Knowledge

Toroidal inductors and transformers

Source 📝

330: 429: 419: 355: 398: 388: 464: 653: 378: 1373: 319: 1980: 20: 645:
radial current segments cancel. The situation for axial currents is different. The axial current on the outside of the toroid is pointed down and the axial current on the inside of the toroid is pointed up. Each axial current segment on the outside of the toroid can be matched with an equal but oppositely directed segment on the inside of the toroid. The segments on the inside are closer than the segments on the outside to the axis, therefore there is a net upward component of the
28: 44: 1357: 146: 245: 363:
However, at points a distance of several times the winding spacing, the toroid does look symmetric. There is still the problem of the circumferential current. No matter how many times the winding encircles the core and no matter how thin the wire, this toroidal inductor will still include a one coil loop in the plane of the toroid. This winding will also produce and be susceptible to an
36: 1109: 350:
field). Because of the symmetry, the lines of B flux must form circles of constant intensity centered on the axis of symmetry. The only lines of B flux that encircle any current are those that are inside the toroidal winding. Therefore, from Ampere's circuital law, the intensity of the B field must
656:
Representing the magnetic vector potential (A), magnetic flux (B), and current density (j) fields around a toroidal inductor of circular cross-section. Thicker lines indicate field lines of higher average intensity. Circles in the cross-section of the core represent B flux coming out of the picture.
1407:
field sourced from the primary currents is shown as green ellipses. The secondary winding is shown as a brown line coming directly down the axis of symmetry. In standard practice, the two ends of the secondary are connected with a long wire that stays well away from the torus, but to maintain the
644:
field (magnetic vector potential) is not confined. Arrow #1 in the picture depicts the vector potential on the axis of symmetry. Radial current sections a and b are equal distances from the axis but pointed in opposite directions, so they will cancel. Likewise, segments c and d cancel. All the
230:
Due to the symmetry of a toroid, little magnetic flux escapes from the core (leakage flux). Thus, a toroidal inductor/transformer, radiates less electromagnetic interference (EMI) to adjacent circuits and is an ideal choice for highly concentrated environments. Manufacturers have adopted toroidal
448:
field in the plane of the toroid, as shown in figure 7. This can be mitigated by using a return winding, as shown in Figure 8. With this winding, each place the winding crosses itself; the two parts will be at equal and opposite polarity, which substantially reduces the E field generated in the
1352:{\displaystyle \mathbf {EMF} =\oint _{path}\mathbf {E} \cdot {\rm {d}}l=-\oint _{path}{\frac {\partial \mathbf {A} }{\partial t}}\cdot {\rm {d}}l=-{\frac {\partial }{\partial t}}\oint _{path}\mathbf {A} \cdot {\rm {d}}l=-{\frac {\partial }{\partial t}}\int _{surface}\mathbf {B} \cdot {\rm {d}}s} 1385:
This figure shows the half section of a toroidal transformer. Quasi-static conditions are assumed, so the phase of each field is the same everywhere. The transformer, its windings and all things are distributed symmetrically about the axis of symmetry. The windings are such that there is no
362:
Figure 3 of this section shows the most common toroidal winding. It fails both requirements for total B field confinement. Looking out from the axis, sometimes the winding is on the inside of the core and sometimes on the outside of the core. It is not axially symmetric in the near region.
341:
The absence of circumferential current (the path of circumferential current is indicated by the red arrow in figure 3 of this section) and the axially symmetric layout of the conductors and magnetic materials are sufficient conditions for total internal confinement of the
206:
In general, a toroidal inductor/transformer is more compact than other shaped cores because they are made of fewer materials and include a centering washer, nuts, and bolts resulting in up to a 50% lighter weight design. This is especially the case for power devices.
226:
In addition, because the windings are relatively short and wound in a closed magnetic field, a toroidal transformer will have a lower secondary impedance which will increase efficiency, electrical performance and reduce effects such as distortion and fringing.
