Knowledge

Tate–Shafarevich group

Source 📝

697:
is a square whenever it is finite; this mistake originated in a paper by Swinnerton-Dyer, who misquoted one of the results of Tate. Poonen and Stoll gave some examples where the order is twice a square, such as the Jacobian of a certain genus 2 curve over the rationals whose Tate–Shafarevich group
402: 647:
and the pairing is an alternating form. The kernel of this form is the subgroup of divisible elements, which is trivial if the Tate–Shafarevich conjecture is true. Tate extended the pairing to general abelian varieties, as a variation of
706:
is a square or twice a square (if it is finite), and if in addition the principal polarization comes from a rational divisor (as is the case for elliptic curves) then the form is alternating and the order of
267: 132: 203: 698:
has order 2, and Stein gave some examples where the power of an odd prime dividing the order is odd. If the abelian variety has a principal polarization then the form on
598: 1061: 1137: 758:
is finite in Konstantinous' examples and these examples confirm a conjecture of Stein. Thus modulo squares any integer can be the order of
693:
is finite then it is a square. For more general abelian varieties it was sometimes incorrectly believed for many years that the order of
397:{\displaystyle \bigcap _{v}\mathrm {ker} \left(H^{1}\left(G_{K},A\right)\rightarrow H^{1}\left(G_{K_{v}},A_{v}\right)\right).} 1186: 1157: 1120: 886: 771: 548:
The special case of the Tate–Shafarevich group for the finite group scheme consisting of points of some given finite order
711:
is a square (if it is finite). On the other hand building on the results just presented Konstantinous showed that for any
60: 463:
Geometrically, the non-trivial elements of the Tate–Shafarevich group can be thought of as the homogeneous spaces of
137: 586: 1019:
Cassels, John William Scott (1962), "Arithmetic on curves of genus 1. III. The Tate–Šafarevič and Selmer groups",
574:. Victor A. Kolyvagin extended this to modular elliptic curves over the rationals of analytic rank at most 1 (The 1560: 1531: 1225: 689:
For an elliptic curve, Cassels showed that the pairing is alternating, and a consequence is that if the order of
925: 1344:
Rubin, Karl (1987), "Tate–Shafarevich groups and L-functions of elliptic curves with complex multiplication",
1178: 1604:
Konstantinous, Alexandros (2024-04-25). "A note on the order of the Tate-Shafarevich group modulo squares".
1629: 1104: 55: 1527: 1506: 1220: 412: 1346: 1288:
Poonen, Bjorn; Stoll, Michael (1999), "The Cassels-Tate pairing on polarized abelian varieties",
513:. Carl-Erik Lind gave an example of such a homogeneous space, by showing that the genus 1 curve 1634: 571: 686:, but unlike the case of elliptic curves this need not be alternating or even skew symmetric. 1290: 1056: 206: 1597: 1543: 1520: 1515:, Séminaire Bourbaki; 10e année: 1957/1958, vol. 13, Paris: Secrétariat Mathématique, 1499: 1475: 1451: 1423: 1383: 1355: 1337: 1280: 1262: 1130: 1090: 1048: 529:-adic fields, but has no rational points. Ernst S. Selmer gave many more examples, such as 8: 1272:
Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins
1195:
Kolyvagin, V. A. (1988), "Finiteness of E(Q) and SH(E,Q) for a subclass of Weil curves",
1141: 483: 237: 17: 1359: 1605: 1585: 1510: 1325: 1299: 1250: 575: 1577: 1439: 1430:
Shafarevich, I. R. (1959), "The group of principal homogeneous algebraic manifolds",
1411: 1371: 1317: 1242: 1204: 1182: 1170: 1153: 1116: 1078: 1036: 919: 882: 246: 1470:, Progr. Math., vol. 224, Basel, Boston, Berlin: Birkhäuser, pp. 277–289, 1569: 1460: 1401: 1392: 1363: 1309: 1234: 1108: 1070: 1028: 872: 420: 416: 1483: 566:
The Tate–Shafarevich conjecture states that the Tate–Shafarevich group is finite.
