Knowledge

Tubular neighborhood

Source đź“ť

33: 163: 106: 98: 263:
to the curve. Unless the curve is straight, these lines will intersect among themselves in a rather complicated fashion. However, if one looks only in a narrow band around the curve, the portions of the lines in that band will not intersect, and will cover the entire band without gaps. This band is a
1016:
The normal bundle is a tubular neighborhood and because of the diffeomorphism condition in the second point, all tubular neighborhood have the same dimension, namely (the dimension of the vector bundle considered as a manifold is) that of
1006: 814: 938: 768: 964: 896: 870: 619: 346: 694: 726: 522: 157: 841: 383: 195: 481: 436: 1038: 788: 659: 639: 62: 17: 101:
A curve, in blue, and some lines perpendicular to it, in green. Small portions of those lines around the curve are in red.
1047:
Generalizations of smooth manifolds yield generalizations of tubular neighborhoods, such as regular neighborhoods, or
1145: 1124: 1103: 84: 55: 1062:, which are replacements for the tangent bundle (which does not admit a direct description for these spaces). 1169: 969: 793: 901: 1174: 45: 734: 49: 41: 943: 875: 849: 598: 312: 1048: 667: 66: 699: 489: 124: 1059: 819: 361: 173: 457: 412: 8: 1058:
These generalizations are used to produce analogs to the normal bundle, or rather to the
1020: 251:
The idea behind a tubular neighborhood can be explained in a simple example. Consider a
1164: 773: 644: 624: 565: 1141: 1120: 1099: 1052: 109:
A close up of the figure above. The curve is in blue, and its tubular neighborhood
557: 252: 237: 1071: 1009: 1158: 662: 583: 447: 287: 260: 245: 356: 1074: â€“ Generalization of the concept of parallel lines (aka offset curve) 272: 233: 225: 162: 1077: 97: 105: 352: 306:
the role of the plane containing the curve. Consider the natural map
255:
curve in the plane without self-intersections. On each point on the
561: 276: 241: 586:
to the curve where the curve passes through that disc's center.
576: 256: 113:
is in red. With the notation in the article, the curve is
1093: 1023: 972: 946: 904: 878: 852: 822: 796: 776: 737: 702: 670: 647: 627: 601: 492: 460: 415: 364: 315: 176: 127: 1082:
Pages displaying wikidata descriptions as a fallback
1135: 1032: 1000: 958: 932: 890: 864: 835: 808: 782: 762: 720: 688: 653: 633: 613: 532:, it is assumed implicitly that the homeomorphism 516: 475: 430: 377: 340: 189: 151: 1156: 1114: 54:but its sources remain unclear because it lacks 621:be smooth manifolds. A tubular neighborhood of 166:A schematic illustration of the normal bundle 977: 572:all the discs have the same fixed radius; 85:Learn how and when to remove this message 1096:Differential forms in algebraic topology 401:of this map to the entire normal bundle 161: 104: 96: 14: 1157: 590: 575:the center of each disc lies on the 117:, the space containing the curve is 26: 528:itself, a tubular neighbourhood of 483:is called a tubular neighbourhood. 24: 1042: 1001:{\displaystyle J\vert _{U}:U\to V} 809:{\displaystyle S\hookrightarrow M} 25: 1186: 1094:Raoul Bott, Loring W. Tu (1982). 933:{\displaystyle 0_{E}\subseteq U} 302:plays the role of the curve and 216:to the tubular neighbourhood of 31: 992: 921: 915: 800: 763:{\displaystyle J\circ 0_{E}=i} 712: 680: 547: 508: 502: 470: 464: 425: 419: 332: 143: 137: 13: 1: 1087: 486:Often one calls the open set 959:{\displaystyle S\subseteq V} 891:{\displaystyle V\subseteq M} 865:{\displaystyle U\subseteq E} 614:{\displaystyle S\subseteq M} 341:{\displaystyle i:N_{0}\to S} 197:in blue. The transformation 7: 1140:. Berlin: Springer-Verlag. 