1408:
absolute axial symmetry, the entire apparatus is envisioned as being inside a perfectly conductive sphere with the secondary wire "grounded" to the inside of the sphere at each end. The secondary is made of resistance wire, so there is no separate load. The
100:
Although closed-core inductors and transformers often use cores with a rectangular shape, the use of toroidal-shaped cores sometimes provides superior electrical performance. The advantage of the toroidal shape is that, due to its symmetry, the amount of
828:
field around a toroidal inductor. The thicker lines indicate paths of higher average intensity (shorter paths have higher intensity so that the path integral is the same). The lines are just drawn to look good and impart general look of the
1390:
field due to the primary current. The core and primary winding are represented by the gray-brown torus. The primary winding is not shown, but the current in the winding at the cross-section surface is shown as gold (or orange) ellipses. The
222:
coils). This is because most of the magnetic field is contained within the core. By comparison, with an inductor with a straight core, the magnetic field emerging from one end of the core has a long path through air to enter the other end.
322:
Fig. 1. Coordinate system. The Z-axis is the nominal axis of symmetry. The X-axis chosen arbitrarily to line up with the starting point of the winding. ρ is called the radial direction. θ is called the circumferential direction.
973: 627: 751: 794: 1025: 702: 914: 370:
Figures 4-6 show different ways to neutralize the circumferential current. Figure 4 is the simplest and has the advantage that the return wire can be added after the inductor is bought or built.
1051:
is responsible for the undesirable electric field coupling between primary and secondary. Transformer designers attempt to minimize the electric field coupling. For the rest of this section,
1395:
field caused by the primary current is confined to the region enclosed by the primary winding (i.e. the core). Blue dots on the left-hand cross-section indicate that lines of
1073: 1049: 560: 872: 518: 381:
Fig. 4. Circumferential current countered with a return wire. The wire is white and runs between the outer rim of the inductor and the outer portion of the winding.
231:
coils in recent years to comply with increasingly strict international standards limiting the amount of electromagnetic field consumer electronics can produce.
919: 475:. See Feynman page 15-11 for a diagram of the magnetic vector potential around a long thin solenoid which also exhibits total internal confinement of the 167: 1376:
In this figure, blue dots indicate where B flux from the primary current comes out of the picture and plus signs indicate where it goes into the picture.
263: 1767: 1798: 578: 1448: 1367: 707: 2094: 2074: 756: 991: 668: 880: 1723: 1847: 1432:
field (sourced from the secondary currents) forms the Poynting vector, which points from the primary toward the secondary.
1791: 1399:
flux in the core come out of the left-hand cross-section. On the other cross-section, blue plus signs indicate that the
1364:
which says the EMF is equal to the time rate of change of the B flux enclosed by the winding, which is the usual result.
1741: 1700: 1671: 1651: 329: 281: 193: 1368:
Toroidal transformer Poynting vector coupling from primary to secondary in the presence of total B field confinement
175: 428: 2232: 2114: 1964: 1784: 171: 418: 259: 633:
Number 4 will be presumed for the rest of this section and may be referred to the "quasi-static condition".
2023: 1892: 1424:
field from the primary to the secondary, if the secondary is not open-circuited. The cross product of the
110: 1027:
is responsible for the desirable magnetic field coupling between primary and secondary while the quantity
303: 2028: 1912: 1857: 1852: 1420:
field fills space, including inside the transformer core, so in the end, there is a continuous non-zero
354: 2001: 636:
Although the axially symmetric toroidal inductor with no circumferential current totally confines the
1979: 472: 458: 397: 1054: 1030: 2006: 156: 128:, which in turn are used in the vast majority of electrical equipment: TVs, radios, computers, and 1761: 2104: 2011: 1957: 294:
In some circumstances, the current in the winding of a toroidal inductor contributes only to the
160: 71: 2079: 2045: 1952: 1496: 657:
Plus signs on the other cross-section of the core represent B flux going into the picture. Div
538: 387: 210:
Because the toroid is a closed-loop core, it will have a higher magnetic field and thus higher
467:
Showing the development of the magnetic vector potential around a symmetric toroidal inductor.
463: 2062: 2040: 2018: 1907: 1897: 856: 489: 1449:"What Separates Toroidal Coil Transformers From The Other Transformers? | Custom Coils Blog" 652: 377: 1832: 1709: 836: 74: 1412:
field along the secondary causes current in the secondary (yellow arrows), which causes a
8: 2191: 2109: 2099: 2055: 2050: 2035: 1867: 1386:
circumferential current. The requirements are met for full internal confinement of the
1101:
along the secondary winding gives the secondary's induced EMF (Electro-Motive Force).
