Knowledge

Algebraic number theory

Source 📝

7170: 7130: 1276:, provided a proof for Fermat's Last Theorem. Almost every mathematician at the time had previously considered both Fermat's Last Theorem and the Modularity Theorem either impossible or virtually impossible to prove, even given the most cutting-edge developments. Wiles first announced his proof in June 1993 in a version that was soon recognized as having a serious gap at a key point. The proof was corrected by Wiles, partly in collaboration with 655: 7150: 7140: 7160: 6803: 5730:
gluing together local data. This spirit is adopted in algebraic number theory. Given a prime in the ring of algebraic integers in a number field, it is desirable to study the field locally at that prime. Therefore, one localizes the ring of algebraic integers to that prime and then completes the fraction field much in the spirit of geometry.
5002: 5729:
can be deduced easily from the analogous local statement. The philosophy behind the study of local fields is largely motivated by geometric methods. In algebraic geometry, it is common to study varieties locally at a point by localizing to a maximal ideal. Global information can then be recovered by
1655:
However, even with this weaker definition, many rings of integers in algebraic number fields do not admit unique factorization. There is an algebraic obstruction called the ideal class group. When the ideal class group is trivial, the ring is a UFD. When it is not, there is a distinction between a
924:
where he claimed he had a proof that was too large to fit in the margin. No successful proof was published until 1995 despite the efforts of countless mathematicians during the 358 intervening years. The unsolved problem stimulated the development of algebraic number theory in the 19th century and
2416:
Unique factorization fails if and only if there are prime ideals that fail to be principal. The object which measures the failure of prime ideals to be principal is called the ideal class group. Defining the ideal class group requires enlarging the set of ideals in a ring of algebraic integers so
6084:
states that the Artin symbol from ideals (or ideles) to elements of a Galois group is trivial on a certain subgroup. Several more recent generalizations express reciprocity laws using cohomology of groups or representations of adelic groups or algebraic K-groups, and their relationship with the
971:
was published, number theory consisted of a collection of isolated theorems and conjectures. Gauss brought the work of his predecessors together with his own original work into a systematic framework, filled in gaps, corrected unsound proofs, and extended the subject in numerous ways.
995:. Many of the annotations given by Gauss are in effect announcements of further research of his own, some of which remained unpublished. They must have appeared particularly cryptic to his contemporaries; we can now read them as containing the germs of the theories of 3067: 1095:"Although the book is assuredly based on Dirichlet's lectures, and although Dedekind himself referred to the book throughout his life as Dirichlet's, the book itself was entirely written by Dedekind, for the most part after Dirichlet's death." (Edwards 1983) 6000: 5433: 3918:
of the number field. The adele ring allows one to simultaneously track all the data available using absolute values. This produces significant advantages in situations where the behavior at one place can affect the behavior at other places, as in the
2387:
is prime, provides a complete description of the prime ideals in the Gaussian integers. Generalizing this simple result to more general rings of integers is a basic problem in algebraic number theory. Class field theory accomplishes this goal when
4748: 2309: 2060:
is the principal ideal generated by a single element. This is the strongest sense in which the ring of integers of a general number field admits unique factorization. In the language of ring theory, it says that rings of integers are
2854: 2014: 3475: 3399: 1695:
admits a factorization into irreducible elements, but it may admit more than one. This is because, while all prime elements are irreducible, some irreducible elements may not be prime. For example, consider the ring
1148:, he used an existence proof that shows there must be solutions for the problem rather than providing a mechanism to produce the answers. He then had little more to publish on the subject; but the emergence of 3569: 2950: 1808: 1380:
is not a prime number because it is negative, but it is a prime element. If factorizations into prime elements are permitted, then, even in the integers, there are alternative factorizations such as
2601: 2126:
An ideal which is prime in the ring of integers in one number field may fail to be prime when extended to a larger number field. Consider, for example, the prime numbers. The corresponding ideals
5154: 2987: 4753: 4106: 5550: 2622:, form a subgroup of the group of all non-zero fractional ideals. The quotient of the group of non-zero fractional ideals by this subgroup is the ideal class group. Two fractional ideals 244: 1637: 1446: 3817:. Because absolute values are unable to distinguish between a complex embedding and its conjugate, a complex embedding and its conjugate determine the same place. Therefore, there are 536: 1085:'s study of Lejeune Dirichlet's work was what led him to his later study of algebraic number fields and ideals. In 1863, he published Lejeune Dirichlet's lectures on number theory as 5723: 5894: 5297: 4533: 3664: 2048: 4219: 3964: 5033: 4997:{\displaystyle {\begin{aligned}&a_{-k}(t-2)^{-k}+\cdots +a_{-1}(t-2)^{-1}+a_{0}+a_{1}(t-2)+a_{2}(t-2)^{2}+\cdots \\&=\sum _{n=-k}^{\infty }a_{n}(t-2)^{n}\end{aligned}}} 851: 489: 452: 3787: 3763: 3909: 955:
in 1798 when Gauss was 21 and first published in 1801 when he was 24. In this book Gauss brings together results in number theory obtained by mathematicians such as Fermat,
3877: 2654:. Therefore, the ideal class group makes two fractional ideals equivalent if one is as close to being principal as the other is. The ideal class group is generally denoted 4141: 198: 6119:. Via the analogy of function fields vs. number fields, it relies on techniques and ideas from algebraic geometry. Moreover, the study of higher-dimensional schemes over 5725:
a complete, discrete valued field with finite residue field. This process simplifies the arithmetic of the field and allows the local study of problems. For example, the
4498: 2091:
Historically, the idea of factoring ideals into prime ideals was preceded by Ernst Kummer's introduction of ideal numbers. These are numbers lying in an extension field
4407: 1508:
are associate, but only one of these is positive. Requiring that prime numbers be positive selects a unique element from among a set of associated prime elements. When
5076: 4710: 798: 4361: 4042: 2168: 1253:
found evidence supporting it, yet no proof; as a result the "astounding" conjecture was often known as the Taniyama–Shimura-Weil conjecture. It became a part of the
5220:
therefore implies that it is a direct sum of a torsion part and a free part. Reinterpreting this in the context of a number field, the torsion part consists of the
4669: 4560: 4335: 5217: 4622: 4593: 4248: 4740: 3992: 4465: 4642: 4427: 4308: 4288: 4268: 4181: 4161: 4062: 1284:
and number theory, and has many ramifications in these branches of mathematics. It also uses standard constructions of modern algebraic geometry, such as the
2701:
is 2. This means that there are only two ideal classes, the class of principal fractional ideals, and the class of a non-principal fractional ideal such as
1648:, it is not true that factorizations are unique up to the order of the factors. For this reason, one adopts the definition of unique factorization used in 1190:
in a series of papers (1924; 1927; 1930). This law is a general theorem in number theory that forms a central part of global class field theory. The term "
6016:
There are several different ways to express reciprocity laws. The early reciprocity laws found in the 19th century were usually expressed in terms of a
2772: 746:, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two integers 1912:. Unlike the situation with units, where uniqueness could be repaired by weakening the definition, overcoming this failure requires a new perspective. 1938: 6232: 3404: 1115:
that satisfy polynomial equations with integer coefficients. The concept underwent further development in the hands of Hilbert and, especially, of
3334: 2119:. A generator of this principal ideal is called an ideal number. Kummer used these as a substitute for the failure of unique factorization in 1027:). The formula, which Jacobi called a result "touching the utmost of human acumen", opened the way for similar results regarding more general 2074:
is a UFD, every prime ideal is generated by a prime element. Otherwise, there are prime ideals which are not generated by prime elements. In
1280:, and the final, widely accepted version was released in September 1994, and formally published in 1995. The proof uses many techniques from 641: 1074:, for which he found the first results, is still an unsolved problem in number theory despite later contributions by other researchers. 2344: 7153: 2499:
is also a fractional ideal. This operation makes the set of non-zero fractional ideals into a group. The group identity is the ideal
6807: 5556:
of the number field. One of the simplifications made possible by working with the adele ring is that there is a single object, the
6853: 3521: 2872: 1652:(UFDs). In a UFD, the prime elements occurring in a factorization are only expected to be unique up to units and their ordering. 1372:. This property is closely related to primality in the integers, because any positive integer satisfying this property is either 856:
Diophantine equations have been studied for thousands of years. For example, the solutions to the quadratic Diophantine equation
4007: 1730: 6769: 6730: 6634: 6607: 6580: 6513: 6390: 6275: 6213: 3168:, is so-called because it admits two real embeddings but no complex embeddings. These are the field homomorphisms which send 3062:{\displaystyle 1\to O^{\times }\to K^{\times }{\xrightarrow {\text{div}}}\operatorname {Div} K\to \operatorname {Cl} K\to 1.} 2522: 1055: 98: 5084: 685:, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as 6295: 2123:. These eventually led Richard Dedekind to introduce a forerunner of ideals and to prove unique factorization of ideals. 1317:, and this factorization is unique up to the ordering of the factors. This may no longer be true in the ring of integers 17: 4067: 5483: 6693: 6374: 6303: 2343:
are the same. A complete answer to the question of which ideals remain prime in the Gaussian integers is provided by
1310: 634: 586: 1087: 7194: 6761: 6128: 5846: 5743:
One of the classical results in algebraic number theory is that the ideal class group of an algebraic number field
5172:. Other rings of integers may admit more units. The Gaussian integers have four units, the previous two as well as 3931:
There is a geometric analogy for places at infinity which holds on the function fields of curves. For example, let
208: 6365: 1547: 1541:, but there is no way to single out one as being more canonical than the other. This leads to equations such as 1386: 1249:
It was initially dismissed as unlikely or highly speculative, but was taken more seriously when number theorist
6884: 5995:{\displaystyle \left({\frac {p}{q}}\right)\left({\frac {q}{p}}\right)=(-1)^{{\frac {p-1}{2}}{\frac {q-1}{2}}}.} 3491: 1277: 1012: 988: 503: 5428:{\displaystyle {\begin{cases}L:K^{\times }\to \mathbf {R} ^{r_{1}+r_{2}}\\L(x)=(\log |x|_{v})_{v}\end{cases}}} 3674:
Real and complex embeddings can be put on the same footing as prime ideals by adopting a perspective based on
1111:, does not appear in Dedekind's work.) Dedekind defined an ideal as a subset of a set of numbers, composed of 738:
The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century
6824: 6814: 6718: 5681: 3722:(up to equivalence). Therefore, absolute values are a common language to describe both the real embedding of 1191: 7143: 6930: 6010: 5756: 4503: 3209:
admits no real embeddings but admits a conjugate pair of complex embeddings. One of these embeddings sends
2713: 627: 494: 6925: 6910: 6846: 6819: 6589: 6243: 5772: 5726: 5231: 5188:
have six units. The integers in real quadratic number fields have infinitely many units. For example, in
3635: 2022: 1649: 659: 344: 4189: 3934: 6685: 5010: 1207: 104: 5777:
Dirichlet's unit theorem provides a description of the structure of the multiplicative group of units
804: 465: 428: 119: 7105: 7064: 6943: 5651: 3768: 3744: 2054:, and where this expression is unique up to the order of the factors. In particular, this is true if 1269: 1195: 1071: 1051: 5306: 3888: 1194:" refers to a long line of more concrete number theoretic statements which it generalized, from the 6949: 5850: 3856: 3734: 3494:. Because the Minkowski embedding is defined by field homomorphisms, multiplication of elements of 1168: 909: 721:, can resolve questions of primary importance in number theory, like the existence of solutions to 698: 579: 382: 332: 5837:) denotes the number of real embeddings (respectively, pairs of conjugate non-real embeddings) of 4111: 181: 7169: 6892: 4470: 2716:. These are formal objects which represent possible factorizations of numbers. The divisor group 2104: 125: 84: 7199: 7133: 6953: 6902: 6839: 6115:
Algebraic number theory interacts with many other mathematical disciplines. It uses tools from
5617: 5569: 4366: 3715: 2304:{\displaystyle 2\mathbf {Z} =(1+i)\mathbf {Z} \cdot (1-i)\mathbf {Z} =((1+i)\mathbf {Z} )^{2};} 1285: 1239: 1058:. He published important contributions to Fermat's last theorem, for which he proved the cases 1040: 1000: 686: 548: 399: 350: 131: 7173: 5038: 4674: 3484:
The subspace of the codomain fixed by complex conjugation is a real vector space of dimension
1226:
observed a possible link between two apparently completely distinct, branches of mathematics,
1159:. The concepts were highly influential, and his own contribution lives on in the names of the 7110: 7039: 6150: 6081: 5573: 3920: 3691: 1187: 964: 960: 768: 4340: 4012: 1512:
is not the rational numbers, however, there is no analog of positivity. For example, in the
7100: 6935: 6779: 6740: 6703: 6666: 6523: 6347: 6094: 6017: 5748: 5634: 5627: 5595: 4647: 4538: 4313: 2634:
represent the same element of the ideal class group if and only if there exists an element
1289: 1238:(at the time known as the Taniyama–Shimura conjecture) states that every elliptic curve is 1149: 1047: 1016: 952: 722: 706: 272: 146: 7163: 6787: 6673: 6654: 6531: 6335: 5755:
with norm less than a fixed positive integer . The order of the class group is called the
4598: 4569: 4224: 8: 7069: 6978: 6973: 6967: 6959: 6920: 6124: 6116: 5599: 5180: 4719: 3969: 3835:
complex places. Because places encompass the primes, places are sometimes referred to as
3675: 2974: 2418: 1657: 1199: 1160: 1141: 1067: 889: 718: 710: 554: 362: 313: 258: 152: 138: 66: 34: 7159: 4432: 1691:
is a unit. These are the elements that cannot be factored any further. Every element in
7115: 7059: 6963: 6880: 6140: 6041: 4627: 4563: 4412: 4293: 4273: 4253: 4166: 4146: 4047: 2734: 2724: 1458: 1281: 1273: 1265: 1235: 1156: 926: 870: 702: 567: 53: 6747: 6497: 4044:
has many absolute values, or places, and each corresponds to a point on the curve. If
7029: 6765: 6726: 6689: 6630: 6603: 6576: 6509: 6370: 6317:
This work established Takagi as Japan's first mathematician of international stature.
