Knowledge

Szemerédi regularity lemma

Source 📝

13126: 20: 12712: 5768: 856: 12182: 263: 5430: 6133: 12707:{\displaystyle {\begin{aligned}r&\geq q({\mathcal {Q}})-q({\mathcal {P}})\\&=\sum _{i,j}{\frac {|V_{i}||V_{j}|}{n^{2}}}\mathbb {E} |d(W_{i},W_{j})-d(V_{i},V_{j})|^{2}\\&\geq \sum _{i,j}{\frac {1}{4|P|^{2}}}\mathbb {E} |d(W_{i},W_{j})-d(V_{i},V_{j})|^{2}\\&={\frac {1}{4|P|^{2}}}\mathbb {E} \sum _{i,j}|d(W_{i},W_{j})-d(V_{i},V_{j})|^{2}\end{aligned}}} 3206: 5763:{\displaystyle q({\mathcal {Q}})=\sum _{(i,j)\in ^{2}}q({\mathcal {Q}}_{V_{i}},{\mathcal {Q}}_{V_{j}})=\sum _{(V_{i},V_{j}){\text{ }}\varepsilon {\text{-regular}}}q({\mathcal {Q}}_{V_{i}},{\mathcal {Q}}_{V_{j}})+\sum _{(V_{i},V_{j}){\text{ not }}\varepsilon {\text{-regular}}}q({\mathcal {Q}}_{V_{i}},{\mathcal {Q}}_{V_{j}})} 2057: 4775: 4233: 6540: 1770: 11084:
The corollary explores deeper the small energy increment. It gives us a partition together with subsets with large sizes from each part, which are pairwise regular. In addition, the density between the corresponding subset pairs differs "not much" from the density between the corresponding parts.
5868: 10435:. By equitizing in each round of iteration, the proof of regularity lemma could be accustomed to prove the equitable version of regularity lemma. And by replacing the regularity lemma with its equitable version, the proof above could prove the equitable version of strong regularity lemma where 2911: 3957: 13202:
extends the Szemerédi regularity lemma, by revisiting it from the perspective of probability theory and information theory instead of graph theory. Terence Tao has also provided a proof of the lemma based on spectral theory, using the adjacency matrices of graphs.
724: 13190:
gave a different version and extended it to hypergraphs. They later produced a different construction due to Alan Frieze and Ravi Kannan that uses singular values of matrices. One can find more efficient non-deterministic algorithms, as formally detailed in
7732: 886:
to show that this process stops after a bounded number of steps. To do this, we define a measure which must increase by a certain amount in each step, but it's bounded above and thus cannot increase indefinitely. This measure is called 'energy' as it's an
2922: 1782: 10173: 7323: 11960: 1381: 7387:
A different notion of regularity was introduced by Frieze and Kannan, known as the weak regularity lemma. This lemma defines a weaker notion of regularity than that of Szemerédi which uses better bounds and can be used in efficient algorithms.
4522: 3993: 13174:
that the regular pairs in Szemerédi regularity lemma behave like complete bipartite graphs under the correct conditions. The lemma allowed for deeper exploration into the nature of embeddings of large sparse graphs into dense graphs.
6337: 12883: 6128:{\displaystyle \sum _{(V_{i},V_{j}){\text{ }}\varepsilon {\text{-regular}}}q(V_{i},V_{j})+\sum _{(V_{i},V_{j}){\text{ not }}\varepsilon {\text{-regular}}}q(\{A^{i,j},V_{i}\backslash A^{i,j}\},\{A^{j,i},V_{j}\backslash A^{j,i}\})} 1525: 9618: 2650: 5089: 8667: 3349: 2247: 10985: 9454: 13058: 9382: 8056: 3783: 3664: 226: 10552: 8295: 4448: 424: 67:
To state Szemerédi's regularity lemma formally, we must formalize what the edge distribution between parts behaving 'almost randomly' really means. By 'almost random', we're referring to a notion called
2393: 2324: 1240: 1167: 11460: 9678: 1095: 4349: 10351: 7489: 7352:, by considering edge edits instead of only edge deletions. This was proved by Alon, Fischer, Krivelevich, and Szegedy in 2000. However, this required a stronger variation of the regularity lemma. 4867: 3508: 1446: 557: 7170: 12187: 10255: 6329: 11036: 3271: 10642: 8885: 6942: 1517: 588: 9718: 8925: 9968: 9865: 3775: 11178: 10839: 8848: 8600: 7379:-regularity is trivially satisfied. Even though the result seems purely theoretical, some attempts have been made to use the regularity method as compression technique for large graphs. 12090: 3201:{\displaystyle \mathbb {E} =\sum _{i=1}^{k}\sum _{j=1}^{l}{\frac {|U_{i}|}{|U|}}{\frac {|W_{j}|}{|W|}}d(U_{i},W_{j})^{2}={\frac {n^{2}}{|U||W|}}q({\mathcal {P}}_{U},{\mathcal {P}}_{W})} 11561: 7552: 11784: 9533: 11500: 11265: 9914: 8708: 6258: 5809: 2052:{\displaystyle q({\mathcal {P}})=\sum _{i=1}^{k}\sum _{j=1}^{k}{\frac {|V_{i}||V_{j}|}{n^{2}}}d(V_{i},V_{j})^{2}\leq \sum _{i=1}^{k}\sum _{j=1}^{k}{\frac {|V_{i}||V_{j}|}{n^{2}}}=1} 9761: 9094: 12961: 9227: 5287: 5241: 3583: 13115: 11074: 10877: 10751: 9271: 11216: 10682: 9302: 9008: 8751: 8116: 7792: 2129: 2098: 13303:
A stronger variation of the regularity lemma was proven by Alon, Fischer, Krivelevich, and Szegedy while proving the induced graph removal lemma. This works with a sequence of
10018: 6841: 6714: 7904: 6684: 6570: 2622: 10023: 7178: 7055: 11984: 11813: 11808: 11693: 11402: 11333: 11289: 10481: 10457: 10406: 8973: 8949: 8807: 8559: 8508: 8482: 8458: 8434: 8410: 8383: 8359: 8170: 7975: 7928: 7843: 7544: 6594: 6220: 5860: 5335: 5311: 4964: 4940: 4770:{\displaystyle Var(Z)=\mathbb {E} )^{2}]\geq {\frac {|U_{1}|}{|U|}}{\frac {|W_{1}|}{|W|}}(d(U_{1},W_{1})-d(U,W))^{2}>\varepsilon \cdot \varepsilon \cdot \varepsilon ^{2}} 3607: 3446: 3422: 1474: 11137: 10798: 9190: 9035: 8778: 8535: 6988: 5175: 3554: 1252: 13321: 13278: 13231: 10578: 7377: 7008: 6734: 6657: 6614: 5195: 4916: 3723: 578: 9149: 4514: 4481: 11378: 9784: 8193: 8079: 7997: 7755: 7512: 13323:
instead of just one, and shows that there exists a partition with an extremely regular refinement, where the refinement doesn't have too large of an energy increment.
12914: 12175: 6634: 4794: 3395: 7427: 6196: 5368: 4228:{\displaystyle Var(Z)=\mathbb {E} -\mathbb {E} ^{2}={\frac {n^{2}}{|U||W|}}\left(q\left(\{U_{1},U\backslash U_{1}\},\{W_{1},W\backslash W_{1}\}\right)-q(U,W)\right)} 13258: 12144: 12117: 12038: 12011: 11743: 11720: 11669: 11642: 11615: 11588: 9811: 6815: 6163: 5836: 5422: 5395: 5129: 5018: 4991: 3703: 2567: 2520: 971: 912: 9123: 6535:{\displaystyle \sum _{(i,j)\in ^{2}}q(V_{i},V_{j})+\sum _{(V_{i},V_{j}){\text{ not }}\varepsilon {\text{-regular}}}\varepsilon ^{4}{\frac {|V_{i}||V_{j}|}{n^{2}}}} 4896: 10281: 3375: 13298: 11309: 10702: 10433: 9055: 8335: 8315: 7948: 7819: 7095: 7075: 6881: 6861: 6774: 3985: 2642: 2540: 2493: 2473: 2453: 2433: 2413: 2169: 2149: 495: 475: 9486: 7875: 1765:{\displaystyle q({\mathcal {P}})=\sum _{i=1}^{k}\sum _{j=1}^{k}q(V_{i},V_{j})=\sum _{i=1}^{k}\sum _{j=1}^{k}{\frac {|V_{i}||V_{j}|}{n^{2}}}d(V_{i},V_{j})^{2}} 12719: 6749:
If we have enough information about the regularity of a graph, we can count the number of copies of a specific subgraph within the graph up to small error.
13658:
Fiorucci, Marco; Pelosin, Francesco; Pelillo, Marcello (February 2020), "Separating structure from noise in large graphs using the regularity lemma",
9763:
the regular and refinement conditions hold. The energy condition holds trivially. Now we argue for the number of parts. We use induction to show that
2906:{\displaystyle \mathbb {E} =\sum _{i=1}^{k}\sum _{j=1}^{l}{\frac {|U_{i}|}{|U|}}{\frac {|W_{j}|}{|W|}}d(U_{i},W_{j})={\frac {e(U,W)}{|U||W|}}=d(U,W)} 9538: 8142:, however an algorithmic version of the weak regularity lemma gives an efficient algorithm for approximating the max-cut for dense graphs within an 274:-regular if, whenever you take a large subset of each part, their edge density isn't too far off the edge density of the pair of parts. Formally, 5026: 55:
in 1975 and for general graphs in 1978. Variants of the lemma use different notions of regularity and apply to other mathematical objects like
7334: 8607: 39:
can be partitioned into a bounded number of parts so that the edges between parts are regular. The lemma shows that certain properties of
13206:
It is not possible to prove a variant of the regularity lemma in which all pairs of partition sets are regular. Some graphs, such as the
3276: 2174: 10883: 9387: 3952:{\displaystyle q\left(\{U_{1},U\backslash U_{1}\},\{W_{1},W\backslash W_{1}\}\right)>q(U,W)+\varepsilon ^{4}{\frac {|U||W|}{n^{2}}}} 11218:. The full version can be proved by picking more subsets from each part that are mostly pairwise regular and combine them together. 14371: 12966: 9307: 8007: 13233:-regular partition to require that the vertex sets all have the same size, while collecting the leftover vertices in an "error"-set 4800:
Now we can prove the energy increment argument, which shows that energy increases substantially in each iteration of the algorithm.
817:
for the number of parts in the partition of the graph given by the proofs of Szemeredi's regularity lemma is very large, given by a
14173: 8172:
additive error. These ideas have been further developed into efficient sampling algorithms for estimating max-cut in dense graphs.
133: 14706: 10499: 8242: 4354: 354: 13802: 2329: 2260: 1176: 1103: 11407: 9623: 995: 14500: 4241: 3612: 14838: 13883: 10286: 7432: 4810: 3451: 1389: 500: 7100: 827:. At one time it was hoped that the true bound was much smaller, which would have had several useful applications. However 13635: 10178: 6263: 719:{\displaystyle \sum _{(V_{i},V_{j}){\text{ not }}\varepsilon {\text{-regular}}}|V_{i}||V_{j}|\leq \varepsilon |V(G)|^{2}} 10990: 3214: 10583: 8853: 6886: 1479: 14822: 14806: 14782: 14726: 14445: 14337: 14282: 13434: 13375: 13159: 9683: 8890: 14392:
Alon, N.; Duke, R. A.; Lefmann, H.; Rödl, V.; Yuster, R. (1994), "The algorithmic aspects of the regularity lemma",
13125: 9919: 9816: 3728: 11142: 10803: 8812: 8564: 7727:{\displaystyle \left|e(S,T)-\sum _{i,j=1}^{k}d(V_{i},V_{j})|S\cap V_{i}||T\cap V_{j}|\right|\leq \epsilon |V|^{2}} 14881: 14468:
Frieze, Alan; Kannan, Ravi (March 1999), "A simple algorithm for constructing Szemerédi's regularity partition",
14430:
37th Annual Symposium on Foundations of Computer Science, FOCS '96, Burlington, Vermont, USA, 14–16 October, 1996
13518: 12043: 8126:
One of the initial motivations for the development of the weak regularity lemma was the search for an efficient
13918: 11508: 11751: 9491: 742: 11465: 11224: 9870: 8673: 6225: 5776: 14592:
Austin, Tim (2008), "On exchangeable random variables and the statistics of large graphs and hypergraphs",
14428:
Frieze, Alan M.; Kannan, Ravi (1996), "The regularity lemma and approximation schemes for dense problems",
9726: 9060: 8196: 442:, require many pairs of partitions (but a small fraction of all pairs) to be irregular. So we shall define 36: 12919: 9195: 8227:
in 2000. Intuitively, it provides information between non-regular pairs and could be applied to prove the
5246: 5200: 14886: 13331: 13063: 11041: 10844: 10710: 9232: 11183: 10647: 10168:{\displaystyle |P_{i+1}|\leq M(\epsilon _{|P_{i}|})|{\mathcal {P}}_{i}|\leq M(\epsilon _{|M_{i}|})M_{i}} 9276: 8982: 8725: 8084: 7760: 7318:{\displaystyle \left(\prod _{\{i,j\}\in E(H)}d(V_{i},V_{j})\right)\left(\prod _{i=1}^{k}|V_{i}|\right).} 6639:
Now, starting from any partition, we can keep applying Lemma 3 as long as the resulting partition isn't
2103: 2072: 11955:{\displaystyle {\frac {r}{|P|^{4}}}{\binom {n}{2}}\leq \epsilon _{0}{\frac {|V_{i}||V_{j}|}{3|P|^{2}}}} 9973: 6820: 6689: 7880: 6662: 6548: 2572: 1376:{\displaystyle q({\mathcal {P}}_{U},{\mathcal {P}}_{W}):=\sum _{i=1}^{k}\sum _{j=1}^{l}q(U_{i},W_{j})} 7013: 3559: 14129: 13137: 13136:
first introduced a weaker version of this lemma, restricted to bipartite graphs, in order to prove
11965: 11789: 11674: 11383: 11314: 11270: 10462: 10438: 10356: 8954: 8930: 8788: 8540: 8489: 8463: 8439: 8415: 8391: 8364: 8340: 8145: 7956: 7909: 7824: 7517: 7342: 6575: 6201: 5841: 5316: 5292: 4945: 4921: 3588: 3427: 3403: 1455: 52: 14406: 11096: 10757: 9157: 9013: 8756: 8513: 8204: 7338: 6947: 5134: 3513: 14341: 14286: 13306: 13263: 13216: 13163: 10557: 7362: 6993: 6719: 6642: 6599: 5180: 4901: 3708: 563: 14867:
Szemerédi's regularity lemma (Formal proof development in Isabelle/HOL, Archive of Formal Proofs)
13990:
Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976)
9128: 13901:; Maass, Wolfgang; Turán, Gyorgy (1988), "On the Communication Complexity of Graph Properties", 8118:
parts. As with Szemerédi's regularity lemma, the weak regularity also induces a counting lemma.
4486: 4453: 14401: 14124: 11338: 9766: 8178: 8064: 7982: 7740: 7497: 12888: 12149: 6619: 4779: 3380: 14793:, Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc., Budapest, pp. 295–352, 14221: 8200: 7394: 6168: 5340: 79: 72:-regularity. To understand what this means, we first state some definitions. In what follows 28: 14866: 14721: 14848: 14798: 14757: 14688: 14666: 14611: 14575: 14547: 14379: 14316: 14260: 14240: 14194: 14146: 14081: 14039: 13997: 13971: 13677: 13609: 13551: 13500: 13455: 13408: 13343: 13236: 12122: 12095: 12016: 11989: 11725: 11698: 11647: 11620: 11593: 11566: 9789: 6779: 6141: 5814: 5400: 5373: 5102: 4996: 4969: 3676: 2545: 2498: 940: 890: 43:
can be applied to dense graphs like counting the copies of a given subgraph within graphs.