1593: 1539: 1516: 1495: 1491: 1471: 1447: 1419: 1379: 1333: 1276: 1270: 1258: 1166: 1149: 1126: 1098: 1086: 1044: 909:"THE SELMER GROUP, THE SHAFAREVICH-TATE GROUP, AND THE WEAK MORDELL-WEIL THEOREM" 504: 36: 1032: 632: 479: 444: 908: 864: 1623: 1581: 1536:
Proceedings of the International Congress of Mathematicians (Stockholm, 1962)
1443: 1415: 1375: 1321: 1246: 1208: 1112: 1082: 1074: 1040: 582: 1555: 649: 555: 222: 45: 1589: 1406: 1367: 1254: 1216: 877: 712: 567: 408: 1547: 1329: 236:
by completing with respect to all its Archimedean and non Archimedean
1304: 1573: 1238: 507:
fails to hold for rational equations with coefficients in the field
1610: 1390:
Selmer, Ernst S. (1951), "The Diophantine equation ax³+by³+cz³=0",
1313: 503:-rational point. Thus, the group measures the extent to which the 440: 1148:, Graduate Texts in Mathematics, vol. 201, Berlin, New York: 1057:"Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung" 585:, thus the conjecture is equivalent to stating that the group is 1223:(1958), "Principal homogeneous spaces over abelian varieties", 1169:(1994), "Iwasawa Theory and p-adic Deformation of Motives", in 871:, vol. 1479, Springer Berlin Heidelberg, pp. 94–121, 1488:
Proceedings of a Conference on Local Fields (Driebergen, 1966)
570:
proved this for some elliptic curves of rank at most 1 with
1484:"The conjectures of Birch and Swinnerton-Dyer, and of Tate" 1103:, London Mathematical Society Student Texts, vol. 24, 959: 578:
later showed that the modularity assumption always holds).
1532:"Duality theorems in Galois cohomology over number fields" 995: 458: 1455:
English translation in his collected mathematical papers
1275:(Thesis). Vol. 1940. University of Uppsala. 97 pp. 971: 221:(i.e., the real and complex completions as well as the 1558:(1955), "On algebraic groups and homogeneous spaces", 796: 1538:, Djursholm: Inst. Mittag-Leffler, pp. 288–295, 1197:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
270: 140: 63: 844: 949: 947: 784: 215:, that become trivial in all of the completions of 932: 702:is skew symmetric which implies that the order of 396: 197: 126: 983: 820: 581:It is known that the Tate–Shafarevich group is a 447:", for Shafarevich, replacing the older notation 127:{\displaystyle \mathrm {WC} (A/K)=H^{1}(G_{K},A)} 1621: 944: 832: 554:of an abelian variety is closely related to the 1481: 1136: 1062:Journal für die reine und angewandte Mathematik 965: 808: 198:{\displaystyle G_{K}=\mathrm {Gal} (K^{alg}/K)} 1021:Proceedings of the London Mathematical Society 561: 1603: 1001: 865:"On the structure of shafarevich-tate groups" 1461:"Shafarevich–Tate groups of nonsquare order" 1429: 1287: 1173:; Jannsen, Uwe; Kleiman, Steven L. (eds.), 977: 802: 523:has solutions over the reals and over all 1609: 1405: 1303: 1194: 1165: 