6299: 6271: 6209: 5557: 5257:
and the imaginary quadratic fields. A more precise statement giving the structure of
5251:. Thus, for example, the only fields for which the rank of the free part is zero are 3230: 2393: 1513: 1254: 1152:
in the dissertation of a student means his name is further attached to a major area.
1112: 1024: 690: 608: 405: 170: 111: 4363:
measures the order of vanishing or the order of a pole of a fraction of polynomials
7034: 7019: 6783: 6677: 6650: 6568: 6527: 6331: 5613: 5609: 3999: 2956: 2422: 2401: 2120: 1082: 992: 917: 682: 674: 614: 600: 414: 356: 319: 92: 78: 2849:{\displaystyle (x)={\mathfrak {p}}_{1}^{e_{1}}\cdots {\mathfrak {p}}_{t}^{e_{t}}.} 7048: 7024: 6939: 6775: 6736: 6722: 6699: 6662: 6624: 6597: 6519: 6343: 6203: 6155: 6029: 5885: 5879: 4003: 3587: 3511: 2062: 1888:
itself, so neither of them are prime. As there is no sense in which the elements
1223: 1036: 376: 326: 164: 2009:{\displaystyle I={\mathfrak {p}}_{1}^{e_{1}}\cdots {\mathfrak {p}}_{t}^{e_{t}},} 7085: 7004: 6888: 5752: 5663: 3679: 3099:, cannot. Abstractly, such a specification corresponds to a field homomorphism 2978: 2513: 1293: 1227: 1203: 1164: 1104: 1020: 420: 6572: 6444: 6419: 5560:, that describes both the quotient by this lattice and the ideal class group. 3853:
is a valuation corresponding to an absolute value, then one frequently writes
3470:{\displaystyle M\colon K\to \mathbf {R} ^{r_{1}}\oplus \mathbf {R} ^{2r_{2}}.} 1140:(literally "report on numbers"). He also resolved a significant number-theory 7188: 7044: 6896: 6862: 6145: 5271: 5221: 3995: 3165: 2405: 1131: 1108: 670: 561: 457: 72: 5633:
The zeta function is related to the other invariants described above by the
5285:
The free part of the unit group can be studied using the infinite places of
3801:. The other type of place is specified using a real or complex embedding of 3394:{\displaystyle M\colon K\to \mathbf {R} ^{r_{1}}\oplus \mathbf {C} ^{r_{2}}} 1250: 7090: 7014: 6914: 6327: 6104: 6060:). Hilbert reformulated the reciprocity laws as saying that a product over 6033: 4713: 2676: 1314: 1261: 1243: 1231: 1219: 1172: 1123:, devised as part of Kummer's 1843 attempt to prove Fermat's Last Theorem. 1120: 1116: 1028: 984: 754:
such that their sum, and the sum of their squares, equal two given numbers
714: 694: 593: 368: 264: 2141:. However, when this ideal is extended to the Gaussian integers to obtain 6360: 5646: 3515: 2051: 1136: 913: 897: 573: 284: 158: 40: 5576:, is an analytic object which describes the behavior of prime ideals in 1103:
included supplements introducing the notion of an ideal, fundamental to
7095: 7054: 6906: 6710: 6593: 6551: 6481: 6077: 5602:. The trivial character corresponds to the Riemann zeta function. When 3915: 3261:, while the number of conjugate pairs of complex embeddings is denoted 2103:. This extension field is now known as the Hilbert class field. By the 1309:
An important property of the ring of integers is that it satisfies the
1183: 1032: 996: 743: 739: 338: 1313:, that every (positive) integer has a factorization into a product of 3088:, can be specified as subfields of the real numbers. Others, such as 654: 298: 203: 5035:. For the place at infinity, this corresponds to the function field 3025: 1134:
unified the field of algebraic number theory with his 1897 treatise
1091:("Lectures on Number Theory") about which it has been written that: 5801:
is the finite cyclic group consisting of all the roots of unity in
2970: 678: 292: 278: 5888:, the law of quadratic reciprocity for positive odd primes states 3797:-adic absolute values, it measures divisibility. These are called 1535:
are associate because the latter is the product of the former by
176: 60: 6831: 3678:. Consider, for example, the integers. In addition to the usual 2088:
is a prime ideal which cannot be generated by a single element.
1376:
or a prime number. However, it is strictly weaker. For example,
979:
was the starting point for the work of other nineteenth century
6994: 6802: 5866: − 1 whose torsion consists of the roots of unity in 3718:
states that these are all possible absolute value functions on
980: 4143:
correspond to the places at infinity. Then, the completion of
3914:
Considering all the places of the field together produces the
2606:
The principal fractional ideals, meaning the ones of the form
662:, one of the founding works of modern algebraic number theory. 2150:, it may or may not be prime. For example, the factorization 1296:, and other 20th-century techniques not available to Fermat. 1257:, a list of important conjectures needing proof or disproof. 956: 944: 6684:, Cambridge Studies in Advanced Mathematics, vol. 27, 6233:"The Life and Work of Gustav Lejeune Dirichlet (1805–1859)" 5421: 3564:{\displaystyle \langle x,y\rangle =\operatorname {Tr} (xy)} 2945:{\displaystyle \operatorname {div} x=\sum _{i=1}^{t}e_{i}.} 5474:
to a real vector space. It can be shown that the image of
2712:
The ideal class group has another description in terms of
1050:, a basic counting argument, in the proof of a theorem in 937:
One of the founding works of algebraic number theory, the
6482:"A Computational Introduction to Algebraic Number Theory" 6342:(2nd ed.), London: 9780950273426, pp. 266–279, 3331:
Considering all embeddings at once determines a function
1803:{\displaystyle 9=3^{2}=(2+{\sqrt {-5}})(2-{\sqrt {-5}}).} 5218:
fundamental theorem of finitely generated abelian groups
3733:
of an algebraic number field is an equivalence class of
2682:
The number of elements in the class group is called the
880:). Solutions to linear Diophantine equations, such as 26 6496: 6468: 6202:
Gauss, Carl Friedrich; Waterhouse, William C. (2018) ,
6127:. Algebraic number theory is also used in the study of 6085:
original quadratic reciprocity law can be hard to see.
2113:
generates a principal ideal of the ring of integers of
5230:. This group is cyclic. The free part is described by 2596:{\displaystyle J^{-1}=(O:J)=\{x\in K:xJ\subseteq O\}.} 1906:
can be made equivalent, unique factorization fails in
967:
and adds important new results of his own. Before the
7009: 6999: 6391:"At Last, Shout of 'Eureka!' In Age-Old Math Mystery" 5897: 5684: 5626:, and it has a factorization in terms of irreducible 5486: 5300: 5087: 5041: 5013: 4751: 4722: 4677: 4650: 4630: 4601: 4572: 4541: 4506: 4473: 4435: 4415: 4369: 4343: 4316: 4296: 4276: 4256: 4227: 4192: 4169: 4149: 4114: 4070: 4050: 4015: 3972: 3937: 3891: 3859: 3771: 3747: 3638: 3524: 3407: 3337: 3195:, respectively. Dually, an imaginary quadratic field 2990: 2875: 2775: 2525: 2376:. This, together with the observation that the ideal 2171: 2025: 1941: 1847:, but it does not, because all elements divisible by 1733: 1550: 1389: 951:) is a textbook of number theory written in Latin by 807: 771: 728: 506: 468: 431: 211: 184: 6265: 5149:{\displaystyle \sum _{n=-k}^{\infty }a_{n}(1/t)^{n}} 4644:. The function field of the completion at the place 2437:
which is closed under multiplication by elements of
1461:, meaning a number with a multiplicative inverse in 1171:. Results were mostly proved by 1930, after work by 6076:), taking values in roots of unity, is equal to 1. 3926: 1043:, a fundamental result in algebraic number theory. 6107:to a special value of its Dedekind zeta function. 5994: 5717: 5544: 5480:is a lattice that spans the hyperplane defined by 5427: 5234:. This theorem says that rank of the free part is 5148: 5070: 5027: 4996: 4734: 4704: 4663: 4636: 4616: 4587: 4554: 4527: 4492: 4459: 4421: 4401: 4355: 4329: 4302: 4282: 4262: 4242: 4213: 4175: 4155: 4135: 4101:{\displaystyle {\hat {X}}\subset \mathbb {A} ^{n}} 4100: 4056: 4036: 3986: 3958: 3903: 3871: 3781: 3757: 3658: 3563: 3469: 3393: 3061: 2944: 2848: 2595: 2421:structure. This is done by generalizing ideals to 2303: 2042: 2008: 1915: 1802: 1724:has two factorizations into irreducible elements, 1631: 1440: 1304: 1242:, meaning that it can be associated with a unique 845: 792: 530: 483: 446: 238: 192: 6599:Algebraic Number Theory and Fermat's Last Theorem 6553:Algebraic Number Theory, A Computational Approach 5678:of the rationals, one obtains a finite extension 5674:, if it is non-Archimedean and lies over a prime 3518:on Minkowski space corresponds to the trace form 3246:Conventionally, the number of real embeddings of 7186: 6565:A classical introduction to modern number theory 5738: 5545:{\displaystyle x_{1}+\cdots +x_{r_{1}+r_{2}}=0.} 4163:at one of these points gives an analogue of the 4064:is the projective completion of an affine curve 2675:(with the last notation identifying it with the 1206:. Artin's result provided a partial solution to 1202:and Kummer to Hilbert's product formula for the 1031:. Based on his research of the structure of the 6649: 6439:This notation indicates the ring obtained from 6414:This notation indicates the ring obtained from 6201: 5666:. If the valuation is Archimedean, one obtains 6672: 5201:is a unit, and all these powers are distinct. 