824:
field around a loop of current. The figure to the left is an artist's depiction of the
2201: 2119: 2089: 2084: 2067: 1922: 1902: 1872: 1372: 1690: 968:{\displaystyle \mathbf {E} =-\nabla \phi -{\frac {\partial \mathbf {A} }{\partial t}}} 309: 1988: 1887: 1737: 1719: 1713: 1696: 1667: 1661: 1647: 318: 116:
Toroidal inductors and transformers are used in a wide range of electronic circuits:
820:
flux (as would be produced in a toroidal inductor) is qualitatively the same as the
2186: 1472: 90: 1641: 440:
There will be a distribution of potential along the winding. This can lead to an
1996: 1947: 1927: 1917: 109:) can be made low, potentially making it more efficient and making it emit less 2155: 2150: 2140: 1862: 1842: 1827: 1079: 432:
Fig. 8. Voltage distribution with return winding. ±100 Volt excitation assumed.
333:
Fig. 2. An axially symmetric toroidal inductor with no circumferential current.
86: 1756: 452: 2226: 2165: 525: 422:
Fig. 7. Simple toroid and the E-field produced. ±100 Volt excitation assumed.
102: 82: 78: 63: 19: 1969: 572: 565: 532: 129: 117: 106: 27: 2135: 1937: 1877: 1807: 59: 43: 837:
Toroidal transformer action in the presence of total B field confinement
2160: 2145: 1837: 211: 622:{\displaystyle {\frac {1}{c^{2}}}{\frac {\partial \phi }{\partial t}}} 401:
Fig. 6. Circumferential current countered with a split return winding.
1776: 125: 145: 2196: 1882: 310:
Sufficient conditions for total internal confinement of the B field
302:
field outside the windings. This is a consequence of symmetry and
254:
provides insufficient context for those unfamiliar with the subject
219: 215: 121: 55: 1732:
Reitz, John R.; Milford, Frederick J.; Christy, Robert W. (1993),
444:-Field in the plane of the toroid and also a susceptibility to an 298:
field inside the windings. It does not contribute to the magnetic
234: 47:
Interior of a linear power supply with toroidal mains transformer.
2206: 1932: 746:{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\mathbf {j} \ } 23:
Medium power toroidal mains transformer with laminated iron core.
391:
Fig. 5. Circumferential current countered with a return winding.
1640:
Feynman, Richard P; Leighton, Robert B; Sands, Matthew (1964),
575:
is used and a non-zero frequency that is low enough to neglect
67: 1822: 1770:
Industrial study material: Ferrite Toroid Transformers Design
789:{\displaystyle {\frac {\partial E}{\partial t}}\rightarrow 0} 975:
and so even if the region outside the windings is devoid of
2211: 1020:{\displaystyle {\frac {\partial \mathbf {A} }{\partial t}}} 453:
Toroidal inductor/transformer and magnetic vector potential
94: 39:
Traditional transformers wound on rectangular-shaped cores.
35: 1416:
field around the secondary (shown as blue ellipses). This
471:
See Feynman chapter 14 and 15 for a general discussion of
2181: 697:{\displaystyle \nabla \times \mathbf {A} =\mathbf {B} \ } 909:{\displaystyle \mathbf {B} =\nabla \times \mathbf {A} .} 218:
than an inductor of the same mass with a straight core (
520:. This would be true under the following assumptions: 1718:, Berkeley Physics Course, vol. II, McGraw-Hill, 796:) have the same form, then the lines and contours of 358:
Fig. 3. Toroidal inductor with circumferential current
1112: 1057: 1033: 994: 922: 883: 859: 759: 710: 671: 581: 541: 492: 409: 1731: 1534: 1075:
will assumed to be zero unless otherwise specified.
