Knowledge

Thermal oxidation

Source đź“ť

20: 556:
vertically in the tube the convection and the temperature gradient with it causes the top of the wafer to have a thicker oxide than the bottom of the wafer. Vertical furnaces solve this problem by having wafer sitting horizontally, and then having the gas flow in the furnace flowing from top to bottom, significantly damping any thermal convections.
640:, which blocks diffusion of oxygen and water vapor due to its oxidation at a much slower rate. The nitride is removed after oxidation is complete. This process cannot produce sharp features, because lateral (parallel to the surface) diffusion of oxidant molecules under the nitride mask causes the oxide to protrude into the masked area. 543:
rack (called a "boat"). Historically, the boat entered the oxidation chamber from the side (this design is called "horizontal"), and held the wafers vertically, beside each other. However, many modern designs hold the wafers horizontally, above and below each other, and load them into the oxidation
266:
Thermal oxide incorporates silicon consumed from the substrate and oxygen supplied from the ambient. Thus, it grows both down into the wafer and up out of it. For every unit thickness of silicon consumed, 2.17 unit thicknesses of oxide will appear. If a bare silicon surface is oxidized, 46% of the
555:
Vertical furnaces also eliminate an issue that plagued horizontal furnaces: non-uniformity of grown oxide across the wafer. Horizontal furnaces typically have convection currents inside the tube which causes the bottom of the tube to be slightly colder than the top of the tube. As the wafers lie
393:
that already contains oxide is placed in an oxidizing ambient, this equation must be modified by adding a corrective term Ď„, the time that would have been required to grow the pre-existing oxide under current conditions. This term may be found using the equation for
817:
J. Appels, E. Kooi, M. M. Paffen, J. J. H. Schatorje, and W. H. C. G. Verkuylen, “Local oxidation of silicon and its application in semiconductor-device technology,” PHILIPS RESEARCH Reports, vol. 25, no. 2, pp. 118–132, Apr.
373: 193: 551:
contamination. Unlike horizontal furnaces, in which falling dust can contaminate any wafer, vertical furnaces use enclosed cabinets with air filtration systems to prevent dust from reaching the wafers.
254: 632:
Thermal oxidation can be performed on selected areas of a wafer, and blocked on others. This process, first developed at Philips, is commonly referred to as the local oxidation of silicon (
827:
A. Kuiper, M. Willemsen, J. M. G. Bax, and F. H. P. H. Habraken, “Oxidation behaviour of LPCVD silicon oxynitride films,” Applied Surface Science, vol. 33, no. 34, pp. 757–764, Oct. 1988.
586:
The long time required to grow a thick oxide in dry oxidation makes this process impractical. Thick oxides are usually grown with a long wet oxidation bracketed by short dry ones (a
525: 681:
processes, thermal oxidation is never performed after the doping for the source and drain terminals is performed, because it would disturb the placement of the dopants.
51:. The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The rate of oxide growth is often predicted by the 559:
Vertical furnaces also allow the use of load locks to purge the wafers with nitrogen before oxidation to limit the growth of native oxide on the Si surface.
84: 24: 590:
cycle). The beginning and ending dry oxidations produce films of high-quality oxide at the outer and inner surfaces of the oxide layer, respectively.
378:
where the constants A and B relate to properties of the reaction and the oxide layer, respectively. This model has further been adapted to account for
298: 677:
at about 600 Â°C). However, the high temperatures required to produce High Temperature Oxide (HTO) restrict its usability. For instance, in
651:. This redistribution is governed by the segregation coefficient, which determines how strongly the oxide absorbs or rejects the dopant, and the 748: 567:
Wet oxidation is preferred to dry oxidation for growing thick oxides, because of the higher growth rate. However, fast oxidation leaves more
547:
Because vertical furnaces stand higher than horizontal furnaces, they may not fit into some microfabrication facilities. They help to prevent
779: 575:
for electrons and allow current to leak along the interface. (This is called a "dirty" interface.) Wet oxidation also yields a lower-
105: 539:, at temperatures between 800 and 1200 Â°C. A single furnace accepts many wafers at the same time, in a specially designed 853: 199: 885: 414: 869:
Online calculator including deal grove and massoud oxidation models, with pressure and doping effects at:
55:. Thermal oxidation may be applied to different materials, but most commonly involves the oxidation of 666:) oxidizes more slowly than a <111> wafer, but produces an electrically cleaner oxide interface. 669:
Thermal oxidation of any variety produces a higher-quality oxide, with a much cleaner interface, than
755: 670: 910: 900: 674: 890: 390: 19: 707:"Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires" 52: 8: 580: 48: 870: 71:
Thermal oxidation of silicon is usually performed at a temperature between 800 and 1200
895: 718: 536: 849: 773: 647:
differently in silicon and oxide, a growing oxide will selectively take up or reject
621: 617: 260: 915: 905: 728: 652: 383: 276: 32: 637: 613: 60: 44: 793: 733: 706: 663: 368:{\displaystyle \tau ={\frac {X_{o}^{2}}{B}}+{\frac {X_{o}}{({\frac {B}{A}})}}} 879: 845: 624:
to the oxidizing medium. Its presence also increases the rate of oxidation.
572: 568: 382:
oxidation processes, as used for the fabrication and morphological design of
636:) process. Areas which are not to be oxidized are covered with a film of 263:(HCl). The chlorine neutralizes metal ions that may occur in the oxide. 80: 267:
oxide thickness will lie below the original surface, and 54% above it.
644: 723: 609: 659: 576: 188:{\displaystyle {\rm {Si+2H_{2}O\rightarrow SiO_{2}+2H_{2\ (g)}}}} 72: 56: 678: 673:
of oxide resulting in low temperature oxide layer (reaction of
648: 605: 601: 540: 88: 633: 594: 40: 292:, at a constant temperature, on a bare silicon surface, is: 840:
Jaeger, Richard C. (2001). "Thermal Oxidation of Silicon".
548: 281:
According to the commonly used Deal-Grove model, the time
259:
The oxidizing ambient may also contain several percent of
16:
Process creating a thin layer of (usually) silicon dioxide
597: 798:
University of Kentucky Center for Nanoscale Engineering
871:
http://www.lelandstanfordjunior.com/thermaloxide.html
417: 301: 249:{\displaystyle {\rm {Si+O_{2}\rightarrow SiO_{2}\,}}} 202: 108: 23:
Furnaces used for diffusion and thermal oxidation at
519: 367: 248: 187: 99:oxidation. The reaction is one of the following: 91:as the oxidant; it is consequently called either 877: 662:affects oxidation. A <100> wafer (see 842:Introduction to Microelectronic Fabrication 27:technological facility in Toulouse, France. 616:. Chlorine is often introduced by adding 732: 722: 711:Theoretical and Applied Mechanics Letters 243: 571:at the silicon interface, which produce 66: 18: 535:Most thermal oxidation is performed in 530: 520:{\displaystyle X_{o}(t)=A/2\cdot \left} 285:required to grow an oxide of thickness 878: 839: 778:: CS1 maint: archived copy as title ( 700: 698: 608:is of particular concern). However, 39:is a way to produce a thin layer of 704: 401:Solving the quadratic equation for 270: 13: 695: 234: 230: 227: 215: 208: 205: 175: 162: 146: 142: 139: 133: 124: 114: 111: 14: 927: 863: 612:can immobilize sodium by forming 562: 658:The orientation of the silicon 79:layer (HTO). It may use either 821: 811: 786: 741: 627: 501: 489: 434: 428: 359: 346: 224: 178: 172: 136: 1: 705:Liu, M.; et al. (2016). 684: 7: 600:can degrade performance of 10: 934: 734:10.1016/j.taml.2016.08.002 386:and other nanostructures. 274: 671:chemical vapor deposition 75:, resulting in so called 886:Semiconductor technology 844:. Upper Saddle River: 521: 369: 250: 189: 77:High Temperature Oxide 59:substrates to produce 47:) on the surface of a 28: 522: 370: 251: 190: 67:The chemical reaction 22: 544:chamber from below. 