3839:. When this is done, finite places are called 3072: 2981:of abelian groups (written multiplicatively), 6847: 6757:Grundlehren der mathematischen Wissenschaften 6506:Grundlehren der Mathematischen Wissenschaften 6330:(2010) , "History of Class Field Theory", in 5216:, is a finitely generated abelian group. The 2973:is the ideal class group. In the language of 2425:. A fractional ideal is an additive subgroup 920:in 1637, famously in the margin of a copy of 635: 6755: 6562: 6500:; Schmidt, Alexander; Wingberg, Kay (2000), 6044:another prime, and gave a relation between ( 4290:is the field of fractions of polynomials in 3805:and the standard absolute value function on 3741:. There are two types of places. There is a 3537: 3525: 2587: 2560: 1720:are irreducible. This means that the number 239:{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} } 6588: 5766: 1833:were a prime element, then it would divide 1145: 7149: 7139: 6854: 6840: 6508:, vol. 323, Berlin: Springer-Verlag, 6226: 6224: 6123:instead of number rings is referred to as 5594:, Dedekind zeta functions are products of 3765:-adic absolute value for each prime ideal 2347:. It implies that for an odd prime number 1632:{\displaystyle 5=(1+2i)(1-2i)=(2+i)(2-i),} 1441:{\displaystyle 6=2\cdot 3=(-2)\cdot (-3).} 1119:. Ideals generalize Ernst Eduard Kummer's 642: 628: 6563:Ireland, Kenneth; Rosen, Michael (2013), 5021: 4515: 4221:then its function field is isomorphic to 4201: 4088: 3946: 1479:is also a prime element. Numbers such as 531:{\displaystyle \mathbb {Z} (p^{\infty })} 508: 471: 434: 232: 219: 186: 6746: 6721:, vol. 110 (2 ed.), New York: 6266:Kanemitsu, Shigeru; Chaohua Jia (2002), 6259: 6230: 1884:, but neither of these elements divides 1107:. (The word "Ring", introduced later by 901:, of which only a portion has survived. 873:, originally solved by the Babylonians ( 653: 6661:(2nd ed.), London: 9780950273426, 6643: 6268:Number theoretic methods: future trends 6221: 6103:relates many important invariants of a 6088: 5718:{\displaystyle K_{w}/\mathbf {Q} _{p}:} 5598:, with there being one factor for each 2345:Fermat's theorem on sums of two squares 1932:, then there is always a factorization 1011:In a couple of papers in 1838 and 1839 14: 7187: 6622: 6388: 5456:is the absolute value associated with 701:. These properties, such as whether a 6835: 6616: 6549: 6543: 6469:Neukirch, Schmidt & Wingberg 2000 6359: 6353: 6326: 5759:, and is often denoted by the letter 4528:{\displaystyle 2\in \mathbb {A} ^{1}} 1360:, then it divides one of the factors 1218:Around 1955, Japanese mathematicians 6709: 6289: 5747:is finite. This is a consequence of 5612:, the Dedekind zeta function is the 5572:of a number field, analogous to the 5552:The covolume of this lattice is the 2481:are fractional ideals, then the set 2411: 99:Free product of associative algebras 6382: 5873: 5751:since there are only finitely many 5444:varies over the infinite places of 3911:to mean that it is a finite place. 3774: 3750: 3659:{\displaystyle {\sqrt {|\Delta |}}} 3580:under the Minkowski embedding is a 3510:corresponds to multiplication by a 2925: 2820: 2791: 2043:{\displaystyle {\mathfrak {p}}_{i}} 2029: 1980: 1951: 1155:He made a series of conjectures on 658:Title page of the first edition of 24: 6538: 5204:In general, the group of units of 5164:The integers have only two units, 5107: 5078:which are power series of the form 4953: 4270:is an indeterminant and the field 4214:{\displaystyle X=\mathbb {P} ^{1}} 3959:{\displaystyle k=\mathbb {F} _{q}} 3898: 3866: 3646: 3596:is a basis for this lattice, then 3229:, while the other sends it to its 729:History of algebraic number theory 520: 25: 7211: 6861: 6795: 6479: 6129:arithmetic hyperbolic 3-manifolds 5028:{\displaystyle k\in \mathbb {N} } 2727:generated by the prime ideals of 2487:of all products of an element in 1311:fundamental theorem of arithmetic 1056:Dirichlet's approximation theorem 587:Noncommutative algebraic geometry 7168: 7158: 7148: 7138: 7129: 7128: 6801: 6110: 5847:finitely generated abelian group 5733: 5702: 5563: 5330: 4595:minus the order of vanishing of 3927:Places at infinity geometrically 3710:, which measure divisibility by 3706:, defined for each prime number 3514:in the Minkowski embedding. The 3444: 3422: 3374: 3352: 2275: 2240: 2208: 2176: 1299: 1213: 846:{\displaystyle B=x^{2}+y^{2}.\ } 484:{\displaystyle \mathbb {Q} _{p}} 447:{\displaystyle \mathbb {Z} _{p}} 6473: 6467:See proposition VIII.8.6.11 of 6461: 6433: 6408: 5785:. Specifically, it states that 5640: 3843:and infinite places are called 3782:{\displaystyle {\mathfrak {p}}} 3758:{\displaystyle {\mathfrak {p}}} 3626:. The covolume of the image of 2469:are also fractional ideals. If 1916:Factorization into prime ideals 1305:Failure of unique factorization 895:Diophantus' major work was the 6907:analytic theory of L-functions 6885:non-abelian class field theory 6320: 6311: 6283: 6195: 6186: 6177: 6168: 5947: 5937: 5409: 5398: 5389: 5379: 5373: 5367: 5325: 5137: 5122: 5065: 5062: 5048: 5045: 4981: 4968: 4909: 4896: 4880: 4868: 4830: 4817: 4783: 4770: 4742:, so an element is of the form 4699: 4696: 4684: 4681: 4611: 4605: 4582: 4576: 4500:this corresponds to the point 4454: 4442: 4396: 4390: 4379: 4373: 4237: 4231: 4127: 4077: 4031: 4025: 3904:{\displaystyle v\nmid \infty } 3650: 3642: 3616:. The discriminant is denoted 3558: 3549: 3417: 3347: 3053: 3041: 3007: 2994: 2936: 2919: 2782: 2776: 2554: 2542: 2289: 2285: 2279: 2271: 2259: 2256: 2250: 2244: 2236: 2224: 2218: 2212: 2204: 2192: 2186: 2180: 1794: 1775: 1772: 1753: 1623: 1611: 1608: 1596: 1590: 1575: 1572: 1557: 1495:. In the integers, the primes 1432: 1423: 1417: 1408: 1099:1879 and 1894 editions of the 1088:Vorlesungen über Zahlentheorie 1023:(later refined by his student 1013:Peter Gustav Lejeune Dirichlet 989:Peter Gustav Lejeune Dirichlet 525: 512: 13: 1: 6719:Graduate Texts in Mathematics 6389:Kolata, Gina (24 June 1993). 5739:Finiteness of the class group 3872:{\displaystyle v\mid \infty } 2977:, this says that there is an 2866:is defined to be the divisor 2135:are prime ideals of the ring 1323:of an algebraic number field 888:= 13, may be found using the 874: 733: 6931:Transcendental number theory 6270:, Springer, pp. 271–4, 6240:Clay Mathematics Proceedings 6030:quadratic reciprocity symbol 6011:law of quadratic reciprocity 4136:{\displaystyle X-{\hat {X}}} 3077:Some number fields, such as 2369:and is not a prime ideal if 1702:. In this ring, the numbers 1650:unique factorization domains 1198:and the reciprocity laws of 1142:problem formulated by Waring 1066: = 14, and to the 1006: 673:that uses the techniques of 193:{\displaystyle \mathbb {Z} } 7: 7154:List of recreational topics 6926:Computational number theory 6911:probabilistic number theory 6820:Encyclopedia of Mathematics 6502:Cohomology of Number Fields 6205:Disquisitiones Arithmeticae 6134: 6009:is a generalization of the 5588:is an abelian extension of 4493:{\displaystyle x_{1}\neq 0} 3073:Real and complex embeddings 2743:, the non-zero elements of 1669:is an element such that if 1077: 1068:biquadratic reciprocity law 949:Arithmetical Investigations 940:Disquisitiones Arithmeticae 660:Disquisitiones Arithmeticae 345:Unique factorization domain 10: 7216: 6752:Algebraische Zahlentheorie 6686:Cambridge University Press 6629:(2nd ed.), Springer, 6623:Marcus, Daniel A. (2018), 6567:, vol. 84, Springer, 6092: 5877: 5770: 5644: 2329:, the ideals generated by 2080:, for instance, the ideal 1270:semistable elliptic curves 1126: 105:Tensor product of algebras 7124: 7106:Diophantine approximation 7078: 7065:Chinese remainder theorem 6987: 6869: 6815:"Algebraic number theory" 6760:. Vol. 322. Berlin: 6573:10.1007/978-1-4757-2103-4 6231:Elstrodt, Jürgen (2007), 4467:, so on the affine chart 4402:{\displaystyle p(x)/q(x)} 3885:is an infinite place and 3669: 2963:is the group of units in 2749:up to multiplication, to 1813:This equation shows that 1473:is a prime element, then 1196:quadratic reciprocity law 1072:Dirichlet divisor problem 1052:diophantine approximation 983:mathematicians including 904: 6950:Arithmetic combinatorics 6290:Reid, Constance (1996), 6161: 6032:, that describes when a 5781:of the ring of integers 5773:Dirichlet's unit theorem 5767:Dirichlet's unit theorem 5291:. Consider the function 5274:for the Galois group of 5232:Dirichlet's unit theorem 5159: 5071:{\displaystyle k((1/t))} 4705:{\displaystyle k((t-2))} 2679:in algebraic geometry). 1264:provided a proof of the 1178: 1169:local class field theory 1054:, later named after him 932: 383:Formal power series ring 333:Integrally closed domain 7195:Algebraic number theory 6921:Geometric number theory 6877:Algebraic number theory 6808:Algebraic number theory 6715:Algebraic number theory 6682:Algebraic number theory 6659:Algebraic number theory 6550:Stein, William (2012), 6340:Algebraic number theory 5727:Kronecker–Weber theorem 5620:of the Galois group of 5468:is a homomorphism from 3726:and the prime numbers. 