1757:Inductor and Transformer Design Guides - Magnetics 1351: 1094:is equal to a constant times the enclosed current 1067: 1043: 1019: 967: 908: 866: 788: 745: 696: 621: 554: 512: 135: 2224: 535:is used and there is no distribution of charge, 77:, consisting of a circular ring or donut shaped 1764:includes formula, but assumes circular windings 1679: 1549: 235:Total B field confinement by toroidal inductors 1608: 1606: 1518: 1516: 1473:"Toroidal Transformers - Agile Magnetics, Inc" 1428:field (sourced from primary currents) and the 1792: 1545: 1543: 1768:Design Considerations of Toroid Transformers 1591: 1579: 1567: 1380: 486:field is accurate when using the assumption 1603: 1513: 174:. Unsourced material may be challenged and 1799: 1785: 1618: 1540: 31:Small toroidal inductors with ferrite core 1659: 1522: 1064: 1040: 863: 551: 282:Learn how and when to remove this message 194:Learn how and when to remove this message 2095:Rotary variable differential transformer 2075:Linear variable differential transformer 1643:The Feynman Lectures on Physics Volume 2 1371: 753:(assuming quasi-static conditions, i.e. 651: 462: 427: 417: 396: 386: 376: 353: 346:field. (Some authors prefer to use the 328: 317: 42: 34: 26: 18: 1708: 1639: 1624: 1612: 1597: 1585: 1573: 1497:"How Does a Toroidal Transformer Work?" 479:field, at least in the infinite limit. 2225: 1806: 1082:applies, so that the path integral of 1780: 1734:Foundations of Electromagnetic Theory 568:is used and zero frequency is assumed 264:providing more context for the reader 1848:Condition monitoring of transformers 1688: 1561: 367:field in the plane of the inductor. 238: 172:adding citations to reliable sources 139: 1943:Toroidal inductors and transformers 874:(scalar electric potential) fields 52:Toroidal inductors and transformers 13: 1762:Approximate inductance of a toroid 1535:Reitz, Milford & Christy (1993 1341: 1294: 1290: 1274: 1236: 1232: 1216: 1202: 1192: 1156: 1058: 1034: 1008: 998: 979:field, it is filled with non-zero 956: 946: 934: 892: 771: 763: 711: 672: 649:field along the axis of symmetry. 610: 602: 410:E field in the plane of the toroid 14: 2244: 1750: 70:(ring or donut) shape. They are 1978: 1332: 1265: 1196: 1147: 1120: 1117: 1114: 1090:flux, just as the path integral 1002: 950: 924: 899: 885: 849:fields can be computed from the 736: 718: 687: 679: 243: 144: 1663:Introduction to Electrodynamics 804:like the lines and contours of 640:field within the windings, the 136:Advantages of toroidal windings 105:that escapes outside the core ( 2115:Variable-frequency transformer 1965:Transformer utilization factor 1555: 1528: 1489: 1465: 1441: 1068:{\displaystyle \nabla \phi \,} 1044:{\displaystyle \nabla \phi \,} 780: 351:be zero outside the windings. 