14810: 14786: 13326:
Szemerédi's regularity lemma can be interpreted as saying that the space of all graphs is
9099: 8175:
The smaller bounds of the weak regularity lemma allow for efficient algorithms to find an
4872: 8: 13866:
Bansal, Nikhil; Williams, Ryan (2009), "Regularity Lemmas and Combinatorial Algorithms",
13579: 10260: 8718:
We apply the regularity lemma repeatedly to prove the stronger version. A rough outline:
8228: 8220: 7330: 3354: 14670: 14615: 14579: 14244: 13681: 13210:, require many pairs of partitions (but a small fraction of all pairs) to be irregular. 14761: 14656: 14627: 14601: 14565: 14451: 14357: 14320: 14264: 14230: 14198: 14150: 14085: 13924: 13819: 13776: 13759: 13737: 13693: 13667: 13639: 13613: 13555: 13527: 13459: 13412: 13384: 13283: 12878:{\displaystyle P(\sum _{i,j}|d(W_{i},W_{j})-d(V_{i},V_{j})|^{2}\geq 8|P|^{2}r)\leq 1/2} 11294: 10687: 10418: 9040: 8320: 8300: 7933: 7804: 7080: 7060: 6866: 6846: 6759: 3970: 2627: 2525: 2478: 2458: 2438: 2418: 2398: 2154: 2134: 480: 460: 14814: 14345: 14290: 13985: 13945: 13941: 13815: 13342:; another version of the regularity lemma simply states that the space of graphons is 13167: 9459: 8215:
The strong regularity lemma is a stronger variation of the regularity lemma proven by
7848: 44: 14834: 14745: 14535: 14441: 14104: 14053: 14015: 13914: 13879: 13837: 13697: 13463: 13179: 13149: 14765: 14631: 14455: 14268: 14202: 14154: 13928: 13823: 13741: 13617: 13559: 859:
The boundaries of irregularity witnessing subsets refine each part of the partition.
14863: 14826: 14735: 14674: 14619: 14527: 14477: 14433: 14411: 14367: 14324: 14304: 14248: 14182: 14134: 14089: 14069: 14027: 13957: 13906: 13903:
Proceedings of the twentieth annual ACM symposium on Theory of computing - STOC '88
13871: 13849: 13811: 13780: 13768: 13729: 13685: 13597: 13537: 13488: 13443: 13416: 13394: 7349: 48: 13898: 14844: 14794: 14753: 14684: 14543: 14375: 14312: 14256: 14190: 14142: 14108: 14077: 14035: 13993: 13967: 13797: 13689: 13605: 13547: 13496: 13451: 13404: 13327: 1246:, we define the energy to be the sum of the energies between each pair of parts: 14252: 14011: 13754: 5289:
that witness irregularity (do this simultaneously for all irregular pairs). Let
1776:
Note that energy is between 0 and 1 because edge density is bounded above by 1:
266:
Subset pairs of a regular pair are similar in edge density to the original pair.
14216: 14168: 13715: 13542: 13492: 13429: 13183: 13153: 863:
We shall find an ε-regular partition for a given graph following an algorithm:
14740: 14186: 14171:(2006), "Quasirandomness, counting and regularity for 3-uniform hypergraphs", 13399: 9613:{\displaystyle q({\mathcal {P}}_{i+1})-q({\mathcal {P}}_{i})<\epsilon _{0}} 8195:-regular partition. Graph regularity has further been used in various area of 14875: 14789:(1996), "Szemerédi's regularity lemma and its applications in graph theory", 14749: 14539: 14437: 14295: 13720: 13588: 13583: 13171: 8224: 40: 14830: 14679: 14219:(2007), "Hypergraph regularity and the multidimensional Szemerédi theorem", 13962: 11093:
We'll only prove the weaker result where the second condition only requires
8061:
The weak regularity lemma for graphons states that every graphon has a weak
19: 14415: 13718:; Kannan, Ravi (1999), "Quick Approximation to Matrices and Applications", 13366: 13335: 8138:. It has been shown that approximating the max-cut problem beyond 16/17 is 7356: 14031: 13772: 13733: 13601: 14702: 14644: 14496: 13875: 13840:; Shapira, Asaf (2012), "Random sampling and approximation of MAX-CSPs", 13513: 13199: 13192: 13187: 13129:
Gowers's construction for the lower bound of Szemerédi's regularity lemma
8135: 8131: 6686:, and it's bounded above by 1. Then this process can be repeated at most 5084:{\displaystyle q({\mathcal {Q}})\geq q({\mathcal {P}})+\varepsilon ^{5}.} 56: 14372:
10.1002/(SICI)1098-2418(199805)12:3<297::AID-RSA5>3.3.CO;2-W
13946:"On sets of integers containing no k elements in arithmetic progression" 13910: 10415:
A partition is equitable if the sizes of any two sets differ by at most
7737:
The weak regularity lemma for graphs states that every graph has a weak
2062:
Now, we start by proving that energy does not decrease upon refinement.
14308: 13905:, vol. 26, Association for Computing Machinery, pp. 186–191, 13792: 13476: 13447: 13432:(1997), "Lower bounds of tower type for Szemerédi's uniformity lemma", 13207: 13145: 439: 14531: 14138: 14073: 13853: 13836:
Dellamonica, Domingos; Kalyanasundaram, Subrahmanyam; Martin, Daniel;
873:
Find the subsets which witness ε-irregularity for each irregular pair.
14817:(2002), "The regularity lemma and its applications in graph theory", 14805: 14661: 14623: 14570: 14518:; Shapira, Asaf (2008), "Every monotone graph property is testable", 14515: 14362: 13793: 13575: 13532: 13370: 8216: 8127: 3666:. Thus the refinement step in the algorithm doesn't lose any energy. 13835: 13178:
The first constructive version was provided by Alon, Duke, Lefmann,
8662:{\displaystyle q({\mathcal {Q}})<q({\mathcal {P}})+\epsilon _{0}} 7355:
Szemerédi's regularity lemma does not provide meaningful results in
7329:
This can be combined with Szemerédi's regularity lemma to prove the
3424:
is further partitioned, the new partition is called a refinement of
13672: 13644: 13144:) he proved the full lemma. Extensions of the regularity method to 3344:{\displaystyle q({\mathcal {P}}_{U},{\mathcal {P}}_{W})\geq q(U,W)} 2242:{\displaystyle q({\mathcal {P}}_{U},{\mathcal {P}}_{W})\geq q(U,W)} 855: 14606: 14482: 14235: 13868:
2009 50th Annual IEEE Symposium on Foundations of Computer Science
13389: 13339: 10980:{\displaystyle |d(W_{i},W_{j})-d(V_{i},V_{j})|\leq \epsilon _{0}} 9449:{\displaystyle q({\mathcal {P}}_{i+1})\geq q({\mathcal {P}}_{i})} 8139: 7798: 745: 2069:(Energy is nondecreasing under partitioning) For any partitions 14724:; Szegedy, Balázs (2007), "Szemerédi's lemma for the analyst", 13053:{\displaystyle d(W_{i},W_{j})-d(V_{i},V_{j})\geq \epsilon _{0}} 9377:{\displaystyle \leq M(\epsilon _{|P_{i}|})|{\mathcal {P}}_{i}|} 8051:{\displaystyle \|W-W_{\mathcal {P}}\|_{\square }\leq \epsilon } 262: 9212: 9209: 14791:
Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993)
13950:
Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica
13574: 434:-regular partition should be one where each pair of parts is 221:{\displaystyle d(X,Y):={\frac {\left|E(X,Y)\right|}{|X||Y|}}} 10547:{\displaystyle \epsilon _{0}\geq \epsilon _{1}\geq ...>0} 8290:{\displaystyle \epsilon _{0}\geq \epsilon _{1}\geq ...>0} 4443:{\displaystyle {\frac {|U_{1}|}{|U|}}{\frac {|W_{1}|}{|W|}}} 446:-regular partitions to be one where most pairs of parts are 419:{\displaystyle \left|d(X,Y)-d(A,B)\right|\leq \varepsilon .} 13060:. By union bound, the probability that all conditions hold 9125:
corresponds to the bound of parts in regularity lemma when
13373:(2012), "Bounds for graph regularity and removal lemmas", 2388:{\displaystyle {\mathcal {P}}_{W}=\{W_{1},\ldots ,W_{l}\}} 2319:{\displaystyle {\mathcal {P}}_{U}=\{U_{1},\ldots ,U_{k}\}} 1235:{\displaystyle {\mathcal {P}}_{W}=\{W_{1},\ldots ,W_{l}\}} 1162:{\displaystyle {\mathcal {P}}_{U}=\{U_{1},\ldots ,U_{k}\}} 23:
The edges between parts behave in a "random-like" fashion.
13800:(2003), "Random sampling and approximation of MAX-CSPs", 12092:, by union bound, the probability that at least one pair 11455:{\displaystyle q({\mathcal {Q}})-q({\mathcal {P}})\leq r} 11267:. We apply the strong regularity lemma to find equitable 9673:{\displaystyle ({\mathcal {P}}_{i},{\mathcal {P}}_{i+1})} 1090:{\displaystyle q(U,W):={\frac {|U||W|}{n^{2}}}d(U,W)^{2}} 837:
does indeed grow very fast and is at least as large as a
4344:{\displaystyle |Z-\mathbb {E} |=|d(U_{1},W_{1})-d(U,W)|} 3659:{\displaystyle q({\mathcal {P'}})\geq q({\mathcal {P}})} 14348:(1998), "An algorithmic version of the blow-up lemma", 7359:. Since sparse graphs have subconstant edge densities, 14819:
Theoretical aspects of computer science (Tehran, 2000)
14336: 14281: 13657: 10346:{\displaystyle M=\max _{i\leq 1/\epsilon _{0}+2}M_{i}} 7484:{\displaystyle {\mathcal {P}}=\{V_{1},\ldots ,V_{k}\}} 6299: 6100: 6043: 4862:{\displaystyle {\mathcal {P}}=\{V_{1},\ldots ,V_{k}\}} 4178: 4140: 3852: 3814: 3503:{\displaystyle {\mathcal {P}}=\{V_{1},\ldots ,V_{m}\}} 1441:{\displaystyle {\mathcal {P}}=\{V_{1},\ldots ,V_{k}\}} 878:
Refine the partition using all the witnessing subsets.
552:{\displaystyle {\mathcal {P}}=\{V_{1},\ldots ,V_{k}\}} 14825:, vol. 2292, Springer, Berlin, pp. 84–112, 13516:(2006), "A variant of the hypergraph removal lemma", 13309: 13286: 13266: 13239: 13219: 13066: 12969: 12922: 12891: 12722: 12185: 12152: 12125: 12098: 12046: 12019: 11992: 11968: 11816: 11792: 11754: 11728: 11701: 11677: 11650: 11623: 11596: 11569: 11511: 11468: 11410: 11386: 11341: 11317: 11297: 11273: 11227: 11186: 11145: 11099: 11044: 10993: 10886: 10847: 10806: 10760: 10713: 10690: 10650: 10586: 10560: 10502: 10465: 10441: 10421: 10359: 10289: 10263: 10181: 10026: 9976: 9922: 9873: 9819: 9792: 9769: 9729: 9686: 9626: 9541: 9494: 9462: 9390: 9310: 9279: 9235: 9198: 9160: 9131: 9102: 9063: 9043: 9016: 8985: 8957: 8933: 8893: 8856: 8815: 8791: 8759: 8728: 8676: 8610: 8567: 8543: 8516: 8492: 8466: 8442: 8418: 8394: 8367: 8343: 8323: 8303: 8245: 8181: 8148: 8087: 8067: 8010: 7985: 7959: 7936: 7912: 7883: 7851: 7827: 7807: 7763: 7743: 7555: 7520: 7500: 7435: 7397: 7365: 7181: 7165:{\displaystyle e(H)\varepsilon |V_{1}|\cdots |V_{k}|} 7103: 7083: 7063: 7016: 6996: 6950: 6889: 6869: 6849: 6823: 6782: 6762: 6722: 6692: 6665: 6645: 6622: 6602: 6578: 6551: 6340: 6266: 6228: 6204: 6171: 6144: 5871: 5844: 5817: 5779: 5433: 5403: 5376: 5343: 5319: 5295: 5249: 5203: 5183: 5137: 5105: 5029: 4999: 4972: 4948: 4924: 4904: 4875: 4813: 4782: 4525: 4489: 4456: 4357: 4244: 3996: 3973: 3786: 3731: 3711: 3679: 3615: 3591: 3562: 3516: 3454: 3430: 3406: 3383: 3357: 3279: 3217: 2925: 2653: 2630: 2575: 2548: 2528: 2501: 2481: 2461: 2441: 2421: 2401: 2332: 2263: 2177: 2157: 2137: 2106: 2075: 1785: 1528: 1482: 1458: 1392: 1255: 1179: 1106: 998: 943: 893: 591: 566: 503: 483: 463: 357: 136: 14708:
The spectral proof of the Szemeredi regularity lemma