3296:. It is a theorem that 3130:A real quadratic field 2107:, every prime ideal of 2105:principal ideal theorem 1272:, which, together with 1208:Hilbert's ninth problem 793:{\displaystyle A=x+y\ } 687:algebraic number fields 667:Algebraic number theory 392:Algebraic number theory 85:Total ring of fractions 27:Branch of number theory 7040:Transcendental numbers 6954:additive number theory 6903:Analytic number theory 6756: 5996: 5823: − 1 (where 5719: 5618:regular representation 5570:Dedekind zeta function 5546: 5429: 5157: 5150: 5111: 5072: 5029: 5005: 4998: 4957: 4736: 4712:which is the field of 4706: 4665: 4638: 4618: 4589: 4556: 4529: 4494: 4461: 4423: 4403: 4357: 4356:{\displaystyle p\in X} 4331: 4304: 4284: 4264: 4244: 4215: 4177: 4157: 4137: 4102: 4058: 4038: 4037:{\displaystyle F=k(X)} 3988: 3960: 3905: 3873: 3783: 3759: 3660: 3565: 3471: 3395: 3063: 2946: 2908: 2850: 2690:. The class number of 2597: 2305: 2044: 2010: 1804: 1633: 1442: 1146:the finiteness theorem 1097: 1041:Dirichlet unit theorem 1001:complex multiplication 847: 794: 663: 549:Noncommutative algebra 532: 485: 448: 400:Algebraic number field 351:Principal ideal domain 240: 194: 132:Frobenius endomorphism 7111:Irrationality measure 7101:Diophantine equations 6944:Hodge–Arakelov theory 6366:Fermat's Last Theorem 6151:Locally compact field 5997: 5720: 5630:of the Galois group. 5628:Artin representations 5596:Dirichlet L-functions 5574:Riemann zeta function 5547: 5430: 5151: 5088: 5080: 5073: 5030: 4999: 4934: 4744: 4737: 4707: 4666: 4664:{\displaystyle v_{2}} 4639: 4619: 4590: 4557: 4555:{\displaystyle v_{2}} 4530: 4495: 4462: 4424: 4404: 4358: 4332: 4330:{\displaystyle v_{p}} 4305: 4285: 4265: 4245: 4216: 4178: 4158: 4138: 4103: 4059: 4039: 3989: 3961: 3921:Artin reciprocity law 3906: 3874: 3784: 3760: 3692:p-adic absolute value 3661: 3566: 3472: 3396: 3064: 2947: 2888: 2851: 2723:is defined to be the 2598: 2506:, and the inverse of 2306: 2045: 2011: 1805: 1656:prime element and an 1634: 1443: 1188:Artin reciprocity law 1150:Hilbert modular forms 1093: 929:in the 20th century. 910:Fermat's Last Theorem 892:(c. 5th century BC). 848: 795: 723:Diophantine equations 657: 533: 486: 449: 241: 195: 7070:Arithmetic functions 6936:Diophantine geometry 6810:at Wikimedia Commons 6644:Graduate level texts 6101:class number formula 6095:Class number formula 6089:Class number formula 6064:of Hilbert symbols ( 6018:power residue symbol 5895: 5682: 5635:class number formula 5484: 5298: 5085: 5039: 5011: 4749: 4720: 4675: 4648: 4628: 4617:{\displaystyle q(x)} 4599: 4588:{\displaystyle p(x)} 4570: 4539: 4504: 4471: 4433: 4413: 4367: 4341: 4314: 4294: 4274: 4254: 4243:{\displaystyle k(t)} 4225: 4190: 4167: 4147: 4112: 4068: 4048: 4013: 3970: 3935: 3889: 3857: 3769: 3745: 3682:function |·| : 3636: 3522: 3405: 3335: 2988: 2873: 2773: 2523: 2362:is a prime ideal if 2169: 2023: 1939: 1817:divides the product 1731: 1642:which prove that in 1548: 1387: 1048:pigeonhole principle 1017:class number formula 953:Carl Friedrich Gauss 805: 769: 707:unique factorization 555:Noncommutative rings 504: 466: 429: 273:Non-associative ring 209: 182: 139:Algebraic structures 7116:Continued fractions 6979:Arithmetic dynamics 6974:Arithmetic topology 6968:P-adic Hodge theory 6960:Arithmetic geometry 6893:Iwasawa–Tate theory 6174:Stark, pp. 145–146. 6125:arithmetic geometry 6117:homological algebra 6028:) generalizing the 5841:). In other words, 5749:Minkowski's theorem 5600:Dirichlet character 5181:Eisenstein integers 4735:{\displaystyle t-2} 4108:then the points in 3987:{\displaystyle X/k} 3716:Ostrowski's theorem 3479:Minkowski embedding 3477:This is called the 3119:. These are called 3029: 2975:homological algebra 2842: 2813: 2512:is a (generalized) 2002: 1973: 1880:divide the product 1662:irreducible element 1658:irreducible element 1260:From 1993 to 1994, 1161:Hilbert class field 1062: = 5 and 890:Euclidean algorithm 871:Pythagorean triples 314:Commutative algebra 153:Associative algebra 35:Algebraic structure 18:Place (mathematics) 7060:Modular arithmetic 7030:Irrational numbers 6964:anabelian geometry 6881:class field theory 6674:Fröhlich, Albrecht 6655:Fröhlich, Albrecht 6617:Intermediate texts 6544:Introductory texts 6395:The New York Times 6336:Fröhlich, Albrecht 6141:Class field theory 5992: 5715: 5542: 5425: 5420: 5282:is also possible. 5146: 5068: 5025: 4994: 4992: 4732: 4702: 4661: 4634: 4614: 4585: 4564:order of vanishing 4552: 4525: 4490: 4460:{\displaystyle p=} 4457: 4429:. For example, if 4419: 4399: 4353: 4327: 4300: 4280: 4260: 4240: 4211: 4173: 4153: 4133: 4098: 4054: 4034: 3984: 3956: 3901: 3869: 3779: 3755: 3656: 3561: 3467: 3401:, or equivalently 3391: 3125:complex embeddings 3059: 2942: 2846: 2817: 2788: 2735:group homomorphism 2725:free abelian group 2593: 2493:and an element in 2417:that they admit a 2314:note that because 2301: 2040: 2006: 1977: 1948: 1800: 1629: 1438: 1354:divides a product 1282:algebraic geometry 1266:modularity theorem 1236:modularity theorem 1157:class field theory 1113:algebraic integers 1046:He first used the 927:modularity theorem 843: 790: 709:, the behavior of 664: 568:Semiprimitive ring 528: 481: 444: 252:Related structures 236: 190: 126:Inner automorphism 112:Ring homomorphisms 7182: 7181: 7079:Advanced concepts 7035:Algebraic numbers 7020:Composite numbers 6806:Media related to 6771:978-3-540-65399-8 6732:978-0-387-94225-4 6678:Taylor, Martin J. 6651:Cassels, J. W. S. 6636:978-3-319-90233-3 6609:978-1-4987-3840-8 6582:978-1-4757-2103-4 6515:978-3-540-66671-4 6369:, Fourth Estate, 6332:Cassels, J. W. S. 6277:978-1-4020-1080-4 6215:978-1-4939-7560-0 6192:Stark, pp. 44–47. 6183:Aczel, pp. 14–15. 6040:th power residue 5985: 5967: 5928: 5910: 5789:is isomorphic to 5558:idele class group 5194:, every power of 4637:{\displaystyle 2} 4422:{\displaystyle p} 4303:{\displaystyle t} 4283:{\displaystyle F} 4263:{\displaystyle t} 4176:{\displaystyle p} 4156:{\displaystyle F} 4130: 4080: 4057:{\displaystyle X} 3654: 3322:is the degree of 3231:complex conjugate 3030: 3028: 2423:fractional ideals 2412:Ideal class group 2394:abelian extension 2121:cyclotomic fields 1792: 1770: 1514:Gaussian integers 1255:Langlands program 1144:in 1770. As with 1025:Leopold Kronecker 1015:proved the first 1003:, in particular. 925:the proof of the 869:are given by the 842: 789: 691:rings of integers 652: 651: 609:Geometric algebra 320:Commutative rings 171:Category of rings 16:(Redirected from 7207: 7172: 7162: 7152: 7151: 7142: 7141: 7132: 7131: 7025:Rational numbers 6856: 6849: 6842: 6833: 6832: 6828: 6805: 6791: 6759: 6748:Neukirch, Jürgen 6743: 6706: 6669: 6657:, eds. (2010) , 6639: 6612: 6585: 6559: 6558: 6534: 6498:Neukirch, Jürgen 6489: 6488: 6486: 6477: 6471: 6465: 6459: 6457: 6456: 6437: 6431: 6412: 6406: 6405: 6403: 6401: 6386: 6380: 6379: 6357: 6351: 6350: 6324: 6318: 6315: 6309: 6308: 6287: 6281: 6280: 6263: 6257: 6256: 6255: 6254: 6248: 6242:, archived from 6237: 6228: 6219: 6218: 6199: 6193: 6190: 6184: 6181: 6175: 6172: 6080:'s reformulated 6001: 5999: 5998: 5993: 5988: 5987: 5986: 5981: 5970: 5968: 5963: 5952: 5933: 5929: 5921: 5915: 5911: 5903: 5884:In terms of the 5874:Reciprocity laws 5724: 5722: 5721: 5716: 5711: 5710: 5705: 5699: 5694: 5693: 5625: 5614:Artin L-function 5610:Galois extension 5607: 5593: 5587: 5581: 5551: 5549: 5548: 5543: 5535: 5534: 5533: 5532: 5520: 5519: 5496: 5495: 5479: 5473: 5467: 5461: 5449: 5443: 5434: 5432: 5431: 5426: 5424: 5423: 5417: 5416: 5407: 5406: 5401: 5392: 5359: 5358: 5357: 5356: 5344: 5343: 5333: 5324: 5323: 5290: 5256: 5250: 5229: 5215: 5209: 5200: 5199: 5193: 5187: 5178: 5171: 5167: 5155: 5153: 5152: 5147: 5145: 5144: 5132: 5121: 5120: 5110: 5105: 5077: 5075: 5074: 5069: 5058: 5034: 5032: 5031: 5026: 5024: 5003: 5001: 5000: 4995: 4993: 4989: 4988: 4967: 4966: 4956: 4951: 4927: 4917: 4916: 4895: 4894: 4867: 4866: 4854: 4853: 4841: 4840: 4816: 4815: 4794: 4793: 4769: 4768: 4755: 4741: 4739: 4738: 4733: 4716:in the variable 4711: 4709: 4708: 4703: 4670: 4668: 4667: 4662: 4660: 4659: 4643: 4641: 4640: 4635: 4623: 4621: 4620: 4615: 4594: 4592: 4591: 4586: 4561: 4559: 4558: 4553: 4551: 4550: 4535:, the valuation 4534: 4532: 4531: 4526: 4524: 4523: 4518: 4499: 4497: 4496: 4491: 4483: 4482: 4466: 4464: 4463: 4458: 4428: 4426: 4425: 4420: 4408: 4406: 4405: 4400: 4386: 4362: 4360: 4359: 4354: 4336: 4334: 4333: 4328: 4326: 4325: 4310:. Then, a place 4309: 4307: 4306: 4301: 4289: 4287: 4286: 4281: 4269: 4267: 4266: 4261: 4249: 4247: 4246: 4241: 4220: 4218: 4217: 4212: 4210: 4209: 4204: 4186:For example, if 4182: 4180: 4179: 4174: 4162: 4160: 4159: 4154: 4142: 4140: 4139: 4134: 4132: 4131: 4123: 4107: 4105: 4104: 4099: 4097: 4096: 4091: 4082: 4081: 4073: 4063: 4061: 4060: 4055: 4043: 4041: 4040: 4035: 3993: 3991: 3990: 3985: 3980: 3965: 3963: 3962: 3957: 3955: 3954: 3949: 3910: 3908: 3907: 3902: 3884: 3878: 3876: 3875: 3870: 3852: 3834: 3826:real places and 3825: 3793:, and, like the 3788: 3786: 3785: 3780: 3778: 3777: 3764: 3762: 3761: 3756: 3754: 3753: 3665: 3663: 3662: 3657: 3655: 3653: 3645: 3640: 3631: 3625: 3619: 3615: 3605: 3595: 3585: 3579: 3570: 3568: 3567: 3562: 3509: 3499: 3489: 3476: 3474: 3473: 3468: 3463: 3462: 3461: 3460: 3447: 3438: 3437: 3436: 3435: 3425: 3400: 3398: 3397: 3392: 3390: 3389: 3388: 3387: 3377: 3368: 3367: 3366: 3365: 3355: 3327: 3321: 3315: 3295: 3269: 3260: 3251: 3242: 3241: 3228: 3227: 3218: 3217: 3208: 3206: 3194: 3193: 3185: 3184: 3176: 3175: 3163: 3157: 3142: 3140: 3127:, respectively. 