1: 1695:(5th ed.), McGraw-Hill, 1633: 2024:Energy efficient transformer 1692:Engineering Electromagnetics 1550:Halliday & Resnick (1962 812:. Thus, a depiction of the 111:electromagnetic interference 7: 2029:Amorphous metal transformer 1913:Resonant inductive coupling 1853:Electrical insulation paper 10: 2249: 1680:Halliday; Resnick (1962), 456: 2174: 2128: 1987: 1976: 1815: 1715:Electricity and Magnetism 1660:Griffiths, David (1989), 1403:flux enters there. The 1381:Explanation of the figure 1086:is equal to the enclosed 555:{\displaystyle \rho =0\,} 473:magnetic vector potential 459:Magnetic vector potential 16:Type of electrical device 2007:Distribution transformer 1435: 2105:Solid-state transformer 2012:Pad-mounted transformer 1958:Transformer oil testing 1684:, John Wiley & Sons 867:{\displaystyle \phi \,} 816:field around a loop of 513:{\displaystyle bf{A}=0} 2080:Parametric transformer 2046:Instrument transformer 2002:Buck–boost transformer 1953:Dissolved gas analysis 1689:Hayt, William (1989), 1377: 1353: 1069: 1045: 1021: 969: 910: 868: 790: 747: 698: 662: 623: 556: 514: 468: 433: 423: 402: 392: 382: 359: 334: 324: 304:Ampère's circuital law 48: 40: 32: 24: 2233:Electric transformers 2063:Isolation transformer 2041:Grounding transformer 2019:Delta-wye transformer 1898:Pressure relief valve 1588:, p. 15_1-15_16) 1576:, p. 14_1-14_10) 1375: 1354: 1097:The path integral of 1070: 1046: 1022: 970: 911: 869: 791: 748: 699: 661:= 0 has been assumed. 655: 624: 557: 515: 466: 431: 421: 400: 390: 380: 357: 332: 321: 75:electronic components 46: 38: 30: 22: 1477:Agile Magnetics, Inc 1110: 1055: 1031: 992: 920: 881: 857: 757: 708: 669: 665:Since the equations 579: 539: 490: 168:improve this section 2192:Mitsubishi Electric 2110:Trigger transformer 2100:Scott-T transformer 2056:Voltage transformer 2051:Current transformer 2036:Flyback transformer 1868:Induction regulator 260:improve the article 2202:Schneider Electric 2120:Zigzag transformer 2090:Rotary transformer 2085:Planar transformer 2068:Austin transformer 1923:Short-circuit test 1903:Quadrature booster 1873:Leakage inductance 1736:, Addison-Wesley, 1710:Purcell, Edward M. 1646:, Addison-Wesley, 1378: 1349: 1065: 1041: 1017: 965: 906: 864: 786: 743: 694: 663: 619: 552: 510: 469: 434: 424: 403: 393: 383: 360: 335: 325: 89:, iron powder, or 49: 41: 33: 25: 2220: 2219: 1888:Open-circuit test 1725:978-0-07-004859-1 1682:Physics, part two 1666:, Prentice-Hall, 1453:Custom Coils Blog 1301: 1243: 1209: 1015: 963: 778: 742: 693: 617: 597: 438: 437: 407: 406: 339: 338: 292: 291: 284: 204: 203: 196: 85:material such as 2240: 2187:General Electric 1982: 1801: 1794: 1787: 1778: 1777: 1746: 1728: 1705: 1685: 1676: 1656: 1628: 1622: 1616: 1615:, p. 15_15) 1610: 1601: 1600:, p. 15_11) 1595: 1589: 1583: 1577: 1571: 1565: 1559: 1553: 1547: 1538: 1532: 1526: 1520: 1511: 1510: 1508: 1507: 1493: 1487: 1486: 1484: 1483: 1469: 1463: 1462: 1460: 1459: 1445: 1358: 1356: 1355: 1350: 1345: 1344: 1335: 1330: 1329: 1302: 1300: 1289: 1278: 1277: 1268: 1263: 1262: 1244: 1242: 1231: 1220: 1219: 1210: 1208: 1200: 1199: 1190: 1188: 1187: 1160: 1159: 1150: 1145: 1144: 1123: 1074: 1072: 1071: 1066: 1050: 1048: 1047: 1042: 1026: 1024: 1023: 1018: 1016: 1014: 1006: 1005: 996: 974: 972: 971: 966: 964: 962: 954: 953: 944: 927: 915: 913: 912: 907: 902: 888: 873: 871: 870: 865: 795: 793: 792: 787: 779: 777: 769: 761: 752: 750: 749: 744: 740: 739: 734: 733: 721: 703: 701: 700: 695: 691: 690: 682: 628: 626: 625: 620: 