13195:'s blog and implicitly mentioned in various papers. 14391: 10250:{\displaystyle M_{i+1}=M(\epsilon _{|M_{i}|})M_{i}} 6324:{\displaystyle \{A^{i,j},V_{i}\backslash A^{i,j}\}} 14647:(2006), "Szemerédi's regularity lemma revisited", 14502:Szemeredi's regularity lemma via random partitions 13757:(2001), "Some Optimal Inapproximability Results", 13315: 13292: 13272: 13252: 13225: 13109: 13052: 12955: 12908: 12877: 12706: 12169: 12138: 12111: 12084: 12032: 12005: 11978: 11954: 11802: 11778: 11737: 11714: 11687: 11663: 11636: 11609: 11582: 11555: 11494: 11454: 11396: 11372: 11327: 11303: 11283: 11259: 11210: 11172: 11131: 11068: 11030: 10979: 10871: 10833: 10792: 10745: 10696: 10676: 10636: 10572: 10546: 10475: 10451: 10427: 10400: 10345: 10275: 10249: 10167: 10012: 9962: 9908: 9859: 9805: 9778: 9755: 9712: 9672: 9612: 9527: 9480: 9448: 9376: 9296: 9265: 9221: 9184: 9143: 9117: 9088: 9049: 9029: 9002: 8967: 8943: 8919: 8879: 8842: 8801: 8772: 8745: 8702: 8661: 8594: 8553: 8529: 8502: 8476: 8452: 8428: 8404: 8385:such that the following properties are satisfied: 8377: 8353: 8329: 8309: 8289: 8187: 8164: 8110: 8073: 8050: 7991: 7969: 7942: 7922: 7898: 7869: 7837: 7813: 7786: 7749: 7726: 7538: 7506: 7483: 7421: 7371: 7317: 7164: 7089: 7069: 7049: 7002: 6982: 6936: 6875: 6855: 6835: 6809: 6768: 6728: 6708: 6678: 6651: 6628: 6608: 6588: 6564: 6534: 6323: 6252: 6214: 6190: 6157: 6127: 5854: 5830: 5803: 5762: 5416: 5389: 5362: 5329: 5305: 5281: 5235: 5189: 5169: 5123: 5083: 5012: 4985: 4958: 4934: 4910: 4890: 4861: 4788: 4769: 4508: 4475: 4442: 4343: 4227: 3979: 3951: 3769: 3717: 3697: 3658: 3601: 3577: 3548: 3502: 3440: 3416: 3389: 3369: 3343: 3265: 3200: 2905: 2636: 2616: 2561: 2534: 2514: 2487: 2467: 2447: 2427: 2407: 2387: 2318: 2241: 2163: 2143: 2123: 2092: 2051: 1764: 1511: 1468: 1440: 1375: 1234: 1161: 1089: 965: 906: 718: 572: 551: 489: 469: 418: 246:denotes the set of edges having one end vertex in 220: 14862:Edmonds, Chelsea; Koutsoukou-Argyraki, Angeliki; 11862: 11849: 11031:{\displaystyle \epsilon _{0}|{\mathcal {P}}|^{2}} 7801:by defining a stepping operator. Given a graphon 3266:{\displaystyle \mathbb {E} \geq \mathbb {E} ^{2}} 14873: 14781: 14102: 13992:, vol. 260, Paris: CNRS, pp. 399–401, 13897: 10637:{\displaystyle {\mathcal {P}}={V_{1},...,V_{k}}} 10297: 8880:{\displaystyle {\mathcal {Q}}\leq \epsilon _{0}} 6937:{\displaystyle V_{1},\dots ,V_{k}\subseteq V(G)} 6716:times, before it terminates and we must have an 1512:{\displaystyle q({\mathcal {P}},{\mathcal {P}})} 13338:). Limits in this metric can be represented by 13213:It is a common variant in the definition of an 9713:{\displaystyle ({\mathcal {P}},{\mathcal {Q}})} 8920:{\displaystyle ({\mathcal {P}},{\mathcal {Q}})} 7333:. The graph removal lemma can be used to prove 6659:-regular. But in each step energy increases by 6616:-regular, so we deduce the desired inequality. 14056:; Skokan, Jozef (2004), "Regularity lemma for 13865: 10704:where the following properties are satisfied: 9963:{\displaystyle |{\mathcal {P}}_{0}|\leq M_{0}} 9860:{\displaystyle |{\mathcal {P}}_{i}|\leq M_{i}} 14720: 13632:Graph Compression Using The Regularity Method 13586:(2000), "Efficient testing of large graphs", 11962:vertex pairs live between irregular pairs in 5862:. By Lemma 1, the above quantity is at least 3770:{\displaystyle U_{1}\subset U,W_{1}\subset W} 14467: 14427: 14018:(2002), "Extremal problems on set systems", 13714: 11786:the first condition is trivially true since 11722:satisfy all the conditions with probability 11550: 11518: 11173:{\displaystyle \epsilon _{|{\mathcal {P}}|}} 10834:{\displaystyle \epsilon _{|{\mathcal {P}}|}} 8843:{\displaystyle \epsilon _{|{\mathcal {P}}|}} 8595:{\displaystyle \epsilon _{|{\mathcal {P}}|}} 8460:is the union of some collection of parts in 8033: 8011: 7478: 7446: 7204: 7192: 7029: 7017: 6318: 6267: 6119: 6068: 6062: 6011: 4856: 4824: 4191: 4159: 4153: 4121: 3865: 3833: 3827: 3795: 3497: 3465: 2382: 2350: 2313: 2281: 1435: 1403: 1229: 1197: 1156: 1124: 546: 514: 438:-regular. However, some graphs, such as the 14514: 13280:-fraction of the size of the vertex set of 8337:, we can obtain two (equitable) partitions 8121: 7382: 14052: 14010: 13796:; Fernandez de la Vega, W.; Kannan, Ravi; 13481:Journal of the London Mathematical Society 12085:{\displaystyle \leq {\frac {1}{3|P|^{2}}}} 8210: 14739: 14678: 14660: 14605: 14569: 14481: 14432:, IEEE Computer Society, pp. 12–20, 14405: 14361: 14234: 14128: 13984: 13961: 13940: 13671: 13643: 13541: 13531: 13398: 13388: 13365: 13141: 13133: 13120: 12596: 12465: 12318: 11810:is an equitable partition. Since at most 11556:{\displaystyle P=\{V_{1},\cdots ,V_{k}\}} 9384:parts. By the energy increment argument, 7335:Roth's Theorem on Arithmetic Progressions 4918:-regular, then there exists a refinement 4565: 4548: 4257: 4043: 4019: 3243: 3219: 2927: 2655: 14559: 14174:Combinatorics, Probability and Computing 14111:(2006), "The counting lemma for regular 13988:(1978), "Regular partitions of graphs", 13361: 13359: 13124: 7057:. Then, the number of labeled copies of 6331:. By lemma 2, the above sum is at least 4807:(Energy increment lemma) If a partition 854: 795:-regular partition of the vertex set of 261: 18: 14470:The Electronic Journal of Combinatorics 13803:Journal of Computer and System Sciences 13629: 13479:(1953), "On certain sets of integers", 11779:{\displaystyle \delta ={\frac {1}{2M}}} 10496:For any infinite sequence of constants 10410: 9528:{\displaystyle i\leq 1/\epsilon _{0}+1} 8239:For any infinite sequence of constants 7348:The graph removal lemma generalizes to 6744: 14874: 14591: 14562:A Simple Regularization of Hypergraphs 14215: 14167: 13753: 13428: 11495:{\displaystyle |{\mathcal {Q}}|\leq M} 11260:{\displaystyle r=\epsilon _{0}^{3}/20} 9909:{\displaystyle M_{0}=M(\epsilon _{0})} 8703:{\displaystyle |{\mathcal {Q}}|\leq M} 7906:as a step-graphon with steps given by 6253:{\displaystyle {\mathcal {Q}}_{V_{i}}} 5804:{\displaystyle {\mathcal {Q}}_{V_{i}}} 828: 14649:Contributions to Discrete Mathematics 13710: 13708: 13706: 13570: 13568: 13356: 11088: 10486: 9756:{\displaystyle {\mathcal {P}}_{i+1},} 9089:{\displaystyle \leq M(\epsilon _{0})} 870:While the partition isn't ε-regular: 13842:SIAM Journal on Discrete Mathematics 13829: 13475: 12956:{\displaystyle \epsilon _{0}|P|^{2}} 9222:{\displaystyle {\mathcal {P_{i+1}}}} 8850:regular. If the energy increment of 5282:{\displaystyle A^{j,i}\subset V_{j}} 5236:{\displaystyle A^{i,j}\subset V_{i}} 831:found examples of graphs for which 14701: 14643: 14495: 13786: 13512: 13469: 13110:{\displaystyle \geq 1-1/2-1/3>0} 11069:{\displaystyle 1\leq i\leq j\leq k} 10872:{\displaystyle 1\leq i\leq j\leq k} 10746:{\displaystyle |W_{i}|>\delta n} 10580:such that there exists a partition 9266:{\displaystyle \epsilon _{|P_{i}|}} 13: 14775: 14350:Random Structures & Algorithms 14117:Random Structures & Algorithms 14062:Random Structures & Algorithms 14020:Random Structures & Algorithms 13891: 13859: 13747: 13703: 13651: 13565: 12227: 12208: 11971: 11853: 11795: 11680: 11476: 11438: 11419: 11389: 11320: 11276: 11211:{\displaystyle 1\leq i<j\leq k} 11158: 11011: 10819: 10677:{\displaystyle W_{i}\subset V_{i}} 10589: 10468: 10444: 10100: 9931: 9828: 9770: 9733: 9702: 9692: 9650: 9633: 9583: 9551: 9432: 9400: 9358: 9297:{\displaystyle {\mathcal {P_{i}}}} 9287: 9283: 9206: 9202: 9003:{\displaystyle {\mathcal {P}}_{0}} 8989: 8960: 8936: 8909: 8899: 8859: 8828: 8794: 8746:{\displaystyle {\mathcal {P}}_{0}} 8732: 8684: 8638: 8619: 8580: 8546: 8495: 8469: 8445: 8421: 8397: 8370: 8346: 8111:{\displaystyle 4^{\epsilon ^{-2}}} 8026: 7962: 7915: 7890: 7830: 7787:{\displaystyle 4^{\epsilon ^{-2}}} 7438: 7337:, and a generalization of it, the 6581: 6232: 6207: 5847: 5783: 5739: 5715: 5633: 5609: 5527: 5503: 5442: 5322: 5298: 5057: 5038: 4951: 4927: 4816: 3648: 3625: 3594: 3566: 3457: 3433: 3409: 3306: 3289: 3184: 3167: 2569:. Then define the random variable 2336: 2267: 2204: 2187: 2124:{\displaystyle {\mathcal {P}}_{W}} 2110: 2093:{\displaystyle {\mathcal {P}}_{U}} 2079: 1794: 1537: 1501: 1491: 1461: 1395: 1282: 1265: 1183: 1110: 771:vertices, there exists an integer 506: 53:theorem on arithmetic progressions 14: 14898: 14856: 14823:Lecture Notes in Computer Science 14727:Geometric and Functional Analysis 13623: 13435:Geometric and Functional Analysis 13376:Geometric and Functional Analysis 10013:{\displaystyle |P_{i}|\leq M_{i}} 9456:. Since the energy is bounded in 7514:-regular if for any pair of sets 6836:{\displaystyle \varepsilon >0} 6709:{\displaystyle \varepsilon ^{-5}} 3556:proves that for every refinement 13636:Ca' Foscari University of Venice 11986:, the probability that the pair 11311:regular partition and equitable 8081:-regular partition into at most 7899:{\displaystyle W_{\mathcal {P}}} 7757:-regular partition into at most 6679:{\displaystyle \varepsilon ^{5}} 6565:{\displaystyle \varepsilon ^{5}} 3510:, applying Lemma 1 to each pair 2617:{\displaystyle Z=d(U_{i},W_{j})} 882:We apply a technique called the 16:Concept in extremal graph theory 14714: 14695: 14637: 14585: 14553: 14508: 14489: 14461: 14421: 14385: 14330: 14275: 14209: 14161: 14096: 14046: 14004: 13978: 13934: 13519:Journal of Combinatorial Theory 8785:Repeatedly find its refinement 7797:This notion can be extended to 7050:{\displaystyle \{i,j\}\in E(H)} 6883:-vertex graph with vertex sets 6739: 6545:But the second sum is at least 3578:{\displaystyle {\mathcal {P'}}} 2624:. Let us look at properties of 841:-level iterated exponential of 821:-level iterated exponential of 13506: 13422: 13170:later (in 1997) proved in the 13034: 13008: 12999: 12973: 12943: 12934: 12858: 12845: 12836: 12819: 12814: 12788: 12779: 12753: 12746: 12726: 12690: 12685: 12659: 12650: 12624: 12617: 12582: 12573: 12543: 12538: 12512: 12503: 12477: 12470: 12451: 12442: 12396: 12391: 12365: 12356: 12330: 12323: 12300: 12285: 12280: 12265: 12232: 12222: 12213: 12203: 12069: 12060: 11979:{\displaystyle {\mathcal {Q}}} 11939: 11930: 11920: 11905: 11900: 11885: 11833: 11824: 11803:{\displaystyle {\mathcal {Q}}} 11688:{\displaystyle {\mathcal {Q}}} 11482: 11470: 11443: 11433: 11424: 11414: 11397:{\displaystyle {\mathcal {P}}} 11360: 11351: 11328:{\displaystyle {\mathcal {Q}}} 11284:{\displaystyle {\mathcal {P}}} 11164: 11152: 11126: 11100: 11018: 11005: 10960: 10956: 10930: 10921: 10895: 10888: 10825: 10813: 10787: 10761: 10730: 10715: 10491: 10476:{\displaystyle {\mathcal {Q}}} 10452:{\displaystyle {\mathcal {P}}} 10401:{\displaystyle |P|,|Q|\leq M.