876: 862: 850: 631:is its dual. Cassels introduced this for 1215: 1054: 790: 1096: 1018: 938: 592: 1622: 1389: 906: 826: 668:, which induces a bilinear pairing on 459:Elements of the Tate–Shafarevich group 1458: 1343: 1146:Diophantine geometry: an introduction 1055:Cassels, John William Scott (1962b), 989: 838: 1554: 1526: 1505: 1468:Modular curves and abelian varieties 1268: 1097:Cassels, John William Scott (1991), 953: 814: 772:Birch and Swinnerton-Dyer conjecture 13: 288: 285: 282: 161: 158: 155: 68: 65: 14: 1646: 54:consists of the elements of the 1561:American Journal of Mathematics 1486:, in Springer, Tonny A. (ed.), 1226:American Journal of Mathematics 900: 856: 652:. A choice of polarization on 597:The Cassels–Tate pairing is a 333: 192: 165: 121: 102: 86: 72: 48:) defined over a number field 1: 1179:American Mathematical Society 1011: 407:This group was introduced by 1512:WC-groups over p-adic fields 1482:Swinnerton-Dyer, P. (1967), 907:Poonen, Bjorn (2024-09-01). 777: 721:there is an abelian variety 7: 1100:Lectures on elliptic curves 765: 562:Tate-Shafarevich conjecture 10: 1651: 1459:Stein, William A. (2004), 1432:Doklady Akademii Nauk SSSR 1105:Cambridge University Press 924:: CS1 maint: url-status ( 625:is an abelian variety and 863:Kolyvagin, V. A. (1991), 1347:Inventiones Mathematicae 1269:Lind, Carl-Erik (1940). 1113:10.1017/CBO9781139172530 1075:10.1515/crll.1962.211.95 1033:10.1112/plms/s3-12.1.259 423:introduced the notation 1203:(3): 522–540, 670–671, 978:Poonen & Stoll 1999 641:can be identified with 572:complex multiplication 398: 199: 128: 22:Tate–Shafarevich group 1291:Annals of Mathematics 749: ⋅  399: 245:). Thus, in terms of 207:absolute Galois group 200: 129: 44:(or more generally a 1494:, pp. 132–157, 1490:, Berlin, New York: 1177:, Providence, R.I.: 1142:Silverman, Joseph H. 966:Swinnerton-Dyer 1967 791:Lang & Tate 1958 593:Cassels–Tate pairing 268: 138: 61: 1360:1987InMat..89..527R 56:Weil–Châtelet group 18:arithmetic geometry 1630:Algebraic geometry 1407:10.1007/BF02395746 1368:10.1007/BF01388984 1171:Serre, Jean-Pierre 1002:Konstantinous 2024 878:10.1007/bfb0086267 869:Algebraic Geometry 587:finitely generated 576:modularity theorem 394: 280: 261:can be defined as 195: 124: 1294:, Second Series, 1188:978-0-8218-1637-0 1159:978-0-387-98981-5 1122:978-0-521-41517-0 888:978-3-540-54456-2 656:gives a map from 271: 247:Galois cohomology 1642: 1615: 1613: 1600: 1551: 1546:, archived from 1523: 1502: 1478: 1465: 1454: 1426: 1409: 1393:Acta Mathematica 1386: 1340: 1307: 1298:(3): 1109–1149, 1284: 1265: 1212: 1191: 1167:Greenberg, Ralph 1162: 1133: 1093: 1051: 1023:, Third Series, 1005: 999: 993: 987: 981: 975: 969: 963: 957: 951: 942: 936: 930: 929: 923: 915: 913: 904: 898: 897: 896: 895: 880: 860: 854: 848: 842: 836: 830: 824: 818: 