3118: 3108: 3098: 3096: 3087: 3085: 3068: 3066: 3065: 3060: 3031: 3026: 3021: 3019: 3018: 3006: 3005: 2968: 2962: 2951: 2949: 2948: 2943: 2935: 2934: 2929: 2928: 2918: 2917: 2907: 2902: 2865: 2855: 2853: 2852: 2847: 2841: 2840: 2839: 2829: 2824: 2823: 2812: 2811: 2810: 2800: 2795: 2794: 2765: 2755: 2748: 2742: 2732: 2722: 2708: 2706: 2700: 2698: 2674: 2667: 2660: 2653: 2643: 2633: 2627: 2621: 2611: 2602: 2600: 2599: 2594: 2538: 2537: 2511: 2505: 2498: 2492: 2486: 2480: 2474: 2468: 2463:. All ideals of 2462: 2452: 2442: 2436: 2430: 2402:Galois extension 2386: 2375: 2368: 2361: 2352: 2342: 2335: 2328: 2310: 2308: 2307: 2302: 2297: 2296: 2278: 2243: 2211: 2179: 2161: 2149: 2140: 2134: 2118: 2112: 2102: 2096: 2087: 2085: 2079: 2073: 2063:Dedekind domains 2059: 2049: 2047: 2046: 2041: 2039: 2038: 2033: 2032: 2015: 2013: 2012: 2007: 2001: 2000: 1999: 1989: 1984: 1983: 1972: 1971: 1970: 1960: 1955: 1954: 1931: 1925: 1911: 1905: 1904: 1898: 1897: 1891: 1887: 1883: 1879: 1878: 1872: 1871: 1865: 1864: 1851:are of the form 1850: 1846: 1845: 1839: 1838: 1832: 1828: 1826: 1822: 1816: 1809: 1807: 1806: 1801: 1793: 1785: 1771: 1763: 1749: 1748: 1723: 1719: 1718: 1712: 1711: 1705: 1701: 1690: 1684: 1678: 1668: 1647: 1638: 1636: 1635: 1630: 1540: 1534: 1527: 1520: 1507: 1500: 1490: 1484: 1478: 1472: 1466: 1456: 1447: 1445: 1444: 1439: 1379: 1375: 1371: 1365: 1359: 1353: 1347: 1341: 1328: 1322: 1234:. The resulting 1186:established the 1083:Richard Dedekind 1039:, he proved the 1037:quadratic fields 993:Richard Dedekind 918:Pierre de Fermat 879: 876: 852: 850: 849: 844: 840: 836: 835: 823: 822: 799: 797: 796: 791: 787: 762:, respectively: 683:rational numbers 675:abstract algebra 644: 637: 630: 615:Operator algebra 601:Clifford algebra 537: 535: 534: 529: 524: 523: 511: 490: 488: 487: 482: 480: 479: 474: 453: 451: 450: 445: 443: 442: 437: 415:Ring of integers 409: 406:Integers modulo 357:Euclidean domain 245: 243: 242: 237: 235: 227: 222: 199: 197: 196: 191: 189: 93:Product of rings 79:Fractional ideal 38: 30: 29: 21: 7215: 7214: 7210: 7209: 7208: 7206: 7205: 7204: 7185: 7184: 7183: 7178: 7120: 7086:Quadratic forms 7074: 7049:P-adic analysis 7005:Natural numbers 6983: 6940:Arakelov theory 6865: 6860: 6813: 6798: 6772: 6762:Springer-Verlag 6733: 6723:Springer-Verlag 6696: 6646: 6637: 6619: 6610: 6583: 6556: 6546: 6541: 6539:Further reading 6516: 6493: 6492: 6484: 6478: 6474: 6466: 6462: 6454: 6452: 6438: 6434: 6413: 6409: 6399: 6397: 6387: 6383: 6377: 6358: 6354: 6325: 6321: 6316: 6312: 6306: 6288: 6284: 6278: 6264: 6260: 6252: 6250: 6246: 6235: 6229: 6222: 6216: 6200: 6196: 6191: 6187: 6182: 6178: 6173: 6169: 6164: 6156:Tamagawa number 6137: 6113: 6097: 6091: 6082:reciprocity law 6007:reciprocity law 5971: 5969: 5953: 5951: 5950: 5946: 5920: 5916: 5902: 5898: 5896: 5893: 5892: 5886:Legendre symbol 5882: 5880:Reciprocity law 5876: 5865: 5858: 5836: 5830:(respectively, 5829: 5822: 5815: 5775: 5769: 5753:Integral ideals 5741: 5736: 5706: 5701: 5700: 5695: 5689: 5685: 5683: 5680: 5679: 5654:a number field 5649: 5643: 5621: 5603: 5589: 5583: 5577: 5566: 5528: 5524: 5515: 5511: 5510: 5506: 5491: 5487: 5485: 5482: 5481: 5475: 5469: 5463: 5462:. The function 5457: 5455: 5445: 5439: 5419: 5418: 5412: 5408: 5402: 5397: 5396: 5388: 5361: 5360: 5352: 5348: 5339: 5335: 5334: 5329: 5328: 5319: 5315: 5302: 5301: 5299: 5296: 5295: 5286: 5266: 5252: 5248: 5241: 5235: 5225: 5211: 5205: 5197: 5195: 5189: 5183: 5173: 5169: 5165: 5162: 5140: 5136: 5128: 5116: 5112: 5106: 5092: 5086: 5083: 5082: 5054: 5040: 5037: 5036: 5020: 5012: 5009: 5008: 4991: 4990: 4984: 4980: 4962: 4958: 4952: 4938: 4925: 4924: 4912: 4908: 4890: 4886: 4862: 4858: 4849: 4845: 4833: 4829: 4808: 4804: 4786: 4782: 4761: 4757: 4752: 4750: 4747: 4746: 4721: 4718: 4717: 4676: 4673: 4672: 4655: 4651: 4649: 4646: 4645: 4629: 4626: 4625: 4600: 4597: 4596: 4571: 4568: 4567: 4546: 4542: 4540: 4537: 4536: 4519: 4514: 4513: 4505: 4502: 4501: 4478: 4474: 4472: 4469: 4468: 4434: 4431: 4430: 4414: 4411: 4410: 4382: 4368: 4365: 4364: 4342: 4339: 4338: 4321: 4317: 4315: 4312: 4311: 4295: 4292: 4291: 4275: 4272: 4271: 4255: 4252: 4251: 4226: 4223: 4222: 4205: 4200: 4199: 4191: 4188: 4187: 4168: 4165: 4164: 4148: 4145: 4144: 4122: 4121: 4113: 4110: 4109: 4092: 4087: 4086: 4072: 4071: 4069: 4066: 4065: 4049: 4046: 4045: 4014: 4011: 4010: 4004:algebraic curve 3976: 3971: 3968: 3967: 3950: 3945: 3944: 3936: 3933: 3932: 3929: 3890: 3887: 3886: 3880: 3858: 3855: 3854: 3848: 3845:infinite primes 3833: 3827: 3824: 3818: 3815:infinite places 3773: 3772: 3770: 3767: 3766: 3749: 3748: 3746: 3743: 3742: 3697: 3672: 3649: 3641: 3639: 3637: 3634: 3633: 3627: 3621: 3617: 3611: 3597: 3591: 3581: 3575: 3523: 3520: 3519: 3512:diagonal matrix 3501: 3495: 3492:Minkowski space 3485: 3456: 3452: 3448: 3443: 3442: 3431: 3427: 3426: 3421: 3420: 3406: 3403: 3402: 3383: 3379: 3378: 3373: 3372: 3361: 3357: 3356: 3351: 3350: 3336: 3333: 3332: 3323: 3317: 3310: 3303: 3297: 3293: 3286: 3279: 3268: 3262: 3259: 3253: 3247: 3236: 3234: 3222: 3220: 3212: 3210: 3201: 3196: 3189: 3187: 3180: 3178: 3171: 3169: 3159: 3144: 3136: 3131: 3121:real embeddings 3110: 3100: 3094: 3089: 3083: 3078: 3075: 3020: 3014: 3010: 3001: 2997: 2989: 2986: 2985: 2964: 2960: 2930: 2924: 2923: 2922: 2913: 2909: 2903: 2892: 2874: 2871: 2870: 2860: 2835: 2831: 2830: 2825: 2819: 2818: 2806: 2802: 2801: 2796: 2790: 2789: 2774: 2771: 2770: 2757: 2756:. Suppose that 2750: 2744: 2738: 2728: 2717: 2704: 2702: 2696: 2691: 2669: 2662: 2655: 2645: 2635: 2629: 2623: 2613: 2607: 2530: 2526: 2524: 2521: 2520: 2507: 2500: 2494: 2488: 2482: 2476: 2470: 2464: 2454: 2444: 2443:, meaning that 2438: 2432: 2426: 2414: 2408:Galois group). 2377: 2370: 2363: 2354: 2348: 2337: 2330: 2315: 2292: 2288: 2274: 2239: 2207: 2175: 2170: 2167: 2166: 2151: 2142: 2136: 2127: 2114: 2108: 2098: 2092: 2083: 2081: 2075: 2069: 2055: 2034: 2028: 2027: 2026: 2024: 2021: 2020: 1995: 1991: 1990: 1985: 1979: 1978: 1966: 1962: 1961: 1956: 1950: 1949: 1940: 1937: 1936: 1927: 1926:is an ideal in 1921: 1918: 1907: 1902: 1900: 1895: 1893: 1889: 1885: 1881: 1876: 1874: 1869: 1867: 1862: 1852: 1848: 1843: 1841: 1836: 1834: 1830: 1824: 1820: 1818: 1814: 1784: 1762: 1744: 1740: 1732: 1729: 1728: 1721: 1716: 1714: 1709: 1707: 1703: 1697: 1686: 1680: 1670: 1664: 1643: 1549: 1546: 1545: 1536: 1529: 1522: 1516: 1502: 1496: 1491:are said to be 1486: 1480: 1474: 1468: 1462: 1452: 1451:In general, if 1388: 1385: 1384: 1377: 1373: 1367: 1361: 1355: 1349: 1343: 1337: 1324: 1318: 1307: 1302: 1274:Ribet's theorem 1228:elliptic curves 1224:Yutaka Taniyama 1216: 1192:reciprocity law 1181: 1129: 1080: 1021:quadratic forms 1009: 935: 907: 877: 857: 831: 827: 818: 814: 806: 803: 802: 770: 767: 766: 742:mathematician, 736: 731: 699:function fields 669:is a branch of 648: 619: 618: 551: 541: 540: 519: 515: 507: 505: 502: 501: 475: 470: 469: 467: 464: 463: 438: 433: 432: 430: 427: 426: 407: 377:Polynomial ring 327:Integral domain 316: 306: 305: 231: 223: 218: 210: 207: 206: 185: 183: 180: 179: 165:Involutive ring 50: 39: 33: 28: 23: 22: 15: 12: 11: 5: 7213: 7203: 7202: 7197: 7180: 7179: 7177: 7176: 7166: 7156: 7146: 7144:List of topics 7136: 7125: 7122: 7121: 7119: 7118: 7113: 7108: 7103: 7098: 7093: 7088: 7082: 7080: 7076: 7075: 7073: 7072: 7067: 7062: 7057: 7052: 7045:P-adic numbers 7042: 7037: 7032: 7027: 7022: 7017: 7012: 7007: 7002: 6997: 6991: 6989: 6985: 6984: 6982: 6981: 6976: 6971: 6957: 6947: 6933: 6928: 6923: 6918: 6900: 6889:Iwasawa theory 6873: 6871: 6867: 6866: 6859: 6858: 6851: 6844: 6836: 6830: 6829: 6811: 6797: 6796:External links 6794: 6793: 6792: 6770: 6744: 6731: 6707: 6694: 6670: 6645: 6642: 6641: 6640: 6635: 6618: 6615: 6614: 6613: 6608: 6586: 6581: 6560: 6545: 6542: 6540: 6537: 6536: 6535: 6514: 6491: 6490: 6472: 6460: 6432: 6407: 6381: 6375: 6352: 6319: 6310: 6304: 6282: 6276: 6258: 6220: 6214: 6194: 6185: 6176: 6166: 6165: 6163: 6160: 6159: 6158: 6153: 6148: 6143: 6136: 6133: 6112: 6109: 6093:Main article: 6090: 6087: 6003: 6002: 5991: 5984: 5980: 5977: 5974: 5966: 5962: 