} 10385: 10377: 10369: 10361: 10257:and the statement is true for 10234: 10228: 10213: 10204: 10152: 10146: 10131: 10122: 10112: 10093: 10089: 10083: 10068: 10059: 10049: 10028: 9993: 9978: 9943: 9924: 9903: 9890: 9840: 9821: 9707: 9687: 9667: 9627: 9594: 9577: 9568: 9545: 9475: 9463: 9443: 9426: 9417: 9394: 9370: 9351: 9347: 9341: 9326: 9317: 9257: 9242: 9112: 9106: 9083: 9070: 8968:{\displaystyle {\mathcal {Q}}} 8944:{\displaystyle {\mathcal {P}}} 8914: 8894: 8834: 8822: 8802:{\displaystyle {\mathcal {Q}}} 8690: 8678: 8643: 8633: 8624: 8614: 8586: 8574: 8554:{\displaystyle {\mathcal {Q}}} 8503:{\displaystyle {\mathcal {P}}} 8477:{\displaystyle {\mathcal {Q}}} 8453:{\displaystyle {\mathcal {P}}} 8429:{\displaystyle {\mathcal {P}}} 8405:{\displaystyle {\mathcal {Q}}} 8378:{\displaystyle {\mathcal {Q}}} 8354:{\displaystyle {\mathcal {P}}} 8234: 8165:{\displaystyle \epsilon n^{2}} 7970:{\displaystyle {\mathcal {P}}} 7930:and values given by averaging 7923:{\displaystyle {\mathcal {P}}} 7864: 7852: 7838:{\displaystyle {\mathcal {P}}} 7714: 7705: 7689: 7668: 7663: 7642: 7638: 7612: 7576: 7564: 7539:{\displaystyle S,T\subseteq V} 7429:, a partition of its vertices 7416: 7404: 7303: 7288: 7253: 7227: 7219: 7213: 7158: 7143: 7135: 7120: 7113: 7107: 7044: 7038: 6977: 6951: 6931: 6925: 6804: 6798: 6792: 6786: 6589:{\displaystyle {\mathcal {P}}} 6515: 6500: 6495: 6480: 6448: 6422: 6411: 6385: 6371: 6364: 6358: 6346: 6215:{\displaystyle {\mathcal {Q}}} 6122: 6008: 5987: 5961: 5950: 5924: 5903: 5877: 5855:{\displaystyle {\mathcal {Q}}} 5757: 5709: 5688: 5662: 5651: 5603: 5582: 5556: 5545: 5497: 5483: 5476: 5470: 5458: 5447: 5437: 5330:{\displaystyle {\mathcal {P}}} 5306:{\displaystyle {\mathcal {Q}}} 5164: 5138: 5118: 5106: 5062: 5052: 5043: 5033: 4959:{\displaystyle {\mathcal {P}}} 4935:{\displaystyle {\mathcal {Q}}} 4885: 4879: 4733: 4729: 4717: 4708: 4682: 4676: 4669: 4661: 4654: 4639: 4628: 4620: 4613: 4598: 4588: 4579: 4575: 4569: 4555: 4552: 4541: 4535: 4433: 4425: 4418: 4403: 4392: 4384: 4377: 4362: 4337: 4333: 4321: 4312: 4286: 4279: 4271: 4267: 4261: 4246: 4217: 4205: 4101: 4093: 4088: 4080: 4054: 4047: 4036: 4023: 4012: 4006: 3932: 3924: 3919: 3911: 3891: 3879: 3692: 3680: 3653: 3643: 3634: 3619: 3602:{\displaystyle {\mathcal {P}}} 3543: 3517: 3441:{\displaystyle {\mathcal {P}}} 3417:{\displaystyle {\mathcal {P}}} 3338: 3326: 3317: 3283: 3254: 3247: 3236: 3223: 3195: 3161: 3151: 3143: 3138: 3130: 3104: 3077: 3067: 3059: 3052: 3037: 3026: 3018: 3011: 2996: 2944: 2931: 2900: 2888: 2875: 2867: 2862: 2854: 2848: 2836: 2824: 2798: 2788: 2780: 2773: 2758: 2747: 2739: 2732: 2717: 2665: 2659: 2611: 2585: 2236: 2224: 2215: 2181: 2026: 2011: 2006: 1991: 1933: 1906: 1886: 1871: 1866: 1851: 1799: 1789: 1753: 1726: 1706: 1691: 1686: 1671: 1619: 1593: 1542: 1532: 1506: 1486: 1469:{\displaystyle {\mathcal {P}}} 1370: 1344: 1293: 1259: 1078: 1065: 1045: 1037: 1032: 1024: 1014: 1002: 953: 945: 706: 701: 695: 688: 677: 662: 657: 642: 623: 597: 399: 387: 378: 366: 211: 203: 198: 190: 180: 168: 152: 140: 1: 13816:10.1016/S0022-0000(03)00008-4 13349: 11132:{\displaystyle (W_{i},W_{j})} 11079: 10793:{\displaystyle (W_{i},W_{j})} 9185:{\displaystyle i=0,1,\cdots } 9030:{\displaystyle \epsilon _{0}} 8773:{\displaystyle \epsilon _{0}} 8530:{\displaystyle \epsilon _{0}} 6983:{\displaystyle (V_{i},V_{j})} 5170:{\displaystyle (V_{i},V_{j})} 3549:{\displaystyle (V_{i},V_{j})} 735:Szemerédi's Regularity Lemma. 430:The natural way to define an 14560:Ishigami, Yoshiyasu (2006), 13690:10.1016/j.patcog.2019.107070 13334:) in a suitable metric (the 13316:{\displaystyle \varepsilon } 13273:{\displaystyle \varepsilon } 13226:{\displaystyle \varepsilon } 11695:. We argue that the subsets 11644:to be the set that contains 11563:, we randomly pick a vertex 10573:{\displaystyle \delta >0} 8197:theoretical computer science 7372:{\displaystyle \varepsilon } 7003:{\displaystyle \varepsilon } 6729:{\displaystyle \varepsilon } 6652:{\displaystyle \varepsilon } 6609:{\displaystyle \varepsilon } 5397:is partitioned into at most 5190:{\displaystyle \varepsilon } 4993:is partitioned into at most 4911:{\displaystyle \varepsilon } 3718:{\displaystyle \varepsilon } 730:Now we can state the lemma: 573:{\displaystyle \varepsilon } 62: 33:Szemerédi’s regularity lemma 7: 14253:10.4007/annals.2007.166.897 13630:Pelosin, Francesco (2018), 10483:are equitable partitions. 9144:{\displaystyle \epsilon =t} 8229:induced graph removal lemma 3273:. Rearranging, we get that 10: 14903: 13543:10.1016/j.jcta.2005.11.006 13182:and Yuster. Subsequently, 13152:and his collaborators and 12716:So by Markov's inequality 8713: 8297:, there exists an integer 5313:be a common refinement of 4509:{\displaystyle y\in W_{1}} 4476:{\displaystyle x\in U_{1}} 14741:10.1007/s00039-007-0599-6 14293:(1997), "Blow-up lemma", 14187:10.1017/S0963548305007236 13400:10.1007/s00039-012-0171-x 13260:whose size is at most an 11373:{\displaystyle r/|P|^{4}} 9779:{\displaystyle \forall i} 8188:{\displaystyle \epsilon } 8074:{\displaystyle \epsilon } 7992:{\displaystyle \epsilon } 7750:{\displaystyle \epsilon } 7507:{\displaystyle \epsilon } 3725:-regular as witnessed by 1386:Finally, for a partition 884:energy increment argument 765:is a graph with at least 14438:10.1109/SFCS.1996.548459 13493:10.1112/jlms/s1-28.1.104 12909:{\displaystyle \geq 1/2} 12170:{\displaystyle \leq 1/3} 8927:. Otherwise, we replace 8436:, that is every part of 8317:such that for any graph 8205:communication complexity 8122:Algorithmic applications 7383:Frieze-Kannan regularity 7339:hypergraph removal lemma 6629:{\displaystyle \square } 5424:parts as desired. Then, 4789:{\displaystyle \square } 3673:(Energy boost lemma) If 3390:{\displaystyle \square } 850: 753:there exists an integer 285:, a pair of vertex sets 270:We call a pair of parts 14831:10.1007/3-540-45878-6_3 14680:10.11575/cdm.v1i1.61900 14115:-uniform hypergraphs", 14060:-uniform hypergraphs", 13963:10.4064/aa-27-1-199-245 10841:-regular for each pair 8211:Strong regularity lemma 7422:{\displaystyle G=(V,E)} 7341:, can be used to prove 6191:{\displaystyle A^{i,j}} 5363:{\displaystyle A^{i,j}} 1452:, define the energy of 105:be disjoint subsets of 14882:Lemmas in graph theory 14416:10.1006/jagm.1994.1005 13317: 13294: 13274: 13254: 13227: 13130: 13121:History and extensions 13111: 13054: 12957: 12910: 12885:, so with probability 12879: 12708: 12171: 12140: 12113: 12086: 12034: 12007: 11980: 11956: 11804: 11780: 11739: 11716: 11689: 11665: 11638: 11611: 11584: 11557: 11496: 11456: 11398: 11380:regular refinement of 11374: 11329: 11305: 11285: 11261: 11212: 11174: 11133: 11070: 11032: 10981: 10873: 10835: 10794: 10747: 10698: 10678: 10638: 10574: 10548: 10477: 10453: 10429: 10402: 10347: 10277: 10251: 10169: 10014: 9964: 9910: 9861: 9807: 9780: 9757: 9714: 9674: 9614: 9529: 9482: 9450: 9378: 9298: 9273:regular refinement of 9267: 9223: 9186: 9145: 9119: 9090: 9051: 9031: 9004: 8969: 8945: 8921: 8881: 8844: 8803: 8774: 8747: 8704: 8663: 8596: 8555: 8531: 8504: 8478: 8454: 8430: 8406: 8379: 8355: 8331: 8311: 8291: 8189: 8166: 8112: 8075: 8052: 7993: 7971: 7944: 7924: 7900: 7871: 7839: 7815: 7788: 7751: 7728: 7608: 7540: 7508: 7485: 7423: 7373: 7327: 7319: 7286: 7166: 7091: 7071: 7051: 7004: 6984: 6938: 6877: 6857: 6837: 6811: 6770: 6730: 6710: 6680: 6653: 6637: 6630: 6610: 6590: 6566: 6536: 6325: 6254: 6216: 6192: 6159: 6129: 5856: 5832: 5805: 5764: 5418: 5391: 5364: 5331: 5307: 5283: 5237: 5191: 5171: 5125: 5093: 5085: 5014: 4987: 4960: 4936: 4912: 4892: 4863: 4798: 4790: 4771: 4510: 4477: 4444: 4345: 4229: 3981: 3961: 3953: 3771: 3719: 3699: 3660: 3603: 3579: 3550: 3504: 3442: 3418: 3398: 3391: 3371: 3345: 3267: 3202: 2991: 2970: 2907: 2712: 2691: 2638: 2618: 2563: 2536: 2516: 2489: 2469: 2449: 2429: 2409: 2389: 2320: 2251: 2243: 2165: 2145: 2125: 2094: 2053: 1986: 1965: 1846: 1825: 1774: 1766: 1666: 1645: 1589: 1568: 1513: 1470: 1442: 1377: 1340: 1319: 1236: 1163: 1091: 967: 908: 867:Start with a partition 860: 809: 728: 720: 574: 553: 491: 471: 428: 420: 267: 260: 222: 47:proved the lemma over 24: 14809:; Shokoufandeh, Ali; 14394:Journal of Algorithms 14222:Annals of Mathematics 14032:10.1002/rsa.10017.abs 13773:10.1145/502090.502098 13734:10.1007/s004930050052 13602:10.1007/s004930070001 13318: 13295: 13275: 13255: 13253:{\displaystyle V_{0}} 13228: 13128: 13112: 13055: 12958: 12911: 12880: 12709: 12172: 12141: 12139:{\displaystyle W_{i}} 12114: 12112:{\displaystyle W_{i}} 12087: 12035: 12033:{\displaystyle W_{j}} 12008: 12006:{\displaystyle W_{i}} 11981: 11957: 11805: 11781: 11740: 11738:{\displaystyle >0} 11717: 11715:{\displaystyle W_{i}} 11690: 11666: 11664:{\displaystyle v_{i}} 11639: 11637:{\displaystyle W_{i}} 11612: 11610:{\displaystyle V_{i}} 11585: 11583:{\displaystyle v_{i}} 11558: 11497: 11457: 11399: 11375: 11330: 11306: 11286: 11262: 11213: 11175: 11134: 11071: 11033: 10982: 10874: 10836: 10795: 10748: 10699: 10679: 10639: 10575: 10549: 10478: 10454: 10430: 10403: 10348: 10278: 10252: 10170: 10015: 9965: 9911: 9862: 9808: 9806:{\displaystyle M_{i}} 9781: 9758: 9715: 9675: 9615: 9530: 9488:, there must be some 9483: 9451: 9379: 9299: 9268: 9224: 9187: 9146: 9120: 9091: 9052: 9037:regular partition of 9032: 9005: 8970: 8946: 8922: 8882: 8845: 8804: 8775: 8748: 8705: 8664: 8597: 8556: 8532: 8505: 8479: 8455: 8431: 8407: 8380: 8356: 8332: 8312: 8292: 8201:matrix multiplication 8190: 8167: 8113: 8076: 8053: 7994: 7972: 7945: 7925: 7901: 7872: 7840: 7816: 7789: 7752: 7729: 7582: 7541: 7509: 7486: 7424: 7374: 7320: 7266: 7167: 7092: 7072: 7052: 7005: 6985: 6939: 6878: 6858: 6838: 6812: 6810:{\displaystyle V(H)=} 6771: 6754:Graph Counting Lemma. 6751: 6731: 6711: 6681: 6654: 6631: 6611: 6591: 6567: 6537: 6326: 6255: 6217: 6193: 6160: 6158:{\displaystyle V_{i}} 6130: 5857: 5833: 5831:{\displaystyle V_{i}} 5806: 5765: 5419: 5417:{\displaystyle 2^{k}} 5392: 5390:{\displaystyle V_{i}} 5365: 5332: 5308: 5284: 5238: 5192: 5172: 5126: 5124:{\displaystyle (i,j)} 5094: 5086: 5015: 5013:{\displaystyle 2^{k}} 4988: 4986:{\displaystyle V_{i}} 4961: 4937: 4913: 4893: 4864: 4802: 4791: 4772: 4511: 4478: 4445: 4346: 4230: 3982: 3962: 3954: 3772: 3720: 3700: 3698:{\displaystyle (U,W)} 3668: 3661: 3604: 3580: 3551: 3505: 3443: 3419: 3392: 3372: 3346: 3268: 3203: 2971: 2950: 2916:The second moment is 2908: 2692: 2671: 2644:. The expectation is 2639: 2619: 2564: 2562:{\displaystyle W_{j}} 2537: 2517: 2515:{\displaystyle U_{i}} 2490: 2470: 2450: 2430: 2410: 2390: 2321: 2252: 2244: 2166: 2146: 2126: 2095: 2064: 2054: 1966: 1945: 1826: 1805: 1767: 1646: 1625: 1569: 1548: 1514: 1471: 1443: 1378: 1320: 1299: 1237: 1164: 1092: 968: 966:{\displaystyle |V|=n} 916: 909: 907:{\displaystyle L^{2}} 858: 732: 721: 575: 554: 492: 472: 452: 421: 304:, if for all subsets 276: 265: 223: 90: 29:extremal graph theory 22: 14864:Paulson, Lawrence C. 13876:10.1109/FOCS.2009.76 13870:, pp. 745–754, 13580:Krivelevich, Michael 13307: 13284: 13264: 13237: 13217: 13064: 12967: 12920: 12889: 12720: 12183: 12150: 12123: 12096: 12044: 12017: 11990: 11966: 11814: 11790: 11752: 11726: 11699: 11675: 11648: 11621: 11594: 11567: 11509: 11466: 11408: 11384: 11339: 11315: 11295: 11271: 11225: 11184: 11143: 11097: 11042: 10991: 10884: 10845: 10804: 10758: 10711: 10688: 10648: 10584: 10558: 10500: 10463: 10439: 10419: 10411:Remarks on equitable 10357: 10287: 10261: 10179: 10024: 9974: 9920: 9871: 9817: 9790: 9767: 9727: 9684: 9624: 9539: 9492: 9460: 9388: 9308: 9277: 9233: 9196: 9158: 9129: 9118:{\displaystyle M(t)} 9100: 9061: 9041: 9014: 8983: 8955: 8931: 8891: 8854: 8813: 8789: 8757: 8726: 8674: 8608: 8565: 8541: 8514: 8490: 8464: 8440: 8416: 8392: 8365: 8341: 8321: 8301: 8243: 8179: 8146: 8085: 8065: 8008: 7983: 7957: 7934: 7910: 7881: 7849: 7825: 7805: 7761: 7741: 7553: 7518: 7498: 7433: 7395: 7363: 7179: 7101: 7081: 7061: 7014: 6994: 6948: 6887: 6867: 6847: 6821: 6780: 6760: 6745:Graph counting lemma 6736:-regular partition. 