812: 806: 803:Shafarevich 1959 800: 794: 788: 761: 757: 754:. In particular 753: 744: 738: 732: 726: 720: 710: 705: 701: 696: 692: 685: 675: 667: 661: 646: 640: 630: 624: 618: 599:bilinear pairing 553: 544: 528: 522: 512: 502: 496: 490: 477: 468: 454: 450: 438: 434: 417:Igor Shafarevich 403: 401: 400: 395: 390: 386: 385: 381: 380: 379: 367: 366: 365: 364: 345: 344: 332: 328: 321: 320: 306: 305: 291: 279: 260: 244: 235: 227: 220: 214: 204: 202: 201: 196: 188: 183: 182: 164: 150: 149: 133: 131: 130: 125: 114: 113: 101: 100: 82: 71: 53: 43: 34: 1650: 1649: 1645: 1644: 1643: 1641: 1640: 1639: 1620: 1619: 1618: 1574:10.2307/2372637 1492:Springer-Verlag 1463: 1239:10.2307/2372778 1189: 1160: 1150:Springer-Verlag 1123: 1069:(211): 95–112, 1014: 1009: 1008: 1000: 996: 988: 984: 976: 972: 964: 960: 952: 945: 937: 933: 917: 916: 911: 905: 901: 893: 891: 889: 861: 857: 849: 845: 837: 833: 825: 821: 813: 809: 801: 797: 789: 785: 780: 768: 759: 755: 742: 740: 734: 733:and an integer 728: 722: 716: 708: 703: 699: 694: 690: 677: 676:with values in 669: 663: 657: 642: 636: 633:elliptic curves 626: 620: 601: 595: 564: 549: 530: 524: 514: 508: 505:Hasse principle 498: 492: 486: 480:rational points 475: 470: 464: 461: 452: 448: 436: 424: 375: 371: 360: 356: 355: 351: 350: 346: 340: 336: 316: 312: 311: 307: 301: 297: 296: 292: 281: 275: 269: 266: 265: 250: 240: 231: 223: 216: 210: 184: 172: 168: 154: 145: 141: 139: 136: 135: 109: 105: 96: 92: 78: 64: 62: 59: 58: 49: 39: 37:abelian variety 24: 12: 11: 5: 1648: 1638: 1637: 1632: 1617: 1616: 1601: 1568:(3): 493–512, 1552: 1524: 1503: 1479: 1456: 1434:(in Russian), 1427: 1387: 1354:(3): 527–559, 1341: 1314:10.2307/121064 1285: 1266: 1233:(3): 659–684, 1213: 1192: 1187: 1163: 1158: 1134: 1121: 1094: 1052: 1015: 1013: 1010: 1007: 1006: 994: 982: 970: 958: 943: 931: 899: 887: 855: 851:Kolyvagin 1988 843: 831: 819: 807: 795: 782: 781: 779: 776: 775: 774: 767: 764: 594: 591: 563: 560: 473: 460: 457: 405: 404: 393: 389: 384: 378: 374: 370: 363: 359: 354: 349: 343: 339: 335: 331: 327: 324: 319: 315: 310: 304: 300: 295: 290: 287: 284: 278: 274: 230:obtained from 194: 191: 187: 181: 178: 175: 171: 167: 163: 160: 157: 153: 148: 144: 123: 120: 117: 112: 108: 104: 99: 95: 91: 88: 85: 81: 77: 74: 70: 67: 9: 6: 4: 3: 2: 1647: 1636: 1635:Number theory 1633: 1631: 1628: 1627: 1625: 1612: 1607: 1602: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1562: 1557: 1553: 1550:on 2011-07-17 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1522: 1518: 1514: 1513: 1508: 1504: 1501: 1497: 1493: 1489: 1485: 1480: 1477: 1473: 1469: 1462: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1428: 1425: 1421: 1417: 1413: 1408: 1403: 1399: 1395: 1394: 1388: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1348: 1342: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1306: 