1136:Waldyr Muniz Oliva (2002). 1119:. Berlin: Springer-Verlag. 1098:. Berlin: Springer-Verlag. 1065: 696:together with a smooth map 689:{\displaystyle \pi :E\to S} 355:correspondence between the 10: 1191: 582:each disc lies in a plane 1115:Morris W. Hirsch (1976). 1080: â€“ proof in topology 244:around it resembling the 212:in the figure above, and 721:{\displaystyle J:E\to M} 170:, with the zero section 40:This article includes a 568:of all discs such that 517:{\displaystyle T=j(N),} 264:tubular neighborhood. 152:{\displaystyle T=j(N).} 69:more precise citations. 1034: 1002: 960: 934: 892: 866: 837: 810: 784: 764: 722: 690: 655: 635: 615: 518: 477: 432: 379: 342: 221: 191: 159: 153: 102: 1117:Differential Topology 1035: 1003: 961: 935: 893: 867: 838: 836:{\displaystyle 0_{E}} 811: 785: 765: 723: 691: 656: 636: 616: 519: 478: 433: 380: 378:{\displaystyle N_{0}} 343: 192: 190:{\displaystyle N_{0}} 165: 154: 108: 100: 18:Tubular neighbourhood 1060:stable normal bundle 1049:spherical fibrations 1021: 970: 944: 902: 876: 850: 820: 794: 774: 735: 700: 668: 645: 625: 599: 490: 476:{\displaystyle j(N)} 458: 431:{\displaystyle j(N)} 413: 389:and the submanifold 362: 351:which establishes a 313: 230:tubular neighborhood 174: 125: 1138:Geometric Mechanics 1170:Geometric topology 1033:{\displaystyle M.} 1030: 998: 956: 930: 888: 862: 846:there exists some 833: 806: 780: 760: 718: 686: 651: 631: 611: 514: 473: 438:is an open set in 428: 375: 338: 222: 187: 160: 149: 103: 42:list of references 790:is the embedding 783:{\displaystyle i} 654:{\displaystyle M} 634:{\displaystyle S} 591:Formal definition 95: 94: 87: 16:(Redirected from 1182: 1175:Smooth manifolds 1151: 1130: 1109: 1083: 1039: 1037: 1036: 1031: 1007: 1005: 1004: 999: 985: 984: 965: 963: 962: 957: 939: 937: 936: 931: 914: 913: 897: 895: 894: 889: 871: 869: 868: 863: 843:the zero section 842: 840: 839: 834: 832: 831: 815: 813: 812: 807: 789: 787: 786: 781: 769: 767: 766: 761: 753: 752: 727: 725: 724: 719: 695: 693: 692: 687: 660: 658: 657: 652: 640: 638: 637: 632: 620: 618: 617: 612: 523: 521: 520: 515: 482: 480: 479: 474: 437: 435: 434: 429: 384: 382: 381: 376: 374: 373: 347: 345: 344: 339: 331: 330: 267:In general, let 196: 194: 193: 188: 186: 185: 158: 156: 155: 150: 90: 83: 79: 76: 70: 65:this article by 56:inline citations 35: 34: 27: 21: 1190: 1189: 1185: 1184: 1183: 1181: 1180: 1179: 1155: 1154: 1148: 1127: 1106: 1090: 1081: 1068: 1053:PoincarĂ© spaces 1045: 1043:Generalizations 1022: 1019: 1018: 980: 976: 971: 968: 967: 945: 942: 941: 909: 905: 903: 900: 899: 877: 874: 873: 851: 848: 847: 827: 823: 821: 818: 817: 795: 792: 791: 775: 772: 771: 748: 744: 736: 733: 732: 701: 698: 697: 669: 666: 665: 646: 643: 642: 626: 623: 622: 600: 597: 596: 593: 564:defined as the 550: 491: 488: 487: 459: 456: 455: 414: 411: 410: 405:with values in 397:. An extension 369: 365: 363: 360: 359: 326: 322: 314: 311: 310: 238:smooth manifold 207: 181: 177: 175: 172: 171: 126: 123: 122: 91: 80: 74: 71: 60: 46:related reading 36: 32: 23: 22: 15: 12: 11: 5: 1188: 1178: 1177: 1172: 1167: 1153: 1152: 1146: 1132: 1131: 1125: 1111: 1110: 1104: 1089: 1086: 1085: 1084: 1075: 1072:Parallel curve 1067: 1064: 1044: 1041: 1029: 1026: 1014: 1013: 1010:diffeomorphism 997: 994: 991: 988: 983: 979: 975: 955: 952: 949: 929: 926: 923: 920: 917: 912: 908: 887: 884: 881: 861: 858: 855: 844: 830: 826: 805: 802: 799: 779: 759: 756: 751: 747: 743: 740: 717: 714: 711: 708: 705: 685: 682: 679: 676: 673: 650: 630: 610: 607: 604: 592: 589: 588: 587: 580: 