6720: 6690: 6663: 6643: 6620: 6600: 6576: 6549: 6338: 6264: 6226: 6202: 6169: 6142: 5869: 5842: 5815: 5811:is the partition of 5777: 5431: 5401: 5374: 5341: 5317: 5293: 5247: 5201: 5181: 5135: 5103: 5027: 4997: 4970: 4946: 4922: 4902: 4891:{\displaystyle V(G)} 4873: 4811: 4780: 4523: 4487: 4454: 4355: 4242: 3994: 3971: 3784: 3729: 3709: 3677: 3613: 3589: 3560: 3514: 3452: 3428: 3404: 3381: 3355: 3277: 3215: 2923: 2651: 2628: 2573: 2546: 2526: 2499: 2479: 2459: 2439: 2419: 2399: 2330: 2261: 2175: 2155: 2135: 2104: 2073: 1783: 1526: 1480: 1456: 1390: 1253: 1177: 1104: 996: 941: 891: 589: 564: 501: 481: 461: 355: 134: 14671:2005math......4472T 14616:2008arXiv0801.1698A 14594:Probability Surveys 14580:2006math.....12838I 14245:2007arXiv0710.3032G 13911:10.1145/62212.62228 13682:2020PatRe..9807070F 13660:Pattern Recognition 13138:Szemerédi's theorem 11248: 10276:{\displaystyle i+1} 8887:, we simply return 8130:for estimating the 7343:Szemerédi's theorem 7331:Graph removal lemma 6260:is a refinement of 3370:{\displaystyle U,W} 786: ≤  782: ≤  14887:Information theory 14811:Simonovits, Miklós 14476:(1), Article R17, 14309:10.1007/BF01196135 13760:Journal of the ACM 13578:; Fischer, Eldar; 13448:10.1007/PL00001621 13313: 13290: 13270: 13250: 13223: 13131: 13107: 13050: 12953: 12906: 12875: 12744: 12704: 12702: 12615: 12431: 12260: 12167: 12136: 12109: 12082: 12030: 12003: 11976: 11952: 11800: 11776: 11735: 11712: 11685: 11661: 11634: 11607: 11580: 11553: 11492: 11452: 11394: 11370: 11325: 11301: 11281: 11257: 11234: 11208: 11170: 11129: 11089:Proof of corollary 11066: 11028: 10977: 10869: 10831: 10790: 10743: 10694: 10674: 10634: 10570: 10544: 10487:A useful corollary 10473: 10449: 10425: 10398: 10343: 10332: 10273: 10247: 10175:, so we could set 10165: 10010: 9960: 9906: 9857: 9803: 9776: 9753: 9710: 9670: 9610: 9525: 9478: 9446: 9374: 9294: 9263: 9219: 9182: 9141: 9115: 9086: 9047: 9027: 9000: 8965: 8941: 8917: 8877: 8840: 8799: 8770: 8743: 8700: 8659: 8592: 8551: 8527: 8500: 8474: 8450: 8426: 8402: 8375: 8351: 8327: 8307: 8287: 8185: 8162: 8108: 8071: 8048: 7989: 7967: 7940: 7920: 7896: 7867: 7835: 7811: 7784: 7747: 7724: 7536: 7504: 7481: 7419: 7369: 7315: 7223: 7162: 7087: 7067: 7047: 7010:-regular whenever 7000: 6980: 6934: 6873: 6853: 6833: 6807: 6766: 6726: 6706: 6676: 6649: 6626: 6606: 6586: 6562: 6532: 6465: 6381: 6321: 6250: 6212: 6188: 6155: 6125: 6004: 5920: 5852: 5828: 5801: 5760: 5705: 5599: 5493: 5414: 5387: 5360: 5327: 5303: 5279: 5233: 5187: 5167: 5121: 5081: 5010: 4983: 4956: 4932: 4908: 4888: 4859: 4786: 4767: 4506: 4473: 4450:(corresponding to 4440: 4341: 4225: 3977: 3949: 3767: 3715: 3695: 3656: 3599: 3575: 3546: 3500: 3438: 3414: 3387: 3367: 3341: 3263: 3198: 2903: 2634: 2614: 2559: 2532: 2512: 2485: 2465: 2445: 2425: 2405: 2395:. Choose vertices 2385: 2316: 2239: 2161: 2141: 2121: 2090: 2049: 1762: 1509: 1466: 1438: 1373: 1232: 1159: 1087: 963: 904: 861: 739:ε > 0 716: 640: 580:-regular partition 570: 549: 487: 467: 416: 283:ε > 0 268: 218: 25: 14840:978-3-540-43328-6 14532:10.1137/050633445 14342:Sárközy, Gábor N. 14287:Sárközy, Gábor N. 14225:, Second Series, 14139:10.1002/rsa.20117 14074:10.1002/rsa.20017 13885:978-1-4244-5116-6 13854:10.1137/110846373 13293:{\displaystyle G} 13198:An inequality of 13148:were obtained by 12963:pairs could have 12729: 12600: 12593: 12462: 12416: 12315: 12245: 12080: 11950: 11860: 11844: 11774: 11304:{\displaystyle r} 10697:{\displaystyle i} 10428:{\displaystyle 1} 10296: 9970:. Note that when 9723:By our choice of 9050:{\displaystyle G} 8780:regular partition 8330:{\displaystyle G} 8310:{\displaystyle M} 7943:{\displaystyle W} 7814:{\displaystyle W} 7350:induced subgraphs 7187: 7090:{\displaystyle G} 7070:{\displaystyle H} 6876:{\displaystyle n} 6856:{\displaystyle G} 6769:{\displaystyle H} 6530: 6462: 6454: 6417: 6341: 6001: 5993: 5956: 5917: 5909: 5872: 5702: 5694: 5657: 5596: 5588: 5551: 5453: 4674: 4633: 4438: 4397: 4351:with probability 4238:But observe that 4106: 3980:{\displaystyle Z} 3947: 3156: 3072: 3031: 2880: 2793: 2752: 2637:{\displaystyle Z} 2535:{\displaystyle y} 2488:{\displaystyle x} 2468:{\displaystyle W} 2448:{\displaystyle y} 2428:{\displaystyle U} 2408:{\displaystyle x} 2164:{\displaystyle W} 2144:{\displaystyle U} 2041: 1901: 1721: 1060: 637: 629: 592: 490:{\displaystyle k} 470:{\displaystyle V} 216: 14894: 14851: 14815:Szemerédi, Endre 14801: 14769: 14768: 14743: 14718: 14712: 14711: 14699: 14693: 14691: 14682: 14664: 14641: 14635: 14634: 14624:10.1214/08-PS124 14609: 14589: 14583: 14582: 14573: 14557: 14551: 14550: 14512: 14506: 14505: 14493: 14487: 14486: 14485: 14465: 14459: 14458: 14425: 14419: 14418: 14409: 14389: 14383: 14382: 14365: 14346:Szemerédi, Endre 14334: 14328: 14327: 14291:Szemerédi, Endre 14279: 14273: 14271: 14238: 14213: 14207: 14205: 14181:(1–2): 143–184, 14165: 14159: 14157: 14132: 14114: 14109:Schacht, Mathias 14103:Nagle, Brendan; 14100: 14094: 14092: 14059: 14050: 14044: 14042: 14008: 14002: 14000: 13986:Szemerédi, Endre 13982: 13976: 13974: 13965: 13942:Szemerédi, Endre 13938: 13932: 13931: 13895: 13889: 13888: 13863: 13857: 13856: 13833: 13827: 13826: 13798:Karpinksi, Marek 13790: 13784: 13783: 13751: 13745: 13744: 13712: 13701: 13700: 13675: 13655: 13649: 13648: 13647: 13627: 13621: 13620: 13572: 13563: 13562: 13545: 13535: 13526:(7): 1257–1280, 13510: 13504: 13503: 13473: 13467: 13466: 13426: 13420: 13419: 13402: 13392: 13383:(5): 1191–1256, 13363: 13322: 13320: 13319: 13314: 13299: 13297: 13296: 13291: 13279: 13277: 13276: 13271: 13259: 13257: 13256: 13251: 13249: 13248: 13232: 13230: 13229: 13224: 13134:Szemerédi (1975) 13116: 13114: 13113: 13108: 13097: 13083: 13059: 13057: 13056: 13051: 13049: 13048: 13033: 13032: 13020: 13019: 12998: 12997: 12985: 12984: 12962: 12960: 12959: 12954: 12952: 12951: 12946: 12937: 12932: 12931: 12915: 12913: 12912: 12907: 12902: 12884: 12882: 12881: 12876: 12871: 12854: 12853: 12848: 12839: 12828: 12827: 12822: 12813: 12812: 12800: 12799: 12778: 12777: 12765: 12764: 12749: 12743: 12713: 12711: 12710: 12705: 12703: 12699: 12698: 12693: 12684: 12683: 12671: 12670: 12649: 12648: 12636: 12635: 12620: 12614: 12599: 12594: 12592: 12591: 12590: 12585: 12576: 12564: 12556: 12552: 12551: 12546: 12537: 12536: 12524: 12523: 12502: 12501: 12489: 12488: 12473: 12468: 12463: 12461: 12460: 12459: 12454: 12445: 12433: 12430: 12409: 12405: 12404: 12399: 12390: 12389: 12377: 12376: 12355: 12354: 12342: 12341: 12326: 12321: 12316: 12314: 12313: 12304: 12303: 12298: 12297: 12288: 12283: 12278: 12277: 12268: 12262: 12259: 12238: 12231: 12230: 12212: 12211: 12176: 12174: 12173: 12168: 12163: 12145: 12143: 12142: 12137: 12135: 12134: 12118: 12116: 12115: 12110: 12108: 12107: 12091: 12089: 12088: 12083: 12081: 12079: 12078: 12077: 12072: 12063: 12051: 12039: 12037: 12036: 12031: 12029: 12028: 12012: 12010: 12009: 12004: 12002: 12001: 11985: 11983: 11982: 11977: 11975: 11974: 11961: 11959: 11958: 11953: 11951: 11949: 11948: 11947: 11942: 11933: 11924: 11923: 11918: 11917: 11908: 11903: 11898: 11897: 11888: 11882: 11880: 11879: 11867: 11866: 11865: 11852: 11845: 11843: 11842: 11841: 11836: 11827: 11818: 11809: 11807: 11806: 11801: 11799: 11798: 11785: 11783: 11782: 11777: 11775: 11773: 11762: 11744: 11742: 11741: 11736: 11721: 11719: 11718: 11713: 11711: 11710: 11694: 11692: 11691: 11686: 11684: 11683: 11670: 11668: 11667: 11662: 11660: 11659: 11643: 11641: 11640: 11635: 11633: 11632: 11616: 11614: 11613: 11608: 11606: 11605: 11589: 11587: 11586: 11581: 11579: 11578: 11562: 11560: 11559: 11554: 11549: 11548: 11530: 11529: 11505:Now assume that 11501: 11499: 11498: 11493: 11485: 11480: 11479: 11473: 11461: 11459: 11458: 11453: 11442: 11441: 11423: 11422: 11403: 11401: 11400: 11395: 11393: 11392: 11379: 11377: 11376: 11371: 11369: 11368: 11363: 11354: 11349: 11334: 11332: 11331: 11326: 11324: 11323: 11310: 11308: 11307: 11302: 11290: 11288: 11287: 11282: 11280: 11279: 11266: 11264: 11263: 11258: 11253: 11247: 11242: 11217: 11215: 11214: 11209: 11179: 11177: 11176: 11171: 11169: 11168: 11167: 11162: 11161: 11155: 11138: 11136: 11135: 11130: 11125: 11124: 11112: 11111: 11075: 11073: 11072: 11067: 11037: 11035: 11034: 11029: 11027: 11026: 11021: 11015: 11014: 11008: 11003: 11002: 10986: 10984: 10983: 10978: 10976: 10975: 10963: 10955: 10954: 10942: 10941: 10920: 10919: 10907: 10906: 10891: 10878: 10876: 10875: 10870: 10840: 10838: 10837: 10832: 10830: 10829: 10828: 10823: 10822: 10816: 10799: 10797: 10796: 10791: 10786: 10785: 10773: 10772: 10752: 10750: 10749: 10744: 10733: 10728: 10727: 10718: 10703: 10701: 10700: 10695: 10683: 10681: 10680: 10675: 10673: 10672: 10660: 10659: 10643: 10641: 10640: 10635: 10633: 10632: 10631: 10607: 10606: 10593: 10592: 10579: 10577: 10576: 10571: 10553: 10551: 10550: 10545: 10525: 10524: 10512: 10511: 10482: 10480: 10479: 10474: 10472: 10471: 10458: 10456: 10455: 10450: 10448: 10447: 10434: 10432: 10431: 10426: 10407: 10405: 10404: 10399: 10388: 10380: 10372: 10364: 10352: 10350: 10349: 10344: 10342: 10341: 10331: 10324: 10323: 10314: 10282: 10280: 10279: 10274: 10256: 10254: 10253: 10248: 10246: 10245: 10233: 10232: 10231: 10226: 10225: 10216: 10197: 10196: 10174: 10172: 10171: 10166: 10164: 10163: 10151: 10150: 10149: 10144: 10143: 10134: 10115: 10110: 10109: 10104: 10103: 10096: 10088: 10087: 10086: 10081: 10080: 10071: 10052: 10047: 10046: 10031: 10019: 10017: 10016: 10011: 10009: 10008: 9996: 9991: 9990: 9981: 9969: 9967: 9966: 9961: 9959: 9958: 9946: 9941: 9940: 9935: 9934: 9927: 9915: 9913: 9912: 9907: 9902: 9901: 9883: 9882: 9866: 9864: 9863: 9858: 9856: 9855: 9843: 9838: 9837: 9832: 9831: 9824: 9812: 9810: 9809: 9804: 9802: 9801: 9785: 9783: 9782: 9777: 9762: 9760: 9759: 9754: 9749: 9748: 9737: 9736: 9719: 9717: 9716: 9711: 9706: 9705: 9696: 9695: 9679: 9677: 9676: 9671: 9666: 9665: 9654: 9653: 9643: 9642: 9637: 9636: 9619: 9617: 9616: 9611: 9609: 9608: 9593: 9592: 9587: 9586: 9567: 9566: 9555: 9554: 9534: 9532: 9531: 9526: 9518: 9517: 9508: 9487: 9485: 9484: 9481:{\displaystyle } 9479: 9455: 9453: 9452: 9447: 9442: 9441: 9436: 9435: 9416: 9415: 9404: 9403: 9383: 9381: 9380: 9375: 9373: 9368: 9367: 9362: 9361: 9354: 9346: 9345: 9344: 9339: 9338: 9329: 9303: 9301: 9300: 9295: 9293: 9292: 9291: 9290: 9272: 9270: 9269: 9264: 9262: 9261: 9260: 9255: 9254: 9245: 9228: 9226: 9225: 9220: 9218: 9217: 9216: 9215: 9191: 9189: 9188: 9183: 9150: 9148: 9147: 9142: 9124: 9122: 9121: 9116: 9095: 9093: 9092: 9087: 9082: 9081: 9056: 9054: 9053: 9048: 9036: 9034: 9033: 9028: 9026: 9025: 9009: 9007: 9006: 9001: 8999: 8998: 8993: 8992: 8974: 8972: 8971: 8966: 8964: 8963: 8950: 8948: 8947: 8942: 8940: 8939: 8926: 8924: 8923: 8918: 8913: 8912: 8903: 8902: 8886: 8884: 8883: 8878: 8876: 8875: 8863: 8862: 8849: 8847: 8846: 8841: 8839: 8838: 8837: 8832: 8831: 8825: 8808: 8806: 8805: 8800: 8798: 8797: 8779: 8777: 8776: 8771: 8769: 8768: 8752: 8750: 8749: 8744: 8742: 8741: 8736: 8735: 8709: 8707: 8706: 8701: 8693: 8688: 8687: 8681: 8668: 8666: 8665: 8660: 8658: 8657: 8642: 8641: 8623: 8622: 8601: 8599: 8598: 8593: 8591: 8590: 8589: 8584: 8583: 8577: 8560: 8558: 