5959: 5956: 5949: 5945: 5942: 5939: 5936: 5932: 5927: 5924: 5919: 5914: 5909: 5906: 5901: 5878:Main article: 5875: 5872: 5863: 5856: 5834: 5827: 5820: 5813: 5771:Main article: 5768: 5765: 5740: 5737: 5735: 5732: 5714: 5709: 5704: 5698: 5692: 5688: 5664:complete field 5645:Main article: 5642: 5639: 5565: 5562: 5541: 5538: 5531: 5527: 5523: 5518: 5514: 5509: 5505: 5502: 5499: 5494: 5490: 5451: 5436: 5435: 5422: 5415: 5411: 5405: 5400: 5395: 5391: 5387: 5384: 5381: 5378: 5375: 5372: 5369: 5366: 5363: 5362: 5355: 5351: 5347: 5342: 5338: 5332: 5327: 5322: 5318: 5314: 5311: 5308: 5307: 5305: 5262: 5246: 5239: 5222:roots of unity 5161: 5158: 5143: 5139: 5135: 5131: 5127: 5124: 5119: 5115: 5109: 5104: 5101: 5098: 5095: 5091: 5067: 5064: 5061: 5057: 5053: 5050: 5047: 5044: 5023: 5019: 5016: 4987: 4983: 4979: 4976: 4973: 4970: 4965: 4961: 4955: 4950: 4947: 4944: 4941: 4937: 4933: 4930: 4928: 4926: 4923: 4920: 4915: 4911: 4907: 4904: 4901: 4898: 4893: 4889: 4885: 4882: 4879: 4876: 4873: 4870: 4865: 4861: 4857: 4852: 4848: 4844: 4839: 4836: 4832: 4828: 4825: 4822: 4819: 4814: 4811: 4807: 4803: 4800: 4797: 4792: 4789: 4785: 4781: 4778: 4775: 4772: 4767: 4764: 4760: 4756: 4754: 4731: 4728: 4725: 4701: 4698: 4695: 4692: 4689: 4686: 4683: 4680: 4658: 4654: 4633: 4613: 4610: 4607: 4604: 4584: 4581: 4578: 4575: 4549: 4545: 4522: 4517: 4512: 4509: 4489: 4486: 4481: 4477: 4456: 4453: 4450: 4447: 4444: 4441: 4438: 4418: 4398: 4395: 4392: 4389: 4385: 4381: 4378: 4375: 4372: 4352: 4349: 4346: 4324: 4320: 4299: 4279: 4259: 4239: 4236: 4233: 4230: 4208: 4203: 4198: 4195: 4172: 4152: 4129: 4126: 4120: 4117: 4095: 4090: 4085: 4079: 4076: 4053: 4033: 4030: 4027: 4024: 4021: 4018: 4008:function field 3983: 3979: 3975: 3953: 3948: 3943: 3940: 3928: 3925: 3900: 3897: 3894: 3868: 3865: 3862: 3831: 3822: 3776: 3752: 3735:absolute value 3695: 3680:absolute value 3671: 3668: 3652: 3648: 3644: 3560: 3557: 3554: 3551: 3548: 3545: 3542: 3539: 3536: 3533: 3530: 3527: 3500:by an element 3466: 3459: 3455: 3451: 3446: 3441: 3434: 3430: 3424: 3419: 3416: 3413: 3410: 3386: 3382: 3376: 3371: 3364: 3360: 3354: 3349: 3346: 3343: 3340: 3308: 3301: 3291: 3284: 3266: 3257: 3166:perfect square 3074: 3071: 3070: 3069: 3058: 3055: 3052: 3049: 3046: 3043: 3040: 3037: 3034: 3024: 3017: 3013: 3009: 3004: 3000: 2996: 2993: 2979:exact sequence 2953: 2952: 2941: 2938: 2933: 2927: 2921: 2916: 2912: 2906: 2901: 2898: 2895: 2891: 2887: 2884: 2881: 2878: 2857: 2856: 2845: 2838: 2834: 2828: 2822: 2816: 2809: 2805: 2799: 2793: 2787: 2784: 2781: 2778: 2604: 2603: 2592: 2589: 2586: 2583: 2580: 2577: 2574: 2571: 2568: 2565: 2562: 2559: 2556: 2553: 2550: 2547: 2544: 2541: 2536: 2533: 2529: 2514:ideal quotient 2413: 2410: 2312: 2311: 2300: 2295: 2291: 2287: 2284: 2281: 2277: 2273: 2270: 2267: 2264: 2261: 2258: 2255: 2252: 2249: 2246: 2242: 2238: 2235: 2232: 2229: 2226: 2223: 2220: 2217: 2214: 2210: 2206: 2203: 2200: 2197: 2194: 2191: 2188: 2185: 2182: 2178: 2174: 2037: 2031: 2017: 2016: 2005: 1998: 1994: 1988: 1982: 1976: 1969: 1965: 1959: 1953: 1947: 1944: 1917: 1914: 1811: 1810: 1799: 1796: 1791: 1788: 1783: 1780: 1777: 1774: 1769: 1766: 1761: 1758: 1755: 1752: 1747: 1743: 1739: 1736: 1679:, then either 1640: 1639: 1628: 1625: 1622: 1619: 1616: 1613: 1610: 1607: 1604: 1601: 1598: 1595: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1521:, the numbers 1449: 1448: 1437: 1434: 1431: 1428: 1425: 1422: 1419: 1416: 1413: 1410: 1407: 1404: 1401: 1398: 1395: 1392: 1336:is an element 1306: 1303: 1301: 1298: 1294:Iwasawa theory 1278:Richard Taylor 1215: 1212: 1180: 1177: 1165:Hilbert symbol 1128: 1125: 1079: 1076: 1008: 1005: 977:Disquisitiones 969:Disquisitiones 934: 931: 906: 903: 878: 1800 BC 854: 853: 839: 834: 830: 826: 821: 817: 813: 810: 800: 786: 783: 780: 777: 774: 735: 732: 730: 727: 650: 649: 647: 646: 639: 632: 624: 621: 620: 612: 611: 583: 582: 576: 570: 564: 552: 547: 546: 543: 542: 539: 538: 527: 522: 518: 514: 510: 491: 478: 473: 454: 441: 436: 424:-adic integers 417: 411: 402: 388: 387: 386: 385: 379: 373: 372: 371: 359: 353: 347: 341: 335: 317: 312: 311: 308: 307: 304: 303: 302: 301: 289: 288: 287: 281: 269: 268: 267: 249: 248: 247: 246: 234: 230: 226: 221: 217: 214: 200: 188: 167: 161: 155: 149: 135: 134: 128: 122: 108: 107: 101: 95: 89: 88: 87: 81: 69: 63: 51: 49:Basic concepts 48: 47: 44: 43: 26: 9: 6: 4: 3: 2: 7212: 7201: 7200:Number theory 7198: 7196: 7193: 7192: 7190: 7175: 7171: 7167: 7165: 7161: 7157: 7155: 7147: 7145: 7137: 7135: 7127: 7126: 7123: 7117: 7114: 7112: 7109: 7107: 7104: 7102: 7099: 7097: 7094: 7092: 7091:Modular forms 7089: 7087: 7084: 7083: 7081: 7077: 7071: 7068: 7066: 7063: 7061: 7058: 7056: 7053: 7050: 7046: 7043: 7041: 7038: 7036: 7033: 7031: 7028: 7026: 7023: 7021: 7018: 7016: 7015:Prime numbers 7013: 7011: 7008: 7006: 7003: 7001: 6998: 6996: 6993: 6992: 6990: 6986: 6980: 6977: 6975: 6972: 6969: 6965: 6961: 6958: 6955: 6951: 6948: 6945: 6941: 6937: 6934: 6932: 6929: 6927: 6924: 6922: 6919: 6916: 6912: 6908: 6904: 6901: 6898: 6897:Kummer theory 6894: 6890: 6886: 6882: 6878: 6875: 6874: 6872: 6868: 6864: 6863:Number theory 6857: 6852: 6850: 6845: 6843: 6838: 6837: 6834: 6826: 6822: 6821: 6816: 6812: 6809: 6804: 6800: 6799: 6789: 6785: 6781: 6777: 6773: 6767: 6763: 6758: 6753: 6749: 6745: 6742: 6738: 6734: 6728: 6724: 6720: 6716: 6712: 6708: 6705: 6701: 6697: 6695:0-521-43834-9 6691: 6687: 6683: 6679: 6675: 6671: 6668: 6664: 6660: 6656: 6652: 6648: 6647: 6638: 6632: 6628: 6627: 6626:Number Fields 6621: 6620: 6611: 6605: 6602:, CRC Press, 6601: 6600: 6595: 6591: 6587: 6584: 6578: 6574: 6570: 6566: 6561: 6555: 6554: 6548: 6547: 6533: 6529: 6525: 6521: 6517: 6511: 6507: 6503: 6499: 6495: 6494: 6483: 6476: 6470: 6464: 6450: 6446: 6442: 6436: 6429: 6425: 6421: 6417: 6411: 6396: 6392: 6385: 6378: 6376:1-85702-521-0 6372: 6368: 6367: 6362: 6356: 6349: 6345: 6341: 6337: 6333: 6329: 6328:Hasse, Helmut 6323: 6314: 6307: 6305:0-387-94674-8 6301: 6297: 6293: 6286: 6279: 6273: 6269: 6262: 6249:on 2021-05-22 6245: 6241: 6234: 6227: 6225: 6217: 6211: 6207: 6206: 6198: 6189: 6180: 6171: 6167: 6157: 6154: 6152: 6149: 6147: 6146:Kummer theory 6144: 6142: 6139: 6138: 6132: 6130: 6126: 6122: 6118: 6111:Related areas 6108: 6106: 6102: 6096: 6086: 6083: 6079: 6075: 6071: 6067: 6063: 6059: 6055: 6051: 6047: 6043: 6039: 6035: 6031: 6027: 6023: 6019: 6014: 6012: 6008: 5989: 5982: 5978: 5975: 5972: 5964: 5960: 5957: 5954: 5943: 5940: 5934: 5930: 5925: 5922: 5917: 5912: 5907: 5904: 5899: 5891: 5890: 5889: 5887: 5881: 5871: 5869: 5862: 5859: +  5855: 5852: 5848: 5844: 5840: 5833: 5826: 5819: 5816: +  5812: 5808: 5804: 5800: 5796: 5792: 5788: 5784: 5780: 5774: 5764: 5762: 5758: 5754: 5750: 5746: 5734:Major results 5731: 5728: 5712: 5707: 5696: 5690: 5686: 5677: 5673: 5669: 5665: 5661: 5657: 5653: 5648: 5638: 5636: 5631: 5629: 5624: 5619: 5615: 5611: 5606: 5601: 5597: 5592: 5586: 5580: 5575: 5571: 5564:Zeta function 5561: 5559: 5555: 5539: 5536: 5529: 5525: 5521: 5516: 5512: 5507: 5503: 5500: 5497: 5492: 5488: 5478: 5472: 5466: 5460: 5454: 5448: 5442: 5413: 5403: 5393: 5385: 5382: 5376: 5370: 5364: 5353: 5349: 5345: 5340: 5336: 5320: 5316: 5312: 5309: 5303: 5294: 5293: 5292: 5289: 5283: 5281: 5277: 5273: 5272:Galois module 5269: 5265: 5260: 5255: 5245: 5238: 5233: 5228: 5223: 5219: 5214: 5208: 5202: 5192: 5186: 5182: 5177: 5156: 5141: 5133: 5129: 5125: 5117: 5113: 5102: 5099: 5096: 5093: 5089: 5079: 5059: 5055: 5051: 5042: 5017: 5014: 5004: 4985: 4977: 4974: 4971: 4963: 4959: 4948: 4945: 4942: 4939: 4935: 4931: 4929: 4921: 4918: 4913: 4905: 4902: 4899: 4891: 4887: 4883: 4877: 4874: 4871: 4863: 4859: 4855: 4850: 4846: 4842: 4837: 4834: 4826: 4823: 4820: 4812: 4809: 4805: 4801: 4798: 4795: 4790: 4787: 4779: 4776: 4773: 4765: 4762: 4758: 4743: 4729: 4726: 4723: 4715: 4693: 4690: 4687: 4678: 4656: 4652: 4631: 4608: 4602: 4579: 4573: 4565: 4562:measures the 4547: 4543: 4520: 4510: 4507: 4487: 4484: 4479: 4475: 4451: 4448: 4445: 4439: 4436: 4416: 4409:at the point 4393: 4387: 4383: 4376: 4370: 4350: 4347: 4344: 4322: 4318: 4297: 4277: 4257: 4234: 4228: 4206: 4196: 4193: 4184: 4170: 4150: 4124: 4118: 4115: 4093: 4083: 4074: 4051: 4028: 4022: 4019: 4016: 4009: 4005: 4001: 3997: 3981: 3977: 3973: 3951: 3941: 3938: 3924: 3922: 3917: 3912: 3895: 3892: 3883: 3879:to mean that 3863: 3860: 3851: 3846: 3842: 3841:finite primes 3838: 3830: 3821: 3816: 3812: 3808: 3804: 3800: 3799:finite places 3796: 3792: 3740: 3737:functions on 3736: 3732: 3727: 3725: 3721: 3717: 3713: 3709: 3705: 3701: 3694:functions |·| 3693: 3689: 3685: 3681: 3677: 3667: 3630: 3624: 3614: 3609: 3604: 3601: 3594: 3589: 3586:-dimensional 3584: 3578: 3574:The image of 3572: 3555: 3552: 3546: 3543: 3540: 3534: 3531: 3528: 3517: 3513: 3508: 3504: 3498: 3493: 3488: 3482: 3480: 3464: 3457: 3453: 3449: 3439: 3432: 3428: 3414: 3411: 3408: 3384: 3380: 3369: 3362: 3358: 3344: 3341: 3338: 3329: 3326: 3320: 3314: 3307: 3300: 3290: 