1301: 1297: 1293: 1292: 1286: 1282: 1278: 1274: 1273: 1267: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1227: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1193: 1190: 1184: 1180: 1176: 1172: 1168: 1164: 1161: 1155: 1151: 1147: 1143: 1139: 1135: 1132: 1128: 1124: 1118: 1114: 1110: 1106: 1102: 1101: 1095: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1063: 1058: 1053: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1017: 1016: 1003: 998: 991: 986: 979: 974: 967: 962: 955: 950: 948: 940: 935: 927: 921: 910: 903: 890: 884: 879: 874: 870: 866: 859: 852: 847: 840: 835: 828: 823: 816: 811: 804: 799: 792: 787: 783: 773: 770: 769: 763: 752: 748: 737: 731: 727:defined over 725: 719: 714: 687: 684: 680: 673: 666: 660: 655: 651: 645: 639: 634: 629: 623: 617: 613: 609: 605: 600: 590: 588: 584: 583:torsion group 579: 577: 573: 569: 559: 557: 552: 546: 542: 538: 534: 527: 521: 517: 511: 506: 501: 495: 489: 485: 481: 476: 467: 456: 446: 442: 432: 428: 422: 418: 414: 410: 391: 387: 382: 376: 372: 368: 361: 357: 352: 347: 341: 337: 329: 325: 322: 317: 313: 308: 302: 298: 293: 276: 272: 264: 263: 262: 258: 254: 248: 243: 239: 234: 229: 226: 219: 213: 208: 189: 185: 179: 176: 173: 169: 151: 146: 142: 118: 115: 110: 106: 97: 93: 89: 83: 79: 75: 57: 52: 47: 42: 38: 32: 28: 23: 19: 1565: 1559: 1548:the original 1535: 1511: 1487: 1467: 1435: 1431: 1397: 1391: 1351: 1345: 1305:math/9911267 1295: 1289: 1271: 1230: 1224: 1200: 1196: 1174: 1145: 1138:Hindry, Marc 1099: 1066: 1060: 1024: 1020: 997: 985: 973: 961: 939:Cassels 1962 934: 902: 892:, retrieved 868: 858: 846: 834: 822: 810: 798: 786: 750: 746: 735: 729: 723: 717: 688: 682: 678: 671: 664: 658: 653: 650:Tate duality 643: 637: 627: 621: 615: 611: 607: 603: 596: 580: 565: 556:Selmer group 550: 547: 540: 536: 532: 525: 519: 515: 509: 499: 493: 487: 471: 465: 462: 430: 426: 406: 256: 252: 241: 232: 228:-adic fields 224: 217: 211: 50: 46:group scheme 40: 30: 26: 21: 15: 1556:Weil, André 1400:: 203–362, 1217:Lang, Serge 1027:: 259–296, 827:Selmer 1951 1624:Categories 1611:2404.16785 1528:Tate, John 1507:Tate, John 1221:Tate, John 1012:References 990:Stein 2004 894:2024-09-01 839:Rubin 1987 713:squarefree 568:Karl Rubin 482:for every 469:that have 409:Serge Lang 238:valuations 1582:0002-9327 1444:0002-3264 1438:: 42–43, 1416:0001-5962 1376:0020-9910 1322:0003-486X 1247:0002-9327 1209:0373-2436 1083:0075-4102 1041:0024-6115 954:Tate 1963 815:Lind 1940 778:Citations 745:| = 497:, but no 413:John Tate 334:→ 273:⋂ 1530:(1963), 1509:(1958), 1211:, 954295 1144:(2000), 920:cite web 766:See also 619:, where 518:− 17 = 2 443:letter " 441:Cyrillic 435:, where 134:, where 1598:0074084 1590:2372637 1544:0175892 1521:0105420 1500:0230727 1476:2058655 1452:0106227 1424:0041871 1384:0903383 1356:Bibcode 