8557: 8552: 8550: 8549: 8536: 8534: 8533: 8528: 8526: 8525: 8509: 8507: 8506: 8501: 8499: 8498: 8483: 8481: 8480: 8475: 8473: 8472: 8459: 8457: 8456: 8451: 8449: 8448: 8435: 8433: 8432: 8427: 8425: 8424: 8411: 8409: 8408: 8403: 8401: 8400: 8384: 8382: 8381: 8376: 8374: 8373: 8360: 8358: 8357: 8352: 8350: 8349: 8336: 8334: 8333: 8328: 8316: 8314: 8313: 8308: 8296: 8294: 8293: 8288: 8268: 8267: 8255: 8254: 8194: 8192: 8191: 8186: 8171: 8169: 8168: 8163: 8161: 8160: 8117: 8115: 8114: 8109: 8107: 8106: 8105: 8104: 8080: 8078: 8077: 8072: 8057: 8055: 8054: 8049: 8041: 8040: 8031: 8030: 8029: 7998: 7996: 7995: 7990: 7976: 7974: 7973: 7968: 7966: 7965: 7950:over each step. 7949: 7947: 7946: 7941: 7929: 7927: 7926: 7921: 7919: 7918: 7905: 7903: 7902: 7897: 7895: 7894: 7893: 7877:, we can define 7876: 7874: 7873: 7870:{\displaystyle } 7868: 7844: 7842: 7841: 7836: 7834: 7833: 7821:and a partition 7820: 7818: 7817: 7812: 7793: 7791: 7790: 7785: 7783: 7782: 7781: 7780: 7756: 7754: 7753: 7748: 7733: 7731: 7730: 7725: 7723: 7722: 7717: 7708: 7697: 7693: 7692: 7687: 7686: 7671: 7666: 7661: 7660: 7645: 7637: 7636: 7624: 7623: 7607: 7602: 7545: 7543: 7542: 7537: 7513: 7511: 7510: 7505: 7490: 7488: 7487: 7482: 7477: 7476: 7458: 7457: 7442: 7441: 7428: 7426: 7425: 7420: 7378: 7376: 7375: 7370: 7324: 7322: 7321: 7316: 7311: 7307: 7306: 7301: 7300: 7291: 7285: 7280: 7260: 7256: 7252: 7251: 7239: 7238: 7222: 7171: 7169: 7168: 7163: 7161: 7156: 7155: 7146: 7138: 7133: 7132: 7123: 7096: 7094: 7093: 7088: 7076: 7074: 7073: 7068: 7056: 7054: 7053: 7048: 7009: 7007: 7006: 7001: 6989: 6987: 6986: 6981: 6976: 6975: 6963: 6962: 6943: 6941: 6940: 6935: 6918: 6917: 6899: 6898: 6882: 6880: 6879: 6874: 6862: 6860: 6859: 6854: 6842: 6840: 6839: 6834: 6816: 6814: 6813: 6808: 6776:be a graph with 6775: 6773: 6772: 6767: 6735: 6733: 6732: 6727: 6715: 6713: 6712: 6707: 6705: 6704: 6685: 6683: 6682: 6677: 6675: 6674: 6658: 6656: 6655: 6650: 6635: 6633: 6632: 6627: 6615: 6613: 6612: 6607: 6595: 6593: 6592: 6587: 6585: 6584: 6571: 6569: 6568: 6563: 6561: 6560: 6541: 6539: 6538: 6533: 6531: 6529: 6528: 6519: 6518: 6513: 6512: 6503: 6498: 6493: 6492: 6483: 6477: 6475: 6474: 6464: 6463: 6460: 6455: 6452: 6447: 6446: 6434: 6433: 6410: 6409: 6397: 6396: 6380: 6379: 6378: 6330: 6328: 6327: 6322: 6317: 6316: 6298: 6297: 6285: 6284: 6259: 6257: 6256: 6251: 6249: 6248: 6247: 6246: 6236: 6235: 6221: 6219: 6218: 6213: 6211: 6210: 6197: 6195: 6194: 6189: 6187: 6186: 6164: 6162: 6161: 6156: 6154: 6153: 6134: 6132: 6131: 6126: 6118: 6117: 6099: 6098: 6086: 6085: 6061: 6060: 6042: 6041: 6029: 6028: 6003: 6002: 5999: 5994: 5991: 5986: 5985: 5973: 5972: 5949: 5948: 5936: 5935: 5919: 5918: 5915: 5910: 5907: 5902: 5901: 5889: 5888: 5861: 5859: 5858: 5853: 5851: 5850: 5837: 5835: 5834: 5829: 5827: 5826: 5810: 5808: 5807: 5802: 5800: 5799: 5798: 5797: 5787: 5786: 5769: 5767: 5766: 5761: 5756: 5755: 5754: 5753: 5743: 5742: 5732: 5731: 5730: 5729: 5719: 5718: 5704: 5703: 5700: 5695: 5692: 5687: 5686: 5674: 5673: 5650: 5649: 5648: 5647: 5637: 5636: 5626: 5625: 5624: 5623: 5613: 5612: 5598: 5597: 5594: 5589: 5586: 5581: 5580: 5568: 5567: 5544: 5543: 5542: 5541: 5531: 5530: 5520: 5519: 5518: 5517: 5507: 5506: 5492: 5491: 5490: 5446: 5445: 5423: 5421: 5420: 5415: 5413: 5412: 5396: 5394: 5393: 5388: 5386: 5385: 5369: 5367: 5366: 5361: 5359: 5358: 5336: 5334: 5333: 5328: 5326: 5325: 5312: 5310: 5309: 5304: 5302: 5301: 5288: 5286: 5285: 5280: 5278: 5277: 5265: 5264: 5242: 5240: 5239: 5234: 5232: 5231: 5219: 5218: 5196: 5194: 5193: 5188: 5176: 5174: 5173: 5168: 5163: 5162: 5150: 5149: 5130: 5128: 5127: 5122: 5090: 5088: 5087: 5082: 5077: 5076: 5061: 5060: 5042: 5041: 5020:parts such that 5019: 5017: 5016: 5011: 5009: 5008: 4992: 4990: 4989: 4984: 4982: 4981: 4965: 4963: 4962: 4957: 4955: 4954: 4941: 4939: 4938: 4933: 4931: 4930: 4917: 4915: 4914: 4909: 4897: 4895: 4894: 4889: 4868: 4866: 4865: 4860: 4855: 4854: 4836: 4835: 4820: 4819: 4795: 4793: 4792: 4787: 4776: 4774: 4773: 4768: 4766: 4765: 4741: 4740: 4707: 4706: 4694: 4693: 4675: 4673: 4672: 4664: 4658: 4657: 4652: 4651: 4642: 4636: 4634: 4632: 4631: 4623: 4617: 4616: 4611: 4610: 4601: 4595: 4587: 4586: 4568: 4551: 4515: 4513: 4512: 4507: 4505: 4504: 4482: 4480: 4479: 4474: 4472: 4471: 4449: 4447: 4446: 4441: 4439: 4437: 4436: 4428: 4422: 4421: 4416: 4415: 4406: 4400: 4398: 4396: 4395: 4387: 4381: 4380: 4375: 4374: 4365: 4359: 4350: 4348: 4347: 4342: 4340: 4311: 4310: 4298: 4297: 4282: 4274: 4260: 4249: 4234: 4232: 4231: 4226: 4224: 4220: 4198: 4194: 4190: 4189: 4171: 4170: 4152: 4151: 4133: 4132: 4107: 4105: 4104: 4096: 4091: 4083: 4077: 4076: 4067: 4062: 4061: 4046: 4035: 4034: 4022: 3987:as above. Then, 3986: 3984: 3983: 3978: 3958: 3956: 3955: 3950: 3948: 3946: 3945: 3936: 3935: 3927: 3922: 3914: 3908: 3906: 3905: 3872: 3868: 3864: 3863: 3845: 3844: 3826: 3825: 3807: 3806: 3776: 3774: 3773: 3768: 3760: 3759: 3741: 3740: 3724: 3722: 3721: 3716: 3704: 3702: 3701: 3696: 3665: 3663: 3662: 3657: 3652: 3651: 3633: 3632: 3631: 3608: 3606: 3605: 3600: 3598: 3597: 3584: 3582: 3581: 3576: 3574: 3573: 3572: 3555: 3553: 3552: 3547: 3542: 3541: 3529: 3528: 3509: 3507: 3506: 3501: 3496: 3495: 3477: 3476: 3461: 3460: 3447: 3445: 3444: 3439: 3437: 3436: 3423: 3421: 3420: 3415: 3413: 3412: 3400:If each part of 3396: 3394: 3393: 3388: 3376: 3374: 3373: 3368: 3350: 3348: 3347: 3342: 3316: 3315: 3310: 3309: 3299: 3298: 3293: 3292: 3272: 3270: 3269: 3264: 3262: 3261: 3246: 3235: 3234: 3222: 3207: 3205: 3204: 3199: 3194: 3193: 3188: 3187: 3177: 3176: 3171: 3170: 3157: 3155: 3154: 3146: 3141: 3133: 3127: 3126: 3117: 3112: 3111: 3102: 3101: 3089: 3088: 3073: 3071: 3070: 3062: 3056: 3055: 3050: 3049: 3040: 3034: 3032: 3030: 3029: 3021: 3015: 3014: 3009: 3008: 2999: 2993: 2990: 2985: 2969: 2964: 2943: 2942: 2930: 2912: 2910: 2909: 2904: 2881: 2879: 2878: 2870: 2865: 2857: 2851: 2831: 2823: 2822: 2810: 2809: 2794: 2792: 2791: 2783: 2777: 2776: 2771: 2770: 2761: 2755: 2753: 2751: 2750: 2742: 2736: 2735: 2730: 2729: 2720: 2714: 2711: 2706: 2690: 2685: 2658: 2643: 2641: 2640: 2635: 2623: 2621: 2620: 2615: 2610: 2609: 2597: 2596: 2568: 2566: 2565: 2560: 2558: 2557: 2541: 2539: 2538: 2533: 2521: 2519: 2518: 2513: 2511: 2510: 2494: 2492: 2491: 2486: 2474: 2472: 2471: 2466: 2454: 2452: 2451: 2446: 2434: 2432: 2431: 2426: 2414: 2412: 2411: 2406: 2394: 2392: 2391: 2386: 2381: 2380: 2362: 2361: 2346: 2345: 2340: 2339: 2325: 2323: 2322: 2317: 2312: 2311: 2293: 2292: 2277: 2276: 2271: 2270: 2248: 2246: 2245: 2240: 2214: 2213: 2208: 2207: 2197: 2196: 2191: 2190: 2170: 2168: 2167: 2162: 2150: 2148: 2147: 2142: 2130: 2128: 2127: 2122: 2120: 2119: 2114: 2113: 2099: 2097: 2096: 2091: 2089: 2088: 2083: 2082: 2058: 2056: 2055: 2050: 2042: 2040: 2039: 2030: 2029: 2024: 2023: 2014: 2009: 2004: 2003: 1994: 1988: 1985: 1980: 1964: 1959: 1941: 1940: 1931: 1930: 1918: 1917: 1902: 1900: 1899: 1890: 1889: 1884: 1883: 1874: 1869: 1864: 1863: 1854: 1848: 1845: 1840: 1824: 1819: 1798: 1797: 1771: 1769: 1768: 1763: 1761: 1760: 1751: 1750: 1738: 1737: 1722: 1720: 1719: 1710: 1709: 1704: 1703: 1694: 1689: 1684: 1683: 1674: 1668: 1665: 1660: 1644: 1639: 1618: 1617: 1605: 1604: 1588: 1583: 1567: 1562: 1541: 1540: 1519:. Specifically, 1518: 1516: 1515: 1510: 1505: 1504: 1495: 1494: 1475: 1473: 1472: 1467: 1465: 1464: 1451: 1447: 1445: 1444: 1439: 1434: 1433: 1415: 1414: 1399: 1398: 1382: 1380: 1379: 1374: 1369: 1368: 1356: 1355: 1339: 1334: 1318: 1313: 1292: 1291: 1286: 1285: 1275: 1274: 1269: 1268: 1245: 1241: 1239: 1238: 1233: 1228: 1227: 1209: 1208: 1193: 1192: 1187: 1186: 1172: 1168: 1166: 1165: 1160: 1155: 1154: 1136: 1135: 1120: 1119: 1114: 1113: 1096: 1094: 1093: 1088: 1086: 1085: 1061: 1059: 1058: 1049: 1048: 1040: 1035: 1027: 1021: 988: 972: 970: 969: 964: 956: 948: 936: 930: 913: 911: 910: 905: 903: 902: 846: 840: 836: 826: 820: 816: 806: 800: 794: 790: 776: 770: 764: 758: 752: 740: 725: 723: 722: 717: 715: 714: 709: 691: 680: 675: 674: 665: 660: 655: 654: 645: 639: 638: 635: 630: 627: 622: 621: 609: 608: 579: 577: 576: 571: 558: 556: 555: 550: 545: 544: 526: 525: 510: 509: 496: 494: 493: 488: 476: 474: 473: 468: 449: 445: 437: 433: 425: 423: 422: 417: 406: 402: 347: 342:| ≥ ε| 335: 330:| ≥ ε| 323: 313: 301: 296: 290: 284: 273: 257: 251: 245: 227: 225: 224: 219: 217: 215: 214: 206: 201: 193: 187: 183: 159: 126: 110: 104: 87: 78:is a graph with 77: 71: 49:bipartite graphs 14902: 14901: 14897: 14896: 14895: 14893: 14892: 14891: 14872: 14871: 14859: 14841: 14778: 14776:Further reading 14773: 14772: 14719: 14715: 14700: 14696: 14642: 14638: 14590: 14586: 14558: 14554: 14520:SIAM J. Comput. 14513: 14509: 14494: 14490: 14466: 14462: 14448: 14426: 14422: 14390: 14386: 14335: 14331: 14280: 14276: 14214: 14210: 14166: 14162: 14130:10.1.1.378.8503 14112: 14101: 14097: 14057: 14051: 14047: 14009: 14005: 13983: 13979: 13939: 13935: 13921: 13896: 13892: 13886: 13864: 13860: 13834: 13830: 13791: 13787: 13752: 13748: 13713: 13704: 13656: 13652: 13628: 13624: 13573: 13566: 13511: 13507: 13474: 13470: 13427: 13423: 13364: 13357: 13352: 13328:totally bounded 13308: 13305: 13304: 13285: 13282: 13281: 13265: 13262: 13261: 13244: 13240: 13238: 13235: 13234: 13218: 13215: 13214: 13168:Endre Szemerédi 13123: 13093: 13079: 13065: 13062: 13061: 13044: 13040: 13028: 13024: 13015: 13011: 12993: 12989: 12980: 12976: 12968: 12965: 12964: 12947: 12942: 12941: 12933: 12927: 12923: 12921: 12918: 12917: 12898: 12890: 12887: 12886: 12867: 12849: 12844: 12843: 12835: 12823: 12818: 12817: 12808: 12804: 12795: 12791: 12773: 12769: 12760: 12756: 12745: 12733: 12721: 12718: 12717: 12701: 12700: 12694: 12689: 12688: 12679: 12675: 12666: 12662: 12644: 12640: 12631: 12627: 12616: 12604: 12595: 12586: 12581: 12580: 12572: 12568: 12563: 12554: 12553: 12547: 12542: 12541: 12532: 12528: 12519: 12515: 12497: 12493: 12484: 12480: 12469: 12464: 12455: 12450: 12449: 12441: 12437: 12432: 12420: 12407: 12406: 12400: 12395: 12394: 12385: 12381: 12372: 12368: 12350: 12346: 12337: 12333: 12322: 12317: 12309: 12305: 12299: 12293: 12289: 12284: 12279: 12273: 12269: 12264: 12263: 12261: 12249: 12236: 12235: 12226: 12225: 12207: 12206: 12193: 12186: 12184: 12181: 12180: 12159: 12151: 12148: 12147: 12130: 12126: 12124: 12121: 12120: 12103: 12099: 12097: 12094: 12093: 12073: 12068: 12067: 12059: 12055: 12050: 12045: 12042: 12041: 12024: 12020: 12018: 12015: 12014: 11997: 11993: 11991: 11988: 11987: 11970: 11969: 11967: 11964: 11963: 11943: 11938: 11937: 11929: 11925: 11919: 11913: 11909: 11904: 11899: 11893: 11889: 11884: 11883: 11881: 11875: 11871: 11861: 11848: 11847: 11846: 11837: 11832: 11831: 11823: 11822: 11817: 11815: 11812: 11811: 11794: 11793: 11791: 11788: 11787: 11766: 11761: 11753: 11750: 11749: 11727: 11724: 11723: 11706: 11702: 11700: 11697: 11696: 11679: 11678: 11676: 11673: 11672: 11655: 11651: 11649: 11646: 11645: 11628: 11624: 11622: 11619: 11618: 11601: 11597: 11595: 11592: 11591: 11574: 11570: 11568: 11565: 11564: 11544: 11540: 11525: 11521: 