618: 616: 608: 600: 598: 596: 595: 583: 561: 559: 558: 553: 519: 517: 516: 511: 503: 414: 413: 373: 372: 314: 313: 287: 280: 276: 273: 267: 247: 246: 239: 199: 192: 188: 185: 179: 148: 140: 2248: 2247: 2243: 2242: 2241: 2239: 2238: 2237: 2223: 2222: 2221: 2216: 2170: 2124: 1997:Autotransformer 1983: 1974: 1948:Transformer oil 1928:Stacking factor 1918:Severity factor 1811: 1805: 1774: 1753: 1744: 1726: 1703: 1674: 1654: 1636: 1631: 1623: 1619: 1611: 1604: 1596: 1592: 1584: 1580: 1572: 1568: 1560: 1556: 1548: 1541: 1533: 1529: 1523:Griffiths (1989 1521: 1514: 1505: 1503: 1495: 1494: 1490: 1481: 1479: 1471: 1470: 1466: 1457: 1455: 1447: 1446: 1442: 1438: 1383: 1370: 1340: 1339: 1331: 1307: 1303: 1293: 1288: 1273: 1272: 1264: 1249: 1245: 1235: 1230: 1215: 1214: 1201: 1195: 1191: 1189: 1174: 1170: 1155: 1154: 1146: 1131: 1127: 1113: 1111: 1108: 1107: 1056: 1053: 1052: 1032: 1029: 1028: 1007: 1001: 997: 995: 993: 990: 989: 955: 949: 945: 943: 923: 921: 918: 917: 898: 884: 882: 879: 878: 858: 855: 854: 839: 770: 762: 760: 758: 755: 754: 735: 729: 725: 717: 709: 706: 705: 686: 678: 670: 667: 666: 609: 601: 599: 591: 587: 582: 580: 577: 576: 540: 537: 536: 499: 491: 488: 487: 461: 455: 412: 312: 288: 277: 271: 268: 257: 248: 244: 237: 200: 189: 183: 180: 165: 149: 138: 93:, around which 17: 12: 11: 5: 2246: 2236: 2235: 2218: 2217: 2215: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2178: 2176: 2172: 2171: 2169: 2168: 2163: 2158: 2156:Repeating coil 2153: 2151:Polyphase coil 2148: 2143: 2141:Induction coil 2138: 2132: 2130: 2126: 2125: 2123: 2122: 2117: 2112: 2107: 2102: 2097: 2092: 2087: 2082: 2077: 2072: 2071: 2070: 2060: 2059: 2058: 2053: 2043: 2038: 2033: 2032: 2031: 2021: 2016: 2015: 2014: 2004: 1999: 1993: 1991: 1985: 1984: 1977: 1975: 1973: 1972: 1967: 1962: 1961: 1960: 1955: 1945: 1940: 1935: 1930: 1925: 1920: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1880: 1875: 1870: 1865: 1863:High-leg delta 1860: 1855: 1850: 1845: 1843:Circle diagram 1840: 1835: 1830: 1828:Buchholz relay 1825: 1819: 1817: 1813: 1812: 1804: 1803: 1796: 1789: 1781: 1772: 1771: 1765: 1759: 1752: 1751:External links 1749: 1748: 1747: 1742: 1729: 1724: 1706: 1701: 1686: 1677: 1672: 1657: 1652: 1635: 1632: 1630: 1629: 1627:, p. 249) 1617: 1602: 1590: 1578: 1566: 1564:, p. 231) 1554: 1552:, p. 859) 1539: 1537:, p. 244) 1527: 1525:, p. 222) 1512: 1488: 1464: 1439: 1437: 1434: 1382: 1379: 1369: 1366: 1362: 1361: 1360: 1359: 1348: 1343: 1338: 1334: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1306: 1299: 1296: 1292: 1287: 1284: 1281: 1276: 1271: 1267: 1261: 1258: 1255: 1252: 1248: 1241: 1238: 1234: 1229: 1226: 1223: 1218: 1213: 1207: 1204: 1198: 1194: 1186: 1183: 1180: 1177: 1173: 1169: 1166: 1163: 1158: 1153: 1149: 1143: 1140: 1137: 1134: 1130: 1126: 1122: 1119: 1116: 1080:Stokes theorem 1077: 1076: 1063: 1060: 1039: 1036: 1013: 1010: 1004: 1000: 985: 984: 961: 958: 952: 948: 942: 939: 936: 933: 930: 926: 905: 901: 897: 894: 891: 887: 862: 838: 835: 785: 782: 776: 773: 768: 765: 738: 732: 728: 724: 720: 716: 713: 689: 685: 681: 677: 674: 631: 630: 615: 612: 607: 604: 594: 590: 586: 