1338:1740984 1281:0022563 1263:0106226 1255:2372778 1175:Motives 1131:1144763 1091:0163915 1049:0163913 715:number 635:, when 439:is the 421:Cassels 205:is the 20:, the 1596:  1588:  1580:  1542:  1519:  1498:  1474:  1450:  1442:  1422:  1414:  1382:  1374:  1336:  1330:121064 1328:  1320:  1279:  1261:  1253:  1245:  1207:  1185:  1156:  1129:  1119:  1089:  1081:  1047:  1039:  885:  741:| 606:) × Ш( 35:of an 1606:arXiv 1586:JSTOR 1464:(PDF) 1326:JSTOR 1300:arXiv 1251:JSTOR 912:(PDF) 739:with 484:place 1578:ISSN 1440:ISSN 1412:ISSN 1372:ISSN 1318:ISSN 1243:ISSN 1205:ISSN 1183:ISBN 1154:ISBN 1117:ISBN 1079:ISSN 1037:ISSN 926:link 883:ISBN 610:) → 415:and 411:and 1570:doi 1436:124 1402:doi 1364:doi 1310:doi 1296:150 1235:doi 1109:doi 1071:doi 1067:211 1029:doi 873:doi 662:to 543:= 0 539:+ 5 535:+ 4 491:of 451:or 445:Sha 209:of 16:In 1626:: 1594:MR 1592:, 1584:, 1576:, 1566:77 1564:, 1540:MR 1534:, 1517:MR 1496:MR 1472:MR 1466:, 1448:MR 1446:, 1420:MR 1418:, 1410:, 1398:85 1396:, 1380:MR 1378:, 1370:, 1362:, 1352:89 1350:, 1334:MR 1332:, 1324:, 1316:, 1308:, 1277:MR 1259:MR 1257:, 1249:, 1241:, 1231:80 1229:, 1219:; 1201:52 1199:, 1181:, 1152:, 1140:; 1127:MR 1125:, 1115:, 1107:, 1087:MR 1085:, 1077:, 1065:, 1059:, 1045:MR 1043:, 1035:, 1025:12 946:^ 922:}} 918:{{ 881:, 867:, 762:. 670:Ш( 602:Ш( 589:. 558:. 545:. 455:. 453:TŠ 449:TS 425:Ш( 419:. 251:Ш( 249:, 25:Ш( 1614:. 1608:: 1572:: 1404:: 1366:: 1358:: 1312:: 1302:: 1283:. 1237:: 1111:: 1073:: 1031:: 1004:. 992:. 980:. 968:. 956:. 941:. 928:) 914:. 875:: 853:. 841:. 829:. 817:. 805:. 793:. 760:Ш 756:Ш 751:m 747:n 743:Ш 736:m 730:Q 724:A 718:n 709:Ш 704:Ш 700:Ш 695:Ш 691:Ш 683:Z 681:/ 679:Q 674:) 672:A 665:Â 659:A 654:A 644:Â 638:A 628:Â 622:A 616:Z 614:/ 612:Q 608:Â 604:A 551:n 541:z 537:y 533:x 531:3 526:p 520:y 516:x 510:K 500:K 494:K 488:v 478:- 474:v 472:K 466:A 437:Ш 433:) 431:K 429:/ 427:A 392:. 388:) 383:) 377:v 373:A 369:, 362:v 358:K 353:G 348:( 342:1 338:H 330:) 326:A 323:, 318:K 314:G 309:( 303:1 299:H 294:( 289:r 286:e 283:k 277:v 259:) 257:K 255:/ 253:A 242:v 233:K 225:p 218:K 212:K 193:) 190:K 186:/ 180:g 177:l 174:a 170:K 166:( 162:l 159:a 156:G 152:= 147:K 143:G 122:) 119:A 116:, 111:K 107:G 103:( 98:1 94:H 90:= 87:) 84:K 80:/ 76:A 73:( 69:C 66:W 51:K 41:A 33:) 31:K 29:/ 27:A

Index

arithmetic geometry
abelian variety
group scheme
Weil–Châtelet group
absolute Galois group
p-adic fields
valuations
Galois cohomology
Serge Lang
John Tate
Igor Shafarevich
Cassels
Cyrillic
Sha
rational points
place
Hasse principle
Selmer group
Karl Rubin
complex multiplication
modularity theorem
torsion group
finitely generated
bilinear pairing
elliptic curves
Tate duality
squarefree
Birch and Swinnerton-Dyer conjecture
Lang & Tate 1958
Shafarevich 1959

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.