3283: 3277: 3273: 3265: 3256: 3250: 3244: 3240: 3232: 3226: 3216: 3205: 3199: 3192: 3183: 3174: 3167: 3162: 3155: 3151: 3147: 3139: 3134: 3128: 3126: 3122: 3117: 3113: 3107: 3103: 3092: 3081: 3056: 3050: 3047: 3044: 3038: 3035: 3032: 3022: 3015: 3011: 3002: 2998: 2991: 2984: 2983: 2982: 2980: 2976: 2972: 2967: 2958: 2939: 2931: 2914: 2910: 2904: 2899: 2896: 2893: 2889: 2885: 2882: 2879: 2876: 2869: 2868: 2867: 2864: 2843: 2836: 2832: 2826: 2814: 2807: 2803: 2797: 2785: 2779: 2769: 2768: 2767: 2764: 2760: 2754: 2747: 2741: 2736: 2733:. There is a 2731: 2726: 2721: 2715: 2710: 2694: 2689: 2685: 2680: 2678: 2673: 2666: 2659: 2652: 2648: 2642: 2638: 2632: 2626: 2620: 2616: 2610: 2590: 2584: 2581: 2578: 2575: 2572: 2569: 2566: 2563: 2557: 2551: 2548: 2545: 2539: 2534: 2531: 2527: 2519: 2518: 2517: 2515: 2510: 2504: 2497: 2491: 2485: 2479: 2473: 2467: 2461: 2457: 2451: 2447: 2441: 2435: 2429: 2424: 2420: 2409: 2407: 2403: 2399: 2395: 2391: 2385: 2381: 2373: 2366: 2360: 2357: 2351: 2346: 2341: 2334: 2327: 2323: 2320:= (1 − 2319: 2298: 2293: 2282: 2268: 2265: 2262: 2253: 2247: 2233: 2230: 2227: 2221: 2215: 2201: 2198: 2195: 2189: 2183: 2172: 2165: 2164: 2163: 2162:implies that 2159: 2155: 2148: 2145: 2139: 2133: 2130: 2124: 2122: 2117: 2111: 2106: 2101: 2095: 2089: 2078: 2072: 2066: 2064: 2058: 2053: 2035: 2003: 1996: 1992: 1986: 1974: 1967: 1963: 1957: 1945: 1942: 1935: 1934: 1933: 1930: 1924: 1913: 1910: 1866:. Similarly, 1860: 1856: 1797: 1789: 1786: 1781: 1778: 1767: 1764: 1759: 1756: 1750: 1745: 1741: 1737: 1734: 1727: 1726: 1725: 1700: 1694: 1689: 1683: 1677: 1673: 1667: 1663: 1659: 1653: 1651: 1646: 1626: 1620: 1617: 1614: 1605: 1602: 1599: 1593: 1587: 1584: 1581: 1578: 1569: 1566: 1563: 1560: 1554: 1551: 1544: 1543: 1542: 1539: 1533: 1526: 1519: 1515: 1511: 1506: 1499: 1494: 1489: 1483: 1477: 1471: 1465: 1460: 1455: 1435: 1429: 1426: 1420: 1414: 1411: 1405: 1402: 1399: 1396: 1393: 1390: 1383: 1382: 1381: 1370: 1364: 1358: 1352: 1348:such that if 1346: 1340: 1335: 1334:prime element 1330: 1327: 1321: 1316: 1315:prime numbers 1312: 1300:Basic notions 1297: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1258: 1256: 1252: 1247: 1245: 1241: 1237: 1233: 1232:modular forms 1229: 1225: 1221: 1214:Modern theory 1211: 1209: 1205: 1201: 1197: 1193: 1189: 1185: 1176: 1174: 1170: 1166: 1162: 1158: 1153: 1151: 1147: 1143: 1139: 1138: 1133: 1132:David Hilbert 1124: 1122: 1121:ideal numbers 1118: 1114: 1110: 1106: 1102: 1096: 1092: 1090: 1089: 1084: 1075: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1044: 1042: 1038: 1034: 1030: 1029:number fields 1026: 1022: 1018: 1014: 1004: 1002: 998: 994: 990: 986: 982: 978: 973: 970: 966: 962: 958: 954: 950: 946: 942: 941: 930: 928: 923: 919: 915: 911: 902: 900: 899: 893: 891: 887: 883: 872: 868: 864: 860: 837: 832: 828: 824: 819: 815: 811: 808: 801: 784: 781: 778: 775: 772: 765: 764: 763: 761: 757: 753: 749: 745: 741: 726: 724: 720: 716: 715:Galois groups 712: 708: 704: 700: 696: 695:finite fields 692: 688: 684: 680: 677:to study the 676: 672: 671:number theory 668: 661: 656: 645: 640: 638: 633: 631: 626: 625: 623: 622: 617: 616: 610: 606: 605: 604: 603: 602: 597: 596: 595: 590: 589: 588: 581: 577: 575: 571: 569: 565: 563: 562:Division ring 559: 558: 557: 556: 550: 545: 544: 516: 500: 498: 492: 476: 462: 461:-adic numbers 460: 455: 439: 425: 423: 418: 416: 412: 410: 403: 401: 397: 396: 395: 394: 393: 384: 380: 378: 374: 370: 366: 365: 364: 360: 358: 354: 352: 348: 346: 342: 340: 336: 334: 330: 329: 328: 324: 323: 322: 321: 315: 310: 309: 300: 296: 295: 294: 290: 286: 282: 280: 276: 275: 274: 270: 266: 262: 261: 260: 256: 255: 254: 253: 228: 224: 215: 212: 205: 204:Terminal ring 201: 178: 174: 173: 172: 168: 166: 162: 160: 156: 154: 150: 148: 144: 143: 142: 141: 140: 133: 129: 127: 123: 121: 117: 116: 115: 114: 113: 106: 102: 100: 96: 94: 90: 86: 82: 80: 76: 75: 74: 73:Quotient ring 70: 68: 64: 62: 58: 57: 56: 55: 46: 45: 42: 37:→ Ring theory 36: 32: 31: 19: 6988:Key concepts 6915:sieve theory 6876: 6818: 6751: 6714: 6681: 6658: 6625: 6598: 6590:Stewart, Ian 6564: 6552: 6505: 6501: 6475: 6463: 6451:the element 6448: 6440: 6435: 6427: 6426:the element 6423: 6415: 6410: 6398:. Retrieved 6394: 6384: 6364: 6361:Singh, Simon 6355: 6339: 6322: 6313: 6291: 6285: 6267: 6261: 6251:, retrieved 6244:the original 6239: 6208:, Springer, 6204: 6197: 6188: 6179: 6170: 6120: 6114: 6105:number field 6100: 6098: 6073: 6069: 6065: 6061: 6057: 6053: 6049: 6045: 6037: 6034:prime number 6025: 6021: 6015: 6006: 6004: 5883: 5867: 5860: 5853: 5842: 5838: 5831: 5824: 5817: 5810: 5806: 5802: 5798: 5794: 5790: 5786: 5782: 5778: 5776: 5760: 5757:class number 5744: 5742: 5675: 5671: 5667: 5659: 5655: 5650: 5641:Local fields 5632: 5622: 5604: 5590: 5584: 5578: 5567: 5553: 5476: 5470: 5464: 5458: 5452: 5446: 5440: 5437: 5287: 5284: 5279: 5275: 5267: 5263: 5258: 5253: 5243: 5236: 5226: 5224:that lie in 5212: 5206: 5203: 5190: 5184: 5175: 5163: 5081: 5006: 4745: 4714:power series 4185: 3930: 3913: 3881: 3849: 3844: 3840: 3836: 3828: 3819: 3814: 3813:. These are 3810: 3806: 3802: 3798: 3794: 3790: 3738: 3730: 3728: 3723: 3719: 3711: 3707: 3703: 3699: 3690:, there are 3687: 3683: 3673: 3628: 3622: 3612: 3608:discriminant 3607: 3602: 3599: 3592: 3582: 3576: 3573: 3506: 3502: 3496: 3486: 3483: 3478: 3330: 3324: 3318: 3312: 3305: 3298: 3288: 3281: 3278:is the pair 3275: 3271: 3263: 3254: 3248: 3245: 3238: 3224: 3214: 3203: 3197: 3190: 3181: 3172: 3160: 3153: 3149: 3145: 3137: 3132: 3129: 3124: 3120: 3115: 3111: 3105: 3101: 3090: 3079: 3076: 2969:, while the 2965: 2954: 2862: 2858: 2762: 2758: 2752: 2745: 2739: 2729: 2719: 2711: 2692: 2687: 2684:class number 2683: 2681: 2677:Picard group 2671: 2664: 2657: 2650: 2646: 2640: 2636: 2630: 2624: 2618: 2614: 2608: 2605: 2508: 2502: 2495: 2489: 2483: 2477: 2471: 2465: 2459: 2455: 2449: 2445: 2439: 2433: 2427: 2415: 2400:(that is, a 2397: 2389: 2383: 2379: 2371: 2364: 2358: 2355: 2349: 2339: 2332: 2325: 2321: 2317: 2313: 2157: 2156:)(1 − 2153: 2146: 2143: 2137: 2131: 2128: 2125: 2115: 2109: 2099: 2093: 2090: 2076: 2070: 2067: 2056: 2018: 1928: 1922: 1919: 1908: 1858: 1854: 1812: 1698: 1692: 1687: 1681: 1675: 1671: 1665: 1661: 1654: 1644: 1641: 1537: 1531: 1524: 1517: 1509: 1504: 1497: 1492: 1487: 1481: 1475: 1469: 1463: 1453: 1450: 1368: 1362: 1356: 1350: 1344: 1338: 1333: 1331: 1325: 1319: 1308: 1262:Andrew Wiles 1259: 1248: 1244:modular form 1220:Goro Shimura 1217: 1182: 1173:Teiji Takagi 1154: 1135: 1130: 1117:Emmy Noether 1100: 1098: 1094: 1086: 1081: 1063: 1059: 1045: 1010: 985:Ernst Kummer 976: 974: 968: 948: 939: 938: 936: 921: 908: 896: 894: 885: 881: 866: 862: 858: 855: 759: 755: 751: 747: 737: 666: 665: 613: 599: 598: 594:Free algebra 592: 591: 585: 584: 553: 496: 458: 421: 391: 390: 389: 369:Finite field 318: 265:Finite field 251: 250: 177:Initial ring 137: 136: 110: 109: 52: 7174:Wikiversity 7096:L-functions 6711:Lang, Serge 6594:Tall, David 5658:at a place 5647:Local field 4337:at a point 3516:dot product 3252:is denoted 2374:≡ 1 (mod 4) 2367:≡ 3 (mod 4) 2052:prime ideal 2019:where each 1530:−2 + 1204:norm symbol 1163:and of the 1137:Zahlbericht 1105:ring theory 1101:Vorlesungen 997:L-functions 922:Arithmetica 914:conjectured 898:Arithmetica 740:Alexandrian 574:Simple ring 285:Jordan ring 159:Graded ring 41:Ring theory 7189:Categories 7055:Arithmetic 6788:0956.11021 6532:0948.11001 6400:21 January 6253:2007-12-25 5652:Completing 5210:, denoted 4000:projective 3916:adele ring 3676:valuations 2766:satisfies 2644:such that 2338:1 − 1251:André Weil 1200:Eisenstein 1184:Emil Artin 1033:unit group 912:was first 744:Diophantus 734:Diophantus 713:, and the 689:and their 580:Commutator 339:GCD domain 6825:EMS Press 6445:adjoining 6420:adjoining 5976:− 5958:− 5941:− 5554:regulator 5501:⋯ 5386:⁡ 5326:→ 5321:× 5249:− 1 5108:∞ 5100:− 5090:∑ 5018:∈ 5007:for some 4975:− 4954:∞ 4946:− 4936:∑ 4922:⋯ 4903:− 4875:− 4835:− 4824:− 4810:− 4799:⋯ 4788:− 4777:− 4763:− 4727:− 4691:− 4511:∈ 4485:≠ 4348:∈ 4128:^ 4119:− 4084:⊂ 4078:^ 3899:∞ 3896:∤ 3867:∞ 3864:∣ 3647:Δ 3547:⁡ 3538:⟩ 3526:⟨ 3440:⊕ 3418:→ 3412:: 3370:⊕ 3348:→ 3342:: 3272:signature 3054:→ 3048:⁡ 3042:→ 3036:⁡ 3016:× 3008:→ 3003:× 2995:→ 2890:∑ 2880:⁡ 2815:⋯ 2703:(2, 1 + √ 2582:⊆ 2567:∈ 2532:− 2231:− 2222:⋅ 2152:2 = (1 + 2082:(2, 1 + √ 1975:⋯ 1787:− 1782:− 1765:− 1618:− 1582:− 1493:associate 1467:, and if 1427:− 1421:⋅ 1412:− 1400:⋅ 1007:Dirichlet 521:∞ 299:Semifield 7164:Wikibook 7134:Category 6750:(1999). 6713:(1994), 6680:(1993), 6596:(2015), 6363:(1997), 6338:(eds.), 6296:Springer 6135:See also 5797:, where 5662:gives a 5170:−1 4671:is then 4183:-adics. 3698: : 3316:, where 3235:−√ 3188:−√ 3095:−1 3023:→ 2971:cokernel 2714:divisors 1378:−2 1286:category 1078:Dedekind 981:European 965:Legendre 961:Lagrange 679:integers 293:Semiring 279:Lie ring 61:Subrings 6995:Numbers 6827:, 2001 6780:1697859 6741:1282723 6704:1215934 6667:0215665 6524:1737196 6480:Stein. 