531:Oxidation technology 415: 299: 200: 106: 643:Because impurities 581:dielectric strength 324: 579:oxide, with lower 517: 365: 310: 246: 185: 29: 855:978-0-201-44494-0 622:trichloroethylene 618:hydrogen chloride 504: 487: 363: 357: 328: 261:hydrochloric acid 171: 37:thermal oxidation 923: 859: 828: 825: 819: 815: 809: 808: 806: 804: 790: 784: 783: 777: 769: 767: 766: 760: 754:. Archived from 753: 745: 739: 738: 736: 726: 702: 526: 524: 523: 518: 516: 512: 505: 488: 486: 485: 476: 468: 460: 447: 427: 426: 374: 372: 371: 366: 364: 362: 358: 350: 344: 343: 334: 329: 323: 318: 309: 277:Deal-Grove model 271:Deal-Grove model 255: 253: 252: 247: 245: 244: 242: 241: 223: 222: 194: 192: 191: 186: 184: 183: 182: 181: 169: 154: 153: 132: 131: 53:Deal–Grove model 33:microfabrication 933: 932: 926: 925: 924: 922: 921: 920: 911:Nanoelectronics 901:Microtechnology 876: 875: 866: 856: 831: 826: 822: 816: 812: 802: 800: 792: 791: 787: 771: 770: 764: 762: 758: 751: 749:"Archived copy" 747: 746: 742: 703: 696: 687: 638:silicon nitride 630: 614:sodium chloride 565: 533: 481: 477: 469: 467: 459: 458: 454: 443: 422: 418: 416: 413: 412: 406: 349: 345: 339: 335: 333: 319: 314: 308: 300: 297: 296: 290: 279: 273: 237: 233: 218: 214: 204: 203: 201: 198: 197: 165: 161: 149: 145: 127: 123: 110: 109: 107: 104: 103: 87:) or molecular 69: 61:silicon dioxide 45:silicon dioxide 17: 12: 11: 5: 931: 930: 919: 918: 913: 908: 903: 898: 893: 888: 874: 873: 865: 864:External links 862: 861: 860: 854: 836: 835: 830: 829: 820: 810: 785: 740: 717:(5): 195–199. 693: 692: 691: 686: 683: 664:Miller indices 629: 626: 573:quantum states 569:dangling bonds 564: 561: 532: 529: 528: 527: 515: 511: 508: 503: 500: 497: 494: 491: 484: 480: 475: 472: 466: 463: 457: 453: 450: 446: 442: 439: 436: 433: 430: 425: 421: 404: 376: 375: 361: 356: 353: 348: 342: 338: 332: 327: 322: 317: 313: 307: 304: 288: 275:Main article: 272: 269: 257: 256: 240: 236: 232: 229: 226: 221: 217: 213: 210: 207: 195: 180: 177: 174: 168: 164: 160: 157: 152: 148: 144: 141: 138: 135: 130: 126: 122: 119: 116: 113: 68: 65: 15: 9: 6: 4: 3: 2: 929: 928: 917: 914: 912: 909: 907: 904: 902: 899: 897: 894: 892: 891:Nanomaterials 889: 887: 884: 883: 881: 872: 868: 867: 857: 851: 847: 846:Prentice Hall 843: 838: 837: 833: 832: 824: 814: 799: 795: 789: 781: 775: 761:on 2015-01-21 757: 750: 744: 735: 730: 725: 720: 716: 712: 708: 701: 699: 694: 689: 688: 682: 680: 676: 672: 667: 665: 661: 656: 654: 650: 646: 641: 639: 635: 625: 623: 619: 615: 611: 607: 603: 599: 596: 591: 589: 584: 582: 578: 574: 570: 563:Oxide quality 560: 557: 553: 550: 545: 542: 538: 513: 509: 506: 498: 495: 492: 482: 478: 473: 470: 464: 461: 455: 451: 448: 444: 440: 437: 431: 423: 419: 411: 410: 409: 407: 399: 397: 392: 387: 385: 381: 380:self-limiting 354: 351: 340: 336: 330: 325: 320: 315: 311: 305: 302: 295: 294: 293: 291: 284: 278: 268: 264: 262: 238: 219: 211: 196: 166: 158: 155: 150: 128: 120: 117: 102: 101: 100: 98: 94: 90: 86: 82: 78: 74: 64: 62: 58: 54: 50: 46: 42: 38: 34: 26: 21: 841: 823: 813: 801:. Retrieved 797: 788: 763:. Retrieved 756:the original 743: 714: 710: 668: 657: 642: 631: 592: 587: 585: 566: 558: 554: 546: 534: 402: 400: 395: 388: 384:Si nanowires 379: 377: 286: 282: 280: 265: 258: 96: 92: 76: 70: 36: 30: 653:diffusivity 628:Other notes 588:dry-wet-dry 81:water vapor 880:Categories 794:"Furnaces" 765:2013-07-07 724:1911.08908 685:References 896:Materials 507:− 499:τ 452:⋅ 303:τ 225:→ 137:→ 85:UHP steam 83:(usually 43:(usually 774:cite web 645:dissolve 610:chlorine 537:furnaces 408:yields: 916:Silicon 906:MOSFETs 834:Sources 660:crystal 649:dopants 602:MOSFETs 593:Mobile 577:density 398:above. 57:silicon 852:  679:MOSFET 606:sodium 541:quartz 170:  89:oxygen 818:1970. 803:7 May 759:(PDF) 752:(PDF) 719:arXiv 690:Notes 634:LOCOS 595:metal 391:wafer 389:If a 49:wafer 41:oxide 850:ISBN 805:2023 780:link 675:TEOS 598:ions 549:dust 25:LAAS 729:doi 620:or 97:dry 95:or 93:wet 31:In 882:: 848:. 796:. 776:}} 772:{{ 727:. 713:. 709:. 697:^ 655:. 583:. 73:°C 63:. 35:, 858:. 807:. 782:) 768:. 737:. 731:: 721:: 715:6 604:( 514:] 510:1 502:) 496:+ 493:t 490:( 483:2 479:A 474:B 471:4 465:+ 462:1 456:[ 449:2 445:/ 441:A 438:= 435:) 432:t 429:( 424:o 420:X 405:o 403:X 396:t 360:) 355:A 352:B 347:( 341:o 337:X 331:+ 326:B 321:2 316:o 312:X 306:= 289:o 287:X 283:Ď„ 239:2 235:O 231:i 228:S 220:2 216:O 212:+ 209:i 206:S 179:) 176:g 173:( 167:2 163:H 159:2 156:+ 151:2 147:O 143:i 140:S 134:O 129:2 125:H 121:2 118:+ 115:i 112:S

Index


LAAS
microfabrication
oxide
silicon dioxide
wafer
Deal–Grove model
silicon
silicon dioxide
°C
water vapor
UHP steam
oxygen
hydrochloric acid
Deal-Grove model
Si nanowires
wafer
furnaces
quartz
dust
dangling bonds
quantum states
density
dielectric strength
metal
ions
MOSFETs
sodium
chlorine
sodium chloride

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