569: 562: 550: 547: 544: 529: 509: 506: 502: 498: 495: 457:Main article: 454: 451: 436: 435: 425: 411: 408: 405: 404: 394: 384: 337: 336: 326: 311: 308: 290: 289: 251: 249: 242: 236: 233: 202: 201: 152: 150: 143: 137: 134: 118:power supplies 87:laminated iron 64:magnetic cores 15: 9: 6: 4: 3: 2: 2245: 2234: 2231: 2230: 2228: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2179: 2177: 2175:Manufacturers 2173: 2167: 2166:Trembler coil 2164: 2162: 2159: 2157: 2154: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2133: 2131: 2127: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2069: 2066: 2065: 2064: 2061: 2057: 2054: 2052: 2049: 2048: 2047: 2044: 2042: 2039: 2037: 2034: 2030: 2027: 2026: 2025: 2022: 2020: 2017: 2013: 2010: 2009: 2008: 2005: 2003: 2000: 1998: 1995: 1994: 1992: 1990: 1986: 1981: 1971: 1968: 1966: 1963: 1959: 1956: 1954: 1951: 1950: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1820: 1818: 1814: 1809: 1802: 1797: 1795: 1790: 1788: 1783: 1782: 1779: 1775: 1769: 1766: 1763: 1760: 1758: 1755: 1754: 1745: 1743:0-201-52624-7 1739: 1735: 1730: 1727: 1721: 1717: 1716: 1711: 1707: 1704: 1702:0-07-027406-1 1698: 1694: 1693: 1687: 1683: 1678: 1675: 1673:0-13-481367-7 1669: 1665: 1664: 1658: 1655: 1653:0-201-02117-X 1649: 1645: 1644: 1638: 1637: 1626: 1625:Purcell (1965 1621: 1614: 1613:Feynman (1964 1609: 1607: 1599: 1598:Feynman (1964 1594: 1587: 1586:Feynman (1964 1582: 1575: 1574:Feynman (1964 1570: 1563: 1558: 1551: 1546: 1544: 1536: 1531: 1524: 1519: 1517: 1502: 1498: 1492: 1478: 1474: 1468: 1454: 1450: 1444: 1440: 1433: 1431: 1427: 1423: 1419: 1415: 1411: 1406: 1402: 1398: 1394: 1389: 1374: 1365: 1346: 1336: 1326: 1323: 1320: 1317: 1314: 1311: 1308: 1304: 1297: 1285: 1282: 1279: 1269: 1259: 1256: 1253: 1250: 1246: 1239: 1227: 1224: 1221: 1211: 1205: 1184: 1181: 1178: 1175: 1171: 1167: 1164: 1161: 1151: 1141: 1138: 1135: 1132: 1128: 1124: 1106: 1105: 1104: 1103: 1102: 1100: 1095: 1093: 1089: 1085: 1081: 1061: 1037: 1011: 988:The quantity 987: 986: 982: 978: 959: 940: 937: 931: 928: 903: 895: 889: 877: 876: 875: 860: 852: 848: 844: 834: 832: 827: 823: 819: 815: 811: 807: 803: 799: 783: 774: 766: 730: 726: 722: 714: 683: 675: 660: 654: 650: 648: 643: 639: 634: 613: 605: 592: 588: 584: 574: 570: 567: 563: 548: 545: 542: 534: 530: 527: 526:Coulomb gauge 523: 522: 521: 507: 504: 500: 496: 493: 485: 480: 478: 474: 465: 460: 450: 447: 443: 430: 426: 420: 416: 415: 399: 395: 389: 385: 379: 375: 374: 371: 368: 366: 356: 352: 349: 345: 331: 327: 320: 316: 315: 307: 305: 301: 297: 286: 283: 275: 265: 261: 255: 252:This article 250: 241: 240: 232: 228: 224: 221: 217: 213: 208: 198: 195: 187: 184:November 2016 177: 173: 169: 163: 162: 158: 153:This section 151: 147: 142: 141: 133: 131: 130:audio systems 127: 123: 119: 114: 112: 108: 104: 103:magnetic flux 98: 96: 92: 88: 84: 83:ferromagnetic 80: 79:magnetic core 76: 73: 69: 65: 61: 57: 53: 45: 37: 29: 21: 1970:Vector group 1942: 1773: 1733: 1714: 1691: 1681: 1662: 1642: 1620: 1593: 1581: 1569: 1557: 1530: 1504:. Retrieved 1500: 1491: 1480:. Retrieved 1476: 1467: 1456:. Retrieved 1452: 1443: 1429: 1425: 1421: 