1464: 1429: 1425: 1355: 1351: 1341: 1298: 1294: 1246: 1242: 1194: 1190: 1189:taphonomy". 1183: 1170: 1160: 1155: 1146: 1141: 1088: 1083:Caveasphaera 1063: 1060: 1012:cephalozoans 1001:Lophophorata 987: 952: 943: 936: 925:(blue), the 888:pterobranchs 877: 871: 865: 859: 856: 816: 805: 761: 758: 750: 741: 721: 717: 683: 669: 667: 662: 657:and is more 647: 643: 631: 622: 616: 614: 602: 585: 573: 563: 555:, dating to 550: 546: 529: 520:acoelomorphs 492:through guts 452:morphologies 445: 430:, i.e., all 413:urbilaterian 412: 410: 374: 350: 335: 299: 236:crown groups 169: 162: 145: 139:Burgess-type 129: 122:Kimberichnus 120: 113: 106: 33: 2195:. See also: 2084:: 146–156. 1027:brachiozoan 950:is denied. 927:head shield 917:(red), the 898:and mobile 836:nephrozoans 820:choanozoans 796:Cloudinidae 504:macroscopic 476:protostomes 468:protostomes 324:Protostomes 108:Dickinsonia 18:Urbilateria 2215:Categories 2131:(1): 205. 1814:2024-08-31 1626:(1): 171. 1497:2011-07-16 1133:References 1125:Urmetazoan 1029:tentacles. 983:protoconch 931:oral lobes 911:protoconch 862:Cloudinids 832:placozoans 824:Ctenophora 792:protoconch 775:See also: 690:centipedes 686:Lewis Held 552:Kimberella 498:and nerve 442:Appearance 425:bilaterian 225:Cladistics 158:Halwaxiids 153:Radiodonts 115:Kimberella 82:Doushantuo 72:Chengjiang 2153:2041-1723 2106:0301-9268 2059:0301-9268 2012:1342-937X 1962:0883-1351 1915:0016-7568 1856:1432-0878 1766:1476-4687 1716:1875-9866 1650:1471-2148 1593:0362-2525 1315:0962-8436 1051:flatworms 1037:Oweniidae 963:chordates 884:tubariums 873:Conotubus 828:jellyfish 732:diffusion 724:substrate 484:nephridia 464:coelomate 460:Nephrozoa 434:having a 352:Ecdysozoa 313:Nephrozoa 234:Stem and 2171:31924764 1874:31388768 1784:37198475 1775:10232365 1668:23957497 1601:10629096 1517:(2014). 1487:14756323 1456:18192185 1390:11554469 1382:19081043 1333:11604122 1271:39772232 1263:10881389 1219:13233666 1211:18460095 1103:Organism 1076:See also 1044:hyoliths 1023:bryozoan 955:annelids 948:annelids 944:Cloudina 933:(green). 900:mollusks 896:hyoliths 867:Cloudina 822:(except 678:cnidaria 605:seaweeds 547:organism 315: â†“ 164:Opabinia 147:Marrella 2162:6954273 2133:Bibcode 2086:Bibcode 2039:Bibcode 1992:Bibcode 1942:Bibcode 1934:PALAIOS 1865:6733828 1746:Bibcode 1659:3751718 1628:Bibcode 1447:2614228 1360:Bibcode 1324:1088535 848:sponges 659:derived 538:(about 500:ganglia 488:kidneys 432:animals 423:of the 2169:  2159:  2151:  2104:  2057:  2010:  1960:  1913:  1872:  1862:  1854:  1782:  1772:  1764:  1738:Nature 1714:  1666:  1656:  1648:  1599:  1591:  1531:  1485:  1454:  1444:  1388:  1380:  1331:  1321:  1313:  1269:  1261:  1217:  1209:  919:stolon 892:shells 694:snakes 217:Themes 203:Trends 1386:S2CID 1267:S2CID 1215:S2CID 737:cilia 670:genes 634:opsin 428:clade 2167:PMID 2149:ISSN 2102:ISSN 2055:ISSN 2008:ISSN 1958:ISSN 1911:ISSN 1870:PMID 1852:ISSN 1780:PMID 1762:ISSN 1712:ISSN 1664:PMID 1646:ISSN 1597:PMID 1589:ISSN 1529:ISBN 1483:PMID 1452:PMID 1378:PMID 1329:PMID 1311:ISSN 1259:PMID 1207:PMID 1097:LUCA 1025:and 979:dome 965:and 946:and 923:tail 921:and 876:and 850:and 810:and 798:and 692:and 674:Pax6 621:and 618:Pax6 599:Eyes 478:and 470:and 458:and 411:The 40:The 2157:PMC 2141:doi 2094:doi 2082:298 2047:doi 2035:191 2000:doi 1950:doi 1901:doi 1897:159 1860:PMC 1844:doi 1840:377 1805:doi 1770:PMC 1754:doi 1742:618 1704:doi 1654:PMC 1636:doi 1581:doi 1577:243 1442:PMC 1434:doi 1430:363 1368:doi 1319:PMC 1303:doi 1299:356 1251:doi 1199:doi 981:or 663:and 623:Six 609:eye 579:580 558:555 549:is 541:570 490:), 417:ur- 2217:: 2165:. 2155:. 2147:. 2139:. 2129:11 2127:. 2123:. 2100:. 2092:. 2080:. 2076:. 2053:. 2045:. 2033:. 2029:. 2006:. 1998:. 1988:28 1986:. 1982:. 1970:^ 1956:. 1948:. 1938:18 1936:. 1932:. 1909:. 1895:. 1891:. 1868:. 1858:. 1850:. 1838:. 1834:. 1822:^ 1803:, 1778:. 1768:. 1760:. 1752:. 1740:. 1736:. 1724:^ 1710:. 1700:91 1698:. 1694:. 1676:^ 1662:. 1652:. 1644:. 1634:. 1624:13 1622:. 1618:. 1595:. 1587:. 1575:. 1571:. 1552:. 1523:. 1506:^ 1479:47 1477:. 1473:. 1450:. 1440:. 1428:. 1424:. 1398:^ 1384:. 1376:. 1366:. 1356:18 1354:. 1350:. 1327:. 1317:. 1309:. 1297:. 1293:. 1279:^ 1265:. 1257:. 1247:75 1245:. 1241:. 1227:^ 1213:. 1205:. 1195:10 1193:. 1021:, 999:, 961:, 957:, 870:, 854:. 846:, 834:, 830:, 522:. 494:, 438:. 2173:. 2143:: 2135:: 2108:. 2096:: 2088:: 2061:. 2049:: 2041:: 2014:. 2002:: 1994:: 1964:. 1952:: 1944:: 1917:. 1903:: 1876:. 1846:: 1807:: 1786:. 1756:: 1748:: 1718:. 1706:: 1670:. 1638:: 1630:: 1603:. 1583:: 1537:. 1500:. 1458:. 1436:: 1392:. 1370:: 1362:: 1335:. 1305:: 1273:. 1253:: 1221:. 1201:: 1178:. 1165:. 1057:. 1007:. 864:( 576:( 265:e 258:t 251:v 20:)

Index

Urbilateria
Cambrian explosion

Burgess Shale
Chengjiang
Sirius Passet
Doushantuo
Ediacaran biota
Dickinsonia
Kimberella
Kimberichnus
Vernanimalcula
Burgess-type
Marrella
Radiodonts
Halwaxiids
Opabinia
Odontogriphus
Small shelly fauna
Helcionellids
Cambrian substrate revolution
Cladistics
Convergent evolution
crown groups
v
t
e
Xenacoelomorpha
Nephrozoa
Protostomes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