11510: 11507: 11506: 11481: 11475: 11474: 11469: 11467: 11464: 11463: 11437: 11436: 11418: 11417: 11409: 11406: 11405: 11388: 11387: 11385: 11382: 11381: 11364: 11359: 11358: 11350: 11345: 11340: 11337: 11336: 11319: 11318: 11316: 11313: 11312: 11296: 11293: 11292: 11275: 11274: 11272: 11269: 11268: 11249: 11243: 11238: 11226: 11223: 11222: 11185: 11182: 11181: 11163: 11157: 11156: 11151: 11150: 11146: 11144: 11141: 11140: 11120: 11116: 11107: 11103: 11098: 11095: 11094: 11091: 11082: 11043: 11040: 11039: 11022: 11017: 11016: 11010: 11009: 11004: 10998: 10994: 10992: 10989: 10988: 10971: 10967: 10959: 10950: 10946: 10937: 10933: 10915: 10911: 10902: 10898: 10887: 10885: 10882: 10881: 10846: 10843: 10842: 10824: 10818: 10817: 10812: 10811: 10807: 10805: 10802: 10801: 10781: 10777: 10768: 10764: 10759: 10756: 10755: 10729: 10723: 10719: 10714: 10712: 10709: 10708: 10689: 10686: 10685: 10668: 10664: 10655: 10651: 10649: 10646: 10645: 10627: 10623: 10602: 10598: 10597: 10588: 10587: 10585: 10582: 10581: 10559: 10556: 10555: 10554:, there exists 10520: 10516: 10507: 10503: 10501: 10498: 10497: 10494: 10489: 10467: 10466: 10464: 10461: 10460: 10443: 10442: 10440: 10437: 10436: 10420: 10417: 10416: 10413: 10384: 10376: 10368: 10360: 10358: 10355: 10354: 10337: 10333: 10319: 10315: 10310: 10300: 10288: 10285: 10284: 10262: 10259: 10258: 10241: 10237: 10227: 10221: 10217: 10212: 10211: 10207: 10186: 10182: 10180: 10177: 10176: 10159: 10155: 10145: 10139: 10135: 10130: 10129: 10125: 10111: 10105: 10099: 10098: 10097: 10092: 10082: 10076: 10072: 10067: 10066: 10062: 10048: 10036: 10032: 10027: 10025: 10022: 10021: 10004: 10000: 9992: 9986: 9982: 9977: 9975: 9972: 9971: 9954: 9950: 9942: 9936: 9930: 9929: 9928: 9923: 9921: 9918: 9917: 9897: 9893: 9878: 9874: 9872: 9869: 9868: 9851: 9847: 9839: 9833: 9827: 9826: 9825: 9820: 9818: 9815: 9814: 9797: 9793: 9791: 9788: 9787: 9786:, there exists 9768: 9765: 9764: 9738: 9732: 9731: 9730: 9728: 9725: 9724: 9701: 9700: 9691: 9690: 9685: 9682: 9681: 9655: 9649: 9648: 9647: 9638: 9632: 9631: 9630: 9625: 9622: 9621: 9604: 9600: 9588: 9582: 9581: 9580: 9556: 9550: 9549: 9548: 9540: 9537: 9536: 9513: 9509: 9504: 9493: 9490: 9489: 9461: 9458: 9457: 9437: 9431: 9430: 9429: 9405: 9399: 9398: 9397: 9389: 9386: 9385: 9369: 9363: 9357: 9356: 9355: 9350: 9340: 9334: 9330: 9325: 9324: 9320: 9309: 9306: 9305: 9286: 9282: 9281: 9280: 9278: 9275: 9274: 9256: 9250: 9246: 9241: 9240: 9236: 9234: 9231: 9230: 9205: 9201: 9200: 9199: 9197: 9194: 9193: 9159: 9156: 9155: 9130: 9127: 9126: 9101: 9098: 9097: 9077: 9073: 9062: 9059: 9058: 9042: 9039: 9038: 9021: 9017: 9015: 9012: 9011: 8994: 8988: 8987: 8986: 8984: 8981: 8980: 8959: 8958: 8956: 8953: 8952: 8935: 8934: 8932: 8929: 8928: 8908: 8907: 8898: 8897: 8892: 8889: 8888: 8871: 8867: 8858: 8857: 8855: 8852: 8851: 8833: 8827: 8826: 8821: 8820: 8816: 8814: 8811: 8810: 8793: 8792: 8790: 8787: 8786: 8764: 8760: 8758: 8755: 8754: 8737: 8731: 8730: 8729: 8727: 8724: 8723: 8716: 8689: 8683: 8682: 8677: 8675: 8672: 8671: 8653: 8649: 8637: 8636: 8618: 8617: 8609: 8606: 8605: 8585: 8579: 8578: 8573: 8572: 8568: 8566: 8563: 8562: 8545: 8544: 8542: 8539: 8538: 8521: 8517: 8515: 8512: 8511: 8494: 8493: 8491: 8488: 8487: 8468: 8467: 8465: 8462: 8461: 8444: 8443: 8441: 8438: 8437: 8420: 8419: 8417: 8414: 8413: 8396: 8395: 8393: 8390: 8389: 8369: 8368: 8366: 8363: 8362: 8345: 8344: 8342: 8339: 8338: 8322: 8319: 8318: 8302: 8299: 8298: 8263: 8259: 8250: 8246: 8244: 8241: 8240: 8237: 8213: 8180: 8177: 8176: 8156: 8152: 8147: 8144: 8143: 8124: 8097: 8093: 8092: 8088: 8086: 8083: 8082: 8066: 8063: 8062: 8036: 8032: 8025: 8024: 8020: 8009: 8006: 8005: 7984: 7981: 7980: 7961: 7960: 7958: 7955: 7954: 7935: 7932: 7931: 7914: 7913: 7911: 7908: 7907: 7889: 7888: 7884: 7882: 7879: 7878: 7850: 7847: 7846: 7829: 7828: 7826: 7823: 7822: 7806: 7803: 7802: 7773: 7769: 7768: 7764: 7762: 7759: 7758: 7742: 7739: 7738: 7718: 7713: 7712: 7704: 7688: 7682: 7678: 7667: 7662: 7656: 7652: 7641: 7632: 7628: 7619: 7615: 7603: 7586: 7560: 7556: 7554: 7551: 7550: 7519: 7516: 7515: 7499: 7496: 7495: 7472: 7468: 7453: 7449: 7437: 7436: 7434: 7431: 7430: 7396: 7393: 7392: 7385: 7364: 7361: 7360: 7302: 7296: 7292: 7287: 7281: 7270: 7265: 7261: 7247: 7243: 7234: 7230: 7191: 7186: 7182: 7180: 7177: 7176: 7157: 7151: 7147: 7142: 7134: 7128: 7124: 7119: 7102: 7099: 7098: 7082: 7079: 7078: 7062: 7059: 7058: 7015: 7012: 7011: 6995: 6992: 6991: 6971: 6967: 6958: 6954: 6949: 6946: 6945: 6913: 6909: 6894: 6890: 6888: 6885: 6884: 6868: 6865: 6864: 6848: 6845: 6844: 6822: 6819: 6818: 6781: 6778: 6777: 6761: 6758: 6757: 6747: 6742: 6721: 6718: 6717: 6697: 6693: 6691: 6688: 6687: 6670: 6666: 6664: 6661: 6660: 6644: 6641: 6640: 6621: 6618: 6617: 6601: 6598: 6597: 6580: 6579: 6577: 6574: 6573: 6556: 6552: 6550: 6547: 6546: 6524: 6520: 6514: 6508: 6504: 6499: 6494: 6488: 6484: 6479: 6478: 6476: 6470: 6466: 6459: 6453: not  6451: 6442: 6438: 6429: 6425: 6421: 6405: 6401: 6392: 6388: 6374: 6370: 6345: 6339: 6336: 6335: 6306: 6302: 6293: 6289: 6274: 6270: 6265: 6262: 6261: 6242: 6238: 6237: 6231: 6230: 6229: 6227: 6224: 6223: 6206: 6205: 6203: 6200: 6199: 6176: 6172: 6170: 6167: 6166: 6149: 6145: 6143: 6140: 6139: 6107: 6103: 6094: 6090: 6075: 6071: 6050: 6046: 6037: 6033: 6018: 6014: 5998: 5992: not  5990: 5981: 5977: 5968: 5964: 5960: 5944: 5940: 5931: 5927: 5914: 5906: 5897: 5893: 5884: 5880: 5876: 5870: 5867: 5866: 5846: 5845: 5843: 5840: 5839: 5822: 5818: 5816: 5813: 5812: 5793: 5789: 5788: 5782: 5781: 5780: 5778: 5775: 5774: 5749: 5745: 5744: 5738: 5737: 5736: 5725: 5721: 5720: 5714: 5713: 5712: 5699: 5693: not  5691: 5682: 5678: 5669: 5665: 5661: 5643: 5639: 5638: 5632: 5631: 5630: 5619: 5615: 5614: 5608: 5607: 5606: 5593: 5585: 5576: 5572: 5563: 5559: 5555: 5537: 5533: 5532: 5526: 5525: 5524: 5513: 5509: 5508: 5502: 5501: 5500: 5486: 5482: 5457: 5441: 5440: 5432: 5429: 5428: 5408: 5404: 5402: 5399: 5398: 5381: 5377: 5375: 5372: 5371: 5348: 5344: 5342: 5339: 5338: 5321: 5320: 5318: 5315: 5314: 5297: 5296: 5294: 5291: 5290: 5273: 5269: 5254: 5250: 5248: 5245: 5244: 5227: 5223: 5208: 5204: 5202: 5199: 5198: 5197:-regular, find 5182: 5179: 5178: 5158: 5154: 5145: 5141: 5136: 5133: 5132: 5104: 5101: 5100: 5072: 5068: 5056: 5055: 5037: 5036: 5028: 5025: 5024: 5004: 5000: 4998: 4995: 4994: 4977: 4973: 4971: 4968: 4967: 4950: 4949: 4947: 4944: 4943: 4926: 4925: 4923: 4920: 4919: 4903: 4900: 4899: 4874: 4871: 4870: 4850: 4846: 4831: 4827: 4815: 4814: 4812: 4809: 4808: 4781: 4778: 4777: 4761: 4757: 4736: 4732: 4702: 4698: 4689: 4685: 4668: 4660: 4659: 4653: 4647: 4643: 4638: 4637: 4635: 4627: 4619: 4618: 4612: 4606: 4602: 4597: 4596: 4594: 4582: 4578: 4564: 4547: 4524: 4521: 4520: 4500: 4496: 4488: 4485: 4484: 4467: 4463: 4455: 4452: 4451: 4432: 4424: 4423: 4417: 4411: 4407: 4402: 4401: 4399: 4391: 4383: 4382: 4376: 4370: 4366: 4361: 4360: 4358: 4356: 4353: 4352: 4336: 4306: 4302: 4293: 4289: 4278: 4270: 4256: 4245: 4243: 4240: 4239: 4185: 4181: 4166: 4162: 4147: 4143: 4128: 4124: 4120: 4116: 4112: 4108: 4100: 4092: 4087: 4079: 4078: 4072: 4068: 4066: 4057: 4053: 4042: 4030: 4026: 4018: 3995: 3992: 3991: 3972: 3969: 3968: 3941: 3937: 3931: 3923: 3918: 3910: 3909: 3907: 3901: 3897: 3859: 3855: 3840: 3836: 3821: 3817: 3802: 3798: 3794: 3790: 3785: 3782: 3781: 3755: 3751: 3736: 3732: 3730: 3727: 3726: 3710: 3707: 3706: 3678: 3675: 3674: 3647: 3646: 3624: 3623: 3622: 3614: 3611: 3610: 3593: 3592: 3590: 3587: 3586: 3565: 3564: 3563: 3561: 3558: 3557: 3537: 3533: 3524: 3520: 3515: 3512: 3511: 3491: 3487: 3472: 3468: 3456: 3455: 3453: 3450: 3449: 3432: 3431: 3429: 3426: 3425: 3408: 3407: 3405: 3402: 3401: 3382: 3379: 3378: 3356: 3353: 3352: 3311: 3305: 3304: 3303: 3294: 3288: 3287: 3286: 3278: 3275: 3274: 3257: 3253: 3242: 3230: 3226: 3218: 3216: 3213: 3212: 3189: 3183: 3182: 3181: 3172: 3166: 3165: 3164: 3150: 3142: 3137: 3129: 3128: 3122: 3118: 3116: 3107: 3103: 3097: 3093: 3084: 3080: 3066: 3058: 3057: 3051: 3045: 3041: 3036: 3035: 3033: 3025: 3017: 3016: 3010: 3004: 3000: 2995: 2994: 2992: 2986: 2975: 2965: 2954: 2938: 2934: 2926: 2924: 2921: 2920: 2874: 2866: 2861: 2853: 2852: 2832: 2830: 2818: 2814: 2805: 2801: 2787: 2779: 2778: 2772: 2766: 2762: 2757: 2756: 2754: 2746: 2738: 2737: 2731: 2725: 2721: 2716: 2715: 2713: 2707: 2696: 2686: 2675: 2654: 2652: 2649: 2648: 2629: 2626: 2625: 2605: 2601: 2592: 2588: 2574: 2571: 2570: 2553: 2549: 2547: 2544: 2543: 2527: 2524: 2523: 2506: 2502: 2500: 2497: 2496: 2480: 2477: 2476: 2460: 2457: 2456: 2455:uniformly from 2440: 2437: 2436: 2420: 2417: 2416: 2415:uniformly from 2400: 2397: 2396: 2376: 2372: 2357: 2353: 2341: 2335: 2334: 2333: 2331: 2328: 2327: 2307: 2303: 2288: 2284: 2272: 2266: 2265: 2264: 2262: 2259: 2258: 2209: 2203: 2202: 2201: 2192: 2186: 2185: 2184: 2176: 2173: 2172: 2156: 2153: 2152: 2136: 2133: 2132: 2131:of vertex sets 2115: 2109: 2108: 2107: 2105: 2102: 2101: 2084: 2078: 2077: 2076: 2074: 2071: 2070: 2035: 2031: 2025: 2019: 2015: 2010: 2005: 1999: 1995: 1990: 1989: 1987: 1981: 1970: 1960: 1949: 1936: 1932: 1926: 1922: 1913: 1909: 1895: 1891: 1885: 1879: 1875: 1870: 1865: 1859: 1855: 1850: 1849: 1847: 1841: 1830: 1820: 1809: 1793: 1792: 1784: 1781: 1780: 1756: 1752: 1746: 1742: 1733: 1729: 1715: 1711: 1705: 1699: 1695: 1690: 1685: 1679: 1675: 1670: 1669: 1667: 1661: 1650: 1640: 1629: 1613: 1609: 1600: 1596: 1584: 1573: 1563: 1552: 1536: 1535: 1527: 1524: 1523: 1500: 1499: 1490: 1489: 1481: 1478: 1477: 1460: 1459: 1457: 1454: 1453: 1449: 1429: 1425: 1410: 1406: 1394: 1393: 1391: 1388: 1387: 1364: 1360: 1351: 1347: 1335: 1324: 1314: 1303: 1287: 1281: 1280: 1279: 1270: 1264: 1263: 1262: 1254: 1251: 1250: 1243: 1223: 1219: 1204: 1200: 1188: 1182: 1181: 1180: 1178: 1175: 1174: 1170: 1150: 1146: 1131: 1127: 1115: 1109: 1108: 1107: 1105: 1102: 1101: 1100:For partitions 1081: 1077: 1054: 1050: 1044: 1036: 1031: 1023: 1022: 1020: 997: 994: 993: 989:is defined as: 978: 952: 944: 942: 939: 938: 932: 922: 898: 894: 892: 889: 888: 853: 842: 838: 832: 822: 818: 812: 802: 796: 792: 778: 772: 766: 760: 754: 748: 738: 710: 705: 704: 687: 676: 670: 666: 661: 656: 650: 646: 641: 634: 628: not  626: 617: 613: 604: 600: 596: 590: 587: 586: 565: 562: 561: 540: 536: 521: 517: 505: 504: 502: 499: 498: 482: 479: 478: 462: 459: 458: 457:A partition of 447: 443: 435: 431: 362: 358: 356: 353: 352: 337: 325: 315: 305: 299: 292: 286: 282: 271: 253: 247: 232: 210: 202: 197: 189: 188: 164: 160: 158: 135: 132: 131: 127:is defined as: 116: 106: 96: 83: 73: 69: 65: 45:Endre Szemerédi 17: 12: 11: 5: 14900: 14890: 14889: 14884: 14870: 14869: 14858: 14857:External links 14855: 14854: 14853: 14839: 14803: 14787:Simonovits, M. 14777: 14774: 14771: 14770: 14722:Lovász, László 14713: 14694: 14636: 14584: 14552: 14526:(2): 505–522, 14507: 14488: 14460: 14446: 14420: 14407:10.1.1.102.681 14384: 14356:(3): 297–312, 14329: 14303:(1): 109–123, 14274: 14229:(3): 897–946, 14208: 14160: 14123:(2): 113–179, 14095: 14045: 14026:(2): 131–164, 