1417: 1413: 1409: 1404: 1400: 1396: 1392: 1387: 1384: 1363: 1098: 1096: 1091: 1087: 1083: 1078: 980: 976: 850: 846: 842: 840: 830: 825: 821: 817: 813: 809: 805: 801: 797: 664: 658: 646: 641: 637: 635: 632: 573:Lorenz gauge 566:Lorenz gauge 533:Lorenz gauge 483: 481: 476: 470: 445: 441: 439: 369: 364: 361: 347: 343: 340: 299: 295: 293: 278: 269: 258:Please help 253: 229: 225: 209: 205: 190: 181: 166:Please help 154: 115: 107:leakage flux 99: 60:transformers 51: 50: 2136:Hybrid coil 1938:Tap changer 1878:Magnet wire 1808:Transformer 916:and  : 629:is assumed. 2161:Tesla coil 2146:Oudin coil 1838:Center tap 1634:References 1562:Hayt (1989 1506:2018-04-03 1482:2018-04-03 1458:2018-04-03 808:relate to 800:relate to 212:inductance 126:amplifiers 97:is wound. 62:which use 1501:Sciencing 1337:⋅ 1305:∫ 1295:∂ 1291:∂ 1286:− 1270:⋅ 1247:∮ 1237:∂ 1233:∂ 1228:− 1212:⋅ 1203:∂ 1193:∂ 1172:∮ 1168:− 1152:⋅ 1129:∮ 1062:ϕ 1059:∇ 1038:ϕ 1035:∇ 1009:∂ 999:∂ 957:∂ 947:∂ 941:− 938:ϕ 935:∇ 932:− 896:× 893:∇ 861:ϕ 781:→ 772:∂ 764:∂ 727:μ 715:× 712:∇ 704:, and 676:× 673:∇ 611:∂ 606:ϕ 603:∂ 543:ρ 272:June 2019 155:does not 122:inverters 56:inductors 2227:Category 2197:ProlecGE 1908:Resolver 1893:Polarity 1883:Metadyne 1712:(1965), 220:solenoid 216:Q factor 113:(EMI). 68:toroidal 2207:Siemens 1933:Synchro 1858:Growler 1833:Bushing 833:field. 571:4. the 564:3. the 531:2. the 528:is used 524:1. the 449:plane. 176:removed 161:sources 91:ferrite 72:passive 66:with a 1816:Topics 1810:topics 1740:  1722:  1699:  1670:  1650:  983:field. 741:  692:  124:, and 2129:Coils 1989:Types 1823:Balun 1436:Notes 2212:TBEA 1738:ISBN 1720:ISBN 1697:ISBN 1668:ISBN 1648:ISBN 853:and 845:and 841:The 482:The 214:and 159:any 157:cite 95:wire 58:and 54:are 2182:ABB 262:by 170:by 81:of 2229:: 1605:^ 1542:^ 1515:^ 1499:. 1475:. 1451:. 306:. 132:. 120:, 1800:e 1793:t 1786:v 1509:. 1485:. 1461:. 1430:B 1426:E 1422:B 1418:B 1414:B 1410:E 1405:E 1401:B 1397:B 1393:B 1388:B 1347:s 1342:d 1333:B 1327:e 1324:c 1321:a 1318:f 1315:r 1312:u 1309:s 1298:t 1283:= 1280:l 1275:d 1266:A 1260:h 1257:t 1254:a 1251:p 1240:t 1225:= 1222:l 1217:d 1206:t 1197:A 1185:h 1182:t 1179:a 1176:p 1165:= 1162:l 1157:d 1148:E 1142:h 1139:t 1136:a 1133:p 1125:= 1121:F 1118:M 1115:E 1099:E 1092:B 1088:B 1084:A 1012:t 1003:A 981:E 977:B 960:t 951:A 929:= 925:E 904:. 900:A 890:= 886:B 851:A 847:B 843:E 831:A 826:A 822:B 818:B 814:A 810:j 806:B 802:B 798:A 784:0 775:t 767:E 737:j 731:0 723:= 719:B 688:B 684:= 680:A 659:A 647:A 642:A 638:B 614:t 593:2 589:c 585:1 549:0 546:= 508:0 505:= 501:A 497:f 494:b 484:A 477:B 446:E 442:E 365:E 348:H 344:B 300:B 296:B 285:) 279:( 274:) 270:( 266:. 256:. 197:) 191:( 186:) 182:( 178:. 164:.

Index





inductors
transformers
magnetic cores
toroidal
passive
electronic components
magnetic core
ferromagnetic
laminated iron
ferrite
wire
magnetic flux
leakage flux
electromagnetic interference
power supplies
inverters
amplifiers
audio systems

cite
sources
improve this section
adding citations to reliable sources
removed
Learn how and when to remove this message
inductance

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.