6348:0215665 6292:Hilbert 6052:) and ( 5616:of the 5582:. When 5450:and |·| 3606:is the 3588:lattice 3490:called 3237:− 3223:− 3213:− 3202:− 3186:and to 3143:, with 2406:abelian 1823:)(2 - √ 1503:− 1290:schemes 1240:modular 1127:Hilbert 1109:Hilbert 705:admits 495:Prüfer 97:•  6870:Fields 6786:  6778:  6768:  6739:  6729:  6702:  6692:  6665:  6633:  6606:  6579:  6530:  6522:  6512:  6373:  6346:  6302:  6274:  6212:  6042:modulo 6036:is an 5805:, and 5438:where 5179:. The 4250:where 4006:. The 3996:smooth 3837:primes 3670:Places 3618:Δ 3270:. The 3164:not a 3158:, and 3156:> 0 2957:kernel 2612:where 2501:(1) = 2392:is an 1819:(2 + √ 1070:. The 1019:, for 905:Fermat 841:  788:  719:fields 711:ideals 697:, and 147:Module 120:Kernel 7010:Unity 6557:(PDF) 6485:(PDF) 6247:(PDF) 6236:(PDF) 6162:Notes 6078:Artin 5845:is a 5608:is a 5270:as a 5196:2 + √ 5160:Units 3994:be a 3847:. If 3731:place 3590:. If 2859:Then 2737:from 2668:, or 2419:group 2404:with 2378:(1 + 2068:When 2050:is a 1901:2 - √ 1894:2 + √ 1875:2 - √ 1868:2 + √ 1842:2 - √ 1835:2 + √ 1829:. If 1827:) = 9 1715:2 - √ 1708:2 + √ 1660:. An 1523:1 + 2 1457:is a 1179:Artin 957:Euler 945:Latin 933:Gauss 499:-ring 363:Field 259:Field 67:Ideal 54:Rings 6766:ISBN 6727:ISBN 6690:ISBN 6631:ISBN 6604:ISBN 6577:ISBN 6510:ISBN 6402:2013 6371:ISBN 6300:ISBN 6272:ISBN 6210:ISBN 6099:The 5851:rank 5568:The 5168:and 3966:and 3598:det 3123:and 2955:The 2861:div 2751:Div 2718:Div 2670:Pic 2628:and 2475:and 2336:and 2331:1 + 2324:) ⋅ 2316:1 + 1899:and 1873:and 1713:and 1528:and 1501:and 1485:and 1459:unit 1292:and 1268:for 1230:and 1222:and 999:and 991:and 975:The 963:and 884:+ 65 758:and 750:and 703:ring 6784:Zbl 6569:doi 6528:Zbl 6447:to 6443:by 6422:to 6418:by 5849:of 5670:or 5383:log 4624:at 4566:of 3809:or 3789:of 3632:is 3620:or 3610:of 3304:+ 2 3274:of 3219:to 3177:to 3109:or 3033:Div 3027:div 2961:div 2959:of 2877:div 2686:of 2663:Cl 2656:Cl 2453:if 2431:of 2396:of 2097:of 1920:If 1857:+ 3 1840:or 1685:or 1366:or 1342:of 1288:of 1167:of 1035:of 916:by 717:of 7191:: 6966:, 6942:, 6913:, 6909:, 6895:, 6891:, 6887:, 6883:, 6823:, 6817:, 6782:. 6776:MR 6774:. 6764:. 6754:. 6737:MR 6735:, 6725:, 6717:, 6700:MR 6698:, 6688:, 6676:; 6663:MR 6653:; 6592:; 6575:, 6526:, 6520:MR 6518:, 6504:, 6455:-5 6393:. 6344:MR 6334:; 6298:, 6294:, 6238:, 6223:^ 6131:. 6013:. 6005:A 5870:. 5809:= 5793:× 5763:. 5637:. 5540:0. 5242:+ 4002:, 3998:, 3923:. 3729:A 3714:. 3702:→ 3686:→ 3666:. 3571:. 3544:Tr 3505:∈ 3481:. 3328:. 3311:= 3287:, 3243:. 3233:, 3200:(√ 3152:, 3148:∈ 3135:(√ 3114:→ 3104:→ 3093:(√ 3082:(√ 3057:1. 3045:Cl 2761:∈ 2709:. 2705:-5 2697:-5 2695:(√ 2661:, 2649:= 2647:xI 2639:∈ 2617:∈ 2609:Ox 2516:: 2484:IJ 2458:∈ 2448:⊆ 2446:xJ 2353:, 2084:-5 2065:. 1903:-5 1896:-5 1892:, 1877:-5 1870:-5 1863:-5 1844:-5 1837:-5 1825:-5 1821:-5 1717:-5 1710:-5 1706:, 1676:yz 1674:= 1488:up 1476:up 1357:ab 1332:A 1329:. 1246:. 1210:. 1175:. 987:, 959:, 947:: 875:c. 865:= 861:+ 725:. 693:, 681:, 607:• 578:• 572:• 566:• 560:• 493:• 456:• 419:• 413:• 404:• 398:• 381:• 375:• 367:• 361:• 355:• 349:• 343:• 337:• 331:• 325:• 297:• 291:• 283:• 277:• 271:• 263:• 257:• 202:• 175:• 169:• 163:• 157:• 151:• 145:• 130:• 124:• 118:• 103:• 91:• 83:• 77:• 71:• 65:• 59:• 7051:) 7047:( 7000:0 6970:) 6962:( 6956:) 6952:( 6946:) 6938:( 6917:) 6905:( 6899:) 6879:( 6855:e 6848:t 6841:v 6790:. 6571:: 6487:. 6458:. 6453:√ 6449:Z 6441:Z 6430:. 6428:i 6424:Z 6416:Z 6404:. 6121:Z 6074:p 6072:/ 6070:b 6068:, 6066:a 6062:p 6058:p 6056:/ 6054:q 6050:q 6048:/ 6046:p 6038:n 6026:q 6024:/ 6022:p 6020:( 5990:. 5983:2 5979:1 5973:q 5965:2 5961:1 5955:p 5948:) 5944:1 5938:( 5935:= 5931:) 5926:p 5923:q 5918:( 5913:) 5908:q 5905:p 5900:( 5868:O 5864:2 5861:r 5857:1 5854:r 5843:O 5839:K 5835:2 5832:r 5828:1 5825:r 5821:2 5818:r 5814:1 5811:r 5807:r 5803:O 5799:G 5795:Z 5791:G 5787:O 5783:O 5779:O 5761:h 5745:K 5713:: 5708:p 5703:Q 5697:/ 5691:w 5687:K 5676:p 5672:C 5668:R 5660:w 5656:K 5623:K 5605:K 5591:Q 5585:K 5579:K 5537:= 5530:2 5526:r 5522:+ 5517:1 5513:r 5508:x 5504:+ 5498:+ 5493:1 5489:x 5477:O 5471:K 5465:L 5459:v 5453:v 5447:K 5441:v 5414:v 5410:) 5404:v 5399:| 5394:x 5390:| 5380:( 5377:= 5374:) 5371:x 5368:( 5365:L 5354:2 5350:r 5346:+ 5341:1 5337:r 5331:R 5317:K 5313:: 5310:L 5304:{ 5288:K 5280:Q 5278:/ 5276:K 5268:Q 5264:Z 5261:⊗ 5259:O 5254:Q 5247:2 5244:r 5240:1 5237:r 5227:O 5213:O 5207:O 5198:3 5191:Z 5185:Z 5176:i 5174:± 5166:1 5142:n 5138:) 5134:t 5130:/ 5126:1 5123:( 5118:n 5114:a 5103:k 5097:= 5094:n 5066:) 5063:) 5060:t 5056:/ 5052:1 5049:( 5046:( 5043:k 5022:N 5015:k 4986:n 4982:) 4978:2 4972:t 4969:( 4964:n 4960:a 4949:k 4943:= 4940:n 4932:= 4919:+ 4914:2 4910:) 4906:2 4900:t 4897:( 4892:2 4888:a 4884:+ 4881:) 4878:2 4872:t 4869:( 4864:1 4860:a 4856:+ 4851:0 4847:a 4843:+ 4838:1 4831:) 4827:2 4821:t 4818:( 4813:1 4806:a 4802:+ 4796:+ 4791:k 4784:) 4780:2 4774:t 4771:( 4766:k 4759:a 4730:2 4724:t 4700:) 4697:) 4694:2 4688:t 4685:( 4682:( 4679:k 4657:2 4653:v 4632:2 4612:) 4609:x 4606:( 4603:q 4583:) 4580:x 4577:( 4574:p 4548:2 4544:v 4521:1 4516:A 4508:2 4488:0 4480:1 4476:x 4455:] 4452:1 4449:: 4446:2 4443:[ 4440:= 4437:p 4417:p 4397:) 4394:x 4391:( 4388:q 4384:/ 4380:) 4377:x 4374:( 4371:p 4351:X 4345:p 4323:p 4319:v 4298:t 4278:F 4258:t 4238:) 4235:t 4232:( 4229:k 4207:1 4202:P 4197:= 4194:X 4171:p 4151:F 4125:X 4116:X 4094:n 4089:A 4075:X 4052:X 4032:) 4029:X 4026:( 4023:k 4020:= 4017:F 3982:k 3978:/ 3974:X 3952:q 3947:F 3942:= 3939:k 3893:v 3882:v 3861:v 3850:v 3832:2 3829:r 3823:1 3820:r 3811:C 3807:R 3803:K 3795:p 3791:O 3775:p 3751:p 3739:K 3724:Q 3720:Q 3712:p 3708:p 3704:R 3700:Q 3696:p 3688:R 3684:Q 3651:| 3643:| 3629:O 3623:D 3613:O 3603:B 3600:B 3593:B 3583:d 3577:O 3559:) 3556:y 3553:x 3550:( 3541:= 3535:y 3532:, 3529:x 3507:K 3503:x 3497:K 3487:d 3465:. 3458:2 3454:r 3450:2 3445:R 3433:1 3429:r 3423:R 3415:K 3409:M 3385:2 3381:r 3375:C 3363:1 3359:r 3353:R 3345:K 3339:M 3325:K 3319:d 3313:d 3309:2 3306:r 3302:1 3299:r 3294:) 3292:2 3289:r 3285:1 3282:r 3280:( 3276:K 3267:2 3264:r 3258:1 3255:r 3249:K 3239:a 3225:a 3221:√ 3215:a 3211:√ 3207:) 3204:a 3198:Q 3191:a 3182:a 3179:√ 3173:a 3170:√ 3161:a 3154:a 3150:Q 3146:a 3141:) 3138:a 3133:Q 3116:C 3112:K 3106:R 3102:K 3097:) 3091:Q 3086:) 3084:2 3080:Q 3051:K 3039:K 3012:K 2999:O 2992:1 2966:O 2940:. 2937:] 2932:i 2926:p 2920:[ 2915:i 2911:e 2905:t 2900:1 2897:= 2894:i 2886:= 2883:x 2863:x 2844:. 2837:t 2833:e 2827:t 2821:p 2808:1 2804:e 2798:1 2792:p 2786:= 2783:) 2780:x 2777:( 2763:K 2759:x 2753:K 2746:K 2740:K 2730:O 2720:K 2707:) 2699:) 2693:Q 2688:K 2672:O 2665:O 2658:K 2651:J 2641:K 2637:x 2631:J 2625:I 2619:K 2615:x 2591:. 2588:} 2585:O 2579:J 2576:x 2573:: 2570:K 2564:x 2561:{ 2558:= 2555:) 2552:J 2549:: 2546:O 2543:( 2540:= 2535:1 2528:J 2509:J 2503:O 2496:J 2490:I 2478:J 2472:I 2466:O 2460:O 2456:x 2450:J 2440:O 2434:K 2428:J 2398:Q 2390:K 2384:Z 2382:) 2380:i 2372:p 2365:p 2359:Z 2356:p 2350:p 2340:i 2333:i 2326:i 2322:i 2318:i 2299:; 2294:2 2290:) 2286:] 2283:i 2280:[ 2276:Z 2272:) 2269:i 2266:+ 2263:1 2260:( 2257:( 2254:= 2251:] 2248:i 2245:[ 2241:Z 2237:) 2234:i 2228:1 2225:( 2219:] 2216:i 2213:[ 2209:Z 2205:) 2202:i 2199:+ 2196:1 2193:( 2190:= 2187:] 2184:i 2181:[ 2177:Z 2173:2 2160:) 2158:i 2154:i 2147:Z 2144:p 2138:Z 2132:Z 2129:p 2116:E 2110:O 2100:K 2094:E 2086:) 2077:Z 2071:O 2057:I 2036:i 2030:p 2004:, 1997:t 1993:e 1987:t 1981:p 1968:1 1964:e 1958:1 1952:p 1946:= 1943:I 1929:O 1923:I 1909:Z 1890:3 1886:3 1882:3 1861:√ 1859:b 1855:a 1853:3 1849:3 1831:3 1815:3 1798:. 1795:) 1790:5 1779:2 1776:( 1773:) 1768:5 1760:+ 1757:2 1754:( 1751:= 1746:2 1742:3 1738:= 1735:9 1722:9 1704:3 1699:Z 1693:O 1688:z 1682:y 1672:x 1666:x 1645:Z 1627:, 1624:) 1621:i 1615:2 1612:( 1609:) 1606:i 1603:+ 1600:2 1597:( 1594:= 1591:) 1588:i 1585:2 1579:1 1576:( 1573:) 1570:i 1567:2 1564:+ 1561:1 1558:( 1555:= 1552:5 1538:i 1532:i 1525:i 1518:Z 1510:K 1505:p 1498:p 1482:p 1470:p 1464:O 1454:u 1436:. 1433:) 1430:3 1424:( 1418:) 1415:2 1409:( 1406:= 1403:3 1397:2 1394:= 1391:6 1374:1 1369:b 1363:a 1351:p 1345:O 1339:p 1326:K 1320:O 1064:n 1060:n 943:( 886:y 882:x 867:z 863:y 859:x 838:. 833:2 829:y 825:+ 820:2 816:x 812:= 809:B 785:y 782:+ 779:x 776:= 773:A 760:B 756:A 752:y 748:x 643:e 636:t 629:v 526:) 517:p 513:( 509:Z 497:p 477:p 472:Q 459:p 440:p 435:Z 422:p 408:n 233:Z 229:1 225:/ 220:Z 216:= 213:0 187:Z 20:)

Index

Place (mathematics)
Algebraic structure
Ring theory
Rings
Subrings
Ideal
Quotient ring
Fractional ideal
Total ring of fractions
Product of rings
Free product of associative algebras
Tensor product of algebras
Ring homomorphisms
Kernel
Inner automorphism
Frobenius endomorphism
Algebraic structures
Module
Associative algebra
Graded ring
Involutive ring
Category of rings
Initial ring
Terminal ring
Field
Finite field
Non-associative ring
Lie ring
Jordan ring
Semiring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.