573: 549: 546: 513: 510: 507: 504: 501: 498: 495: 472: 469: 466: 463: 427: 424: 421: 418: 372: 368: 349: 348: 337: 334: 329: 325: 321: 318: 205: 184: 180: 148: 145: 142: 139: 136: 133: 130: 93: 92: 50:external links 39: 37: 30: 9: 6: 4: 3: 2: 1187: 1176: 1173: 1171: 1168: 1166: 1163: 1162: 1160: 1149: 1147:3-540-44242-1 1143: 1139: 1134: 1133: 1128: 1126:0-387-90148-5 1122: 1118: 1113: 1112: 1107: 1105:0-387-90613-4 1101: 1097: 1092: 1091: 1079: 1076: 1073: 1070: 1069: 1063: 1061: 1056: 1054: 1050: 1040: 1027: 1024: 1011: 995: 989: 986: 981: 973: 953: 950: 947: 927: 924: 918: 910: 906: 885: 882: 879: 859: 856: 853: 845: 828: 824: 803: 797: 777: 757: 754: 749: 745: 741: 738: 731: 730: 729: 715: 709: 706: 703: 683: 677: 674: 671: 664: 663:vector bundle 648: 628: 608: 605: 602: 585: 581: 578: 574: 571: 570: 569: 567: 563: 559: 555: 545: 543: 539: 535: 531: 527: 511: 505: 499: 496: 493: 484: 467: 461: 453: 449: 448:homeomorphism 445: 441: 422: 416: 408: 404: 400: 396: 392: 388: 370: 366: 358: 354: 335: 327: 323: 319: 316: 309: 308: 307: 305: 301: 297: 293: 289: 288:normal bundle 285: 281: 278: 274: 270: 265: 262: 261:perpendicular 258: 254: 249: 247: 246:normal bundle 243: 239: 235: 231: 227: 219: 215: 211: 208:to the curve 204: 200: 182: 178: 169: 164: 146: 140: 134: 131: 128: 120: 116: 112: 107: 99: 89: 86: 78: 68: 64: 58: 57: 51: 47: 43: 38: 29: 28: 19: 1137: 1116: 1095: 1057: 1046: 1015: 594: 553: 551: 541: 537: 533: 529: 525: 524:rather than 485: 451: 443: 439: 406: 402: 398: 394: 390: 386: 357:zero section 350: 303: 299: 295: 291: 283: 279: 268: 266: 259:draw a line 250: 229: 223: 217: 213: 209: 202: 198: 167: 118: 114: 110: 81: 72: 61:Please help 53: 560:curve is a 554:normal tube 548:Normal tube 273:submanifold 234:submanifold 226:mathematics 75:August 2014 67:introducing 1159:Categories 1088:References 1078:Tube lemma 966:such that 728:such that 409:such that 282:, and let 1165:Manifolds 993:→ 951:⊆ 925:⊆ 883:⊆ 872:and some 857:⊆ 801:↪ 742:∘ 713:→ 681:→ 672:π 606:⊆ 353:bijective 333:→ 1066:See also 562:manifold 544:exists. 536:mapping 450:between 277:manifold 242:open set 298:. Here 286:be the 63:improve 1144:  1123:  1102:  770:where 584:normal 558:smooth 253:smooth 240:is an 121:, and 1008:is a 898:with 661:is a 579:; and 577:curve 566:union 556:to a 446:is a 275:of a 271:be a 257:curve 236:of a 232:of a 201:maps 48:, or 1142:ISBN 1121:ISBN 1100:ISBN 1051:for 940:and 816:and 595:Let 454:and 442:and 228:, a 641:in 540:to 393:of 385:of 294:in 290:of 248:. 224:In 1161:: 1055:. 552:A 52:, 44:, 1150:. 1129:. 1108:. 1028:. 1025:M 1012:. 996:V 990:U 987:: 982:U 978:| 974:J 954:V 948:S 928:U 922:] 919:S 916:[ 911:E 907:0 886:M 880:V 860:E 854:U 829:E 825:0 804:M 798:S 778:i 758:i 755:= 750:E 746:0 739:J 716:M 710:E 707:: 704:J 684:S 678:E 675:: 649:M 629:S 609:M 603:S 542:T 538:N 534:j 530:S 526:j 512:, 509:) 506:N 503:( 500:j 497:= 494:T 471:) 468:N 465:( 462:j 452:N 444:j 440:M 426:) 423:N 420:( 417:j 407:M 403:N 399:j 395:M 391:S 387:N 371:0 367:N 336:S 328:0 324:N 320:: 317:i 304:M 300:S 296:M 292:S 284:N 280:M 269:S 220:. 218:S 214:N 210:S 206:0 203:N 199:j 183:0 179:N 168:N 147:. 144:) 141:N 138:( 135:j 132:= 129:T 119:M 115:S 111:T 88:) 82:( 77:) 73:( 59:. 20:)

Index

Tubular neighbourhood
list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message



mathematics
submanifold
smooth manifold
open set
normal bundle
smooth
curve
perpendicular
submanifold
manifold
normal bundle
bijective
zero section
homeomorphism
smooth
manifold
union
curve
normal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