14003: 13977: 13933: 13919: 13899:Hajnal, András 13890: 13884: 13858: 13828: 13810:(2): 212–243, 13785: 13767:(4): 798–859, 13746: 13728:(2): 175–220, 13702: 13650: 13634:(MSc thesis), 13622: 13596:(4): 451–476, 13584:Szegedy, Mario 13564: 13505: 13487:(1): 104–109, 13468: 13442:(2): 322–337, 13421: 13354: 13353: 13351: 13348: 13312: 13289: 13269: 13247: 13243: 13222: 13142:Szemerédi 1978 13122: 13119: 13106: 13103: 13100: 13096: 13092: 13089: 13086: 13082: 13078: 13075: 13072: 13069: 13047: 13043: 13039: 13036: 13031: 13027: 13023: 13018: 13014: 13010: 13007: 13004: 13001: 12996: 12992: 12988: 12983: 12979: 12975: 12972: 12950: 12945: 12940: 12936: 12930: 12926: 12905: 12901: 12897: 12894: 12874: 12870: 12866: 12863: 12860: 12857: 12852: 12847: 12842: 12838: 12834: 12831: 12826: 12821: 12816: 12811: 12807: 12803: 12798: 12794: 12790: 12787: 12784: 12781: 12776: 12772: 12768: 12763: 12759: 12755: 12752: 12748: 12742: 12739: 12736: 12732: 12728: 12725: 12697: 12692: 12687: 12682: 12678: 12674: 12669: 12665: 12661: 12658: 12655: 12652: 12647: 12643: 12639: 12634: 12630: 12626: 12623: 12619: 12613: 12610: 12607: 12603: 12598: 12589: 12584: 12579: 12575: 12571: 12567: 12562: 12559: 12557: 12555: 12550: 12545: 12540: 12535: 12531: 12527: 12522: 12518: 12514: 12511: 12508: 12505: 12500: 12496: 12492: 12487: 12483: 12479: 12476: 12472: 12467: 12458: 12453: 12448: 12444: 12440: 12436: 12429: 12426: 12423: 12419: 12415: 12412: 12410: 12408: 12403: 12398: 12393: 12388: 12384: 12380: 12375: 12371: 12367: 12364: 12361: 12358: 12353: 12349: 12345: 12340: 12336: 12332: 12329: 12325: 12320: 12312: 12308: 12302: 12296: 12292: 12287: 12282: 12276: 12272: 12267: 12258: 12255: 12252: 12248: 12244: 12241: 12239: 12237: 12234: 12229: 12224: 12221: 12218: 12215: 12210: 12205: 12202: 12199: 12196: 12194: 12192: 12189: 12188: 12177:. Note that 12166: 12162: 12158: 12155: 12133: 12129: 12106: 12102: 12076: 12071: 12066: 12062: 12058: 12054: 12049: 12027: 12023: 12000: 11996: 11973: 11946: 11941: 11936: 11932: 11928: 11922: 11916: 11912: 11907: 11902: 11896: 11892: 11887: 11878: 11874: 11870: 11864: 11859: 11856: 11851: 11840: 11835: 11830: 11826: 11821: 11797: 11772: 11769: 11765: 11760: 11757: 11734: 11731: 11709: 11705: 11682: 11658: 11654: 11631: 11627: 11604: 11600: 11577: 11573: 11552: 11547: 11543: 11539: 11536: 11533: 11528: 11524: 11520: 11517: 11514: 11491: 11488: 11484: 11478: 11472: 11451: 11448: 11445: 11440: 11435: 11432: 11429: 11426: 11421: 11416: 11413: 11391: 11367: 11362: 11357: 11353: 11348: 11344: 11322: 11300: 11278: 11256: 11252: 11246: 11241: 11237: 11233: 11230: 11207: 11204: 11201: 11198: 11195: 11192: 11189: 11166: 11160: 11154: 11149: 11128: 11123: 11119: 11115: 11110: 11106: 11102: 11090: 11087: 11081: 11078: 11077: 11076: 11065: 11062: 11059: 11056: 11053: 11050: 11047: 11025: 11020: 11013: 11007: 11001: 10997: 10974: 10970: 10966: 10962: 10958: 10953: 10949: 10945: 10940: 10936: 10932: 10929: 10926: 10923: 10918: 10914: 10910: 10905: 10901: 10897: 10894: 10890: 10879: 10868: 10865: 10862: 10859: 10856: 10853: 10850: 10827: 10821: 10815: 10810: 10789: 10784: 10780: 10776: 10771: 10767: 10763: 10753: 10742: 10739: 10736: 10732: 10726: 10722: 10717: 10693: 10671: 10667: 10663: 10658: 10654: 10630: 10626: 10622: 10619: 10616: 10613: 10610: 10605: 10601: 10596: 10591: 10569: 10566: 10563: 10543: 10540: 10537: 10534: 10531: 10528: 10523: 10519: 10515: 10510: 10506: 10493: 10490: 10488: 10485: 10470: 10446: 10424: 10412: 10409: 10397: 10394: 10391: 10387: 10383: 10379: 10375: 10371: 10367: 10363: 10340: 10336: 10330: 10327: 10322: 10318: 10313: 10309: 10306: 10303: 10299: 10295: 10292: 10272: 10269: 10266: 10244: 10240: 10236: 10230: 10224: 10220: 10215: 10210: 10206: 10203: 10200: 10195: 10192: 10189: 10185: 10162: 10158: 10154: 10148: 10142: 10138: 10133: 10128: 10124: 10121: 10118: 10114: 10108: 10102: 10095: 10091: 10085: 10079: 10075: 10070: 10065: 10061: 10058: 10055: 10051: 10045: 10042: 10039: 10035: 10030: 10007: 10003: 9999: 9995: 9989: 9985: 9980: 9957: 9953: 9949: 9945: 9939: 9933: 9926: 9905: 9900: 9896: 9892: 9889: 9886: 9881: 9877: 9854: 9850: 9846: 9842: 9836: 9830: 9823: 9800: 9796: 9775: 9772: 9752: 9747: 9744: 9741: 9735: 9709: 9704: 9699: 9694: 9689: 9669: 9664: 9661: 9658: 9652: 9646: 9641: 9635: 9629: 9607: 9603: 9599: 9596: 9591: 9585: 9579: 9576: 9573: 9570: 9565: 9562: 9559: 9553: 9547: 9544: 9524: 9521: 9516: 9512: 9507: 9503: 9500: 9497: 9477: 9474: 9471: 9468: 9465: 9445: 9440: 9434: 9428: 9425: 9422: 9419: 9414: 9411: 9408: 9402: 9396: 9393: 9372: 9366: 9360: 9353: 9349: 9343: 9337: 9333: 9328: 9323: 9319: 9316: 9313: 9289: 9285: 9259: 9253: 9249: 9244: 9239: 9214: 9211: 9208: 9204: 9181: 9178: 9175: 9172: 9169: 9166: 9163: 9140: 9137: 9134: 9114: 9111: 9108: 9105: 9085: 9080: 9076: 9072: 9069: 9066: 9046: 9024: 9020: 8997: 8991: 8979:We start with 8977: 8976: 8962: 8938: 8916: 8911: 8906: 8901: 8896: 8874: 8870: 8866: 8861: 8836: 8830: 8824: 8819: 8796: 8782: 8781: 8767: 8763: 8740: 8734: 8715: 8712: 8711: 8710: 8699: 8696: 8692: 8686: 8680: 8669: 8656: 8652: 8648: 8645: 8640: 8635: 8632: 8629: 8626: 8621: 8616: 8613: 8603: 8588: 8582: 8576: 8571: 8548: 8524: 8520: 8497: 8485: 8471: 8447: 8423: 8399: 8372: 8348: 8326: 8306: 8286: 8283: 8280: 8277: 8274: 8271: 8266: 8262: 8258: 8253: 8249: 8236: 8233: 8212: 8209: 8184: 8159: 8155: 8151: 8123: 8120: 8103: 8100: 8096: 8091: 8070: 8059: 8058: 8047: 8044: 8039: 8035: 8028: 8023: 8019: 8016: 8013: 7988: 7964: 7939: 7917: 7892: 7887: 7866: 7863: 7860: 7857: 7854: 7832: 7810: 7779: 7776: 7772: 7767: 7746: 7735: 7734: 7721: 7716: 7711: 7707: 7703: 7700: 7696: 7691: 7685: 7681: 7677: 7674: 7670: 7665: 7659: 7655: 7651: 7648: 7644: 7640: 7635: 7631: 7627: 7622: 7618: 7614: 7611: 7606: 7601: 7598: 7595: 7592: 7589: 7585: 7581: 7578: 7575: 7572: 7569: 7566: 7563: 7559: 7535: 7532: 7529: 7526: 7523: 7503: 7491:is said to be 7480: 7475: 7471: 7467: 7464: 7461: 7456: 7452: 7448: 7445: 7440: 7418: 7415: 7412: 7409: 7406: 7403: 7400: 7391:Given a graph 7384: 7381: 7368: 7326: 7325: 7314: 7310: 7305: 7299: 7295: 7290: 7284: 7279: 7276: 7273: 7269: 7264: 7259: 7255: 7250: 7246: 7242: 7237: 7233: 7229: 7226: 7221: 7218: 7215: 7212: 7209: 7206: 7203: 7200: 7197: 7194: 7190: 7185: 7160: 7154: 7150: 7145: 7141: 7137: 7131: 7127: 7122: 7118: 7115: 7112: 7109: 7106: 7086: 7066: 7046: 7043: 7040: 7037: 7034: 7031: 7028: 7025: 7022: 7019: 6999: 6979: 6974: 6970: 6966: 6961: 6957: 6953: 6933: 6930: 6927: 6924: 6921: 6916: 6912: 6908: 6905: 6902: 6897: 6893: 6872: 6852: 6832: 6829: 6826: 6806: 6803: 6800: 6797: 6794: 6791: 6788: 6785: 6765: 6746: 6743: 6741: 6738: 6725: 6703: 6700: 6696: 6673: 6669: 6648: 6625: 6605: 6583: 6559: 6555: 6543: 6542: 6527: 6523: 6517: 6511: 6507: 6502: 6497: 6491: 6487: 6482: 6473: 6469: 6458: 6450: 6445: 6441: 6437: 6432: 6428: 6424: 6420: 6416: 6413: 6408: 6404: 6400: 6395: 6391: 6387: 6384: 6377: 6373: 6369: 6366: 6363: 6360: 6357: 6354: 6351: 6348: 6344: 6320: 6315: 6312: 6309: 6305: 6301: 6296: 6292: 6288: 6283: 6280: 6277: 6273: 6269: 6245: 6241: 6234: 6209: 6198:when creating 6185: 6182: 6179: 6175: 6152: 6148: 6136: 6135: 6124: 6121: 6116: 6113: 6110: 6106: 6102: 6097: 6093: 6089: 6084: 6081: 6078: 6074: 6070: 6067: 6064: 6059: 6056: 6053: 6049: 6045: 6040: 6036: 6032: 6027: 6024: 6021: 6017: 6013: 6010: 6007: 5997: 5989: 5984: 5980: 5976: 5971: 5967: 5963: 5959: 5955: 5952: 5947: 5943: 5939: 5934: 5930: 5926: 5923: 5913: 5905: 5900: 5896: 5892: 5887: 5883: 5879: 5875: 5849: 5825: 5821: 5796: 5792: 5785: 5771: 5770: 5759: 5752: 5748: 5741: 5735: 5728: 5724: 5717: 5711: 5708: 5698: 5690: 5685: 5681: 5677: 5672: 5668: 5664: 5660: 5656: 5653: 5646: 5642: 5635: 5629: 5622: 5618: 5611: 5605: 5602: 5592: 5584: 5579: 5575: 5571: 5566: 5562: 5558: 5554: 5550: 5547: 5540: 5536: 5529: 5523: 5516: 5512: 5505: 5499: 5496: 5489: 5485: 5481: 5478: 5475: 5472: 5469: 5466: 5463: 5460: 5456: 5452: 5449: 5444: 5439: 5436: 5411: 5407: 5384: 5380: 5357: 5354: 5351: 5347: 5324: 5300: 5276: 5272: 5268: 5263: 5260: 5257: 5253: 5230: 5226: 5222: 5217: 5214: 5211: 5207: 5186: 5166: 5161: 5157: 5153: 5148: 5144: 5140: 5120: 5117: 5114: 5111: 5108: 5092: 5091: 5080: 5075: 5071: 5067: 5064: 5059: 5054: 5051: 5048: 5045: 5040: 5035: 5032: 5007: 5003: 4980: 4976: 4953: 4929: 4907: 4887: 4884: 4881: 4878: 4858: 4853: 4849: 4845: 4842: 4839: 4834: 4830: 4826: 4823: 4818: 4797: 4796: 4785: 4764: 4760: 4756: 4753: 4750: 4747: 4744: 4739: 4735: 4731: 4728: 4725: 4722: 4719: 4716: 4713: 4710: 4705: 4701: 4697: 4692: 4688: 4684: 4681: 4678: 4671: 4667: 4663: 4656: 4650: 4646: 4641: 4630: 4626: 4622: 4615: 4609: 4605: 4600: 4593: 4590: 4585: 4581: 4577: 4574: 4571: 4567: 4563: 4560: 4557: 4554: 4550: 4546: 4543: 4540: 4537: 4534: 4531: 4528: 4503: 4499: 4495: 4492: 4470: 4466: 4462: 4459: 4435: 4431: 4427: 4420: 4414: 4410: 4405: 4394: 4390: 4386: 4379: 4373: 4369: 4364: 4339: 4335: 4332: 4329: 4326: 4323: 4320: 4317: 4314: 4309: 4305: 4301: 4296: 4292: 4288: 4285: 4281: 4277: 4273: 4269: 4266: 4263: 4259: 4255: 4252: 4248: 4236: 4235: 4223: 4219: 4216: 4213: 4210: 4207: 4204: 4201: 4197: 4193: 4188: 4184: 4180: 4177: 4174: 4169: 4165: 4161: 4158: 4155: 4150: 4146: 4142: 4139: 4136: 4131: 4127: 4123: 4119: 4115: 4111: 4103: 4099: 4095: 4090: 4086: 4082: 4075: 4071: 4065: 4060: 4056: 4052: 4049: 4045: 4041: 4038: 4033: 4029: 4025: 4021: 4017: 4014: 4011: 4008: 4005: 4002: 3999: 3976: 3960: 3959: 3944: 3940: 3934: 3930: 3926: 3921: 3917: 3913: 3904: 3900: 3896: 3893: 3890: 3887: 3884: 3881: 3878: 3875: 3871: 3867: 3862: 3858: 3854: 3851: 3848: 3843: 3839: 3835: 3832: 3829: 3824: 3820: 3816: 3813: 3810: 3805: 3801: 3797: 3793: 3789: 3766: 3763: 3758: 3754: 3750: 3747: 3744: 3739: 3735: 3714: 3694: 3691: 3688: 3685: 3682: 3655: 3650: 3645: 3642: 3639: 3636: 3630: 3627: 3621: 3618: 3596: 3571: 3568: 3545: 3540: 3536: 3532: 3527: 3523: 3519: 3499: 3494: 3490: 3486: 3483: 3480: 3475: 3471: 3467: 3464: 3459: 3435: 3411: 3386: 3366: 3363: 3360: 3340: 3337: 3334: 3331: 3328: 3325: 3322: 3319: 3314: 3308: 3302: 3297: 3291: 3285: 3282: 3260: 3256: 3252: 3249: 3245: 3241: 3238: 3233: 3229: 3225: 3221: 3211:By convexity, 3209: 3208: 3197: 3192: 3186: 3180: 3175: 3169: 3163: 3160: 3153: 3149: 3145: 3140: 3136: 3132: 3125: 3121: 3115: 3110: 3106: 3100: 3096: 3092: 3087: 3083: 3079: 3076: 3069: 3065: 3061: 3054: 3048: 3044: 3039: 3028: 3024: 3020: 3013: 3007: 3003: 2998: 2989: 2984: 2981: 2978: 2974: 2968: 2963: 2960: 2957: 2953: 2949: 2946: 2941: 2937: 2933: 2929: 2914: 2913: 2902: 2899: 2896: 2893: 2890: 2887: 2884: 2877: 2873: 2869: 2864: 2860: 2856: 2850: 2847: 2844: 2841: 2838: 2835: 2829: 2826: 2821: 2817: 2813: 2808: 2804: 2800: 2797: 2790: 2786: 2782: 2775: 2769: 2765: 2760: 2749: 2745: 2741: 2734: 2728: 2724: 2719: 2710: 2705: 2702: 2699: 2695: 2689: 2684: 2681: 2678: 2674: 2670: 2667: 2664: 2661: 2657: 2633: 2613: 2608: 2604: 2600: 2595: 2591: 2587: 2584: 2581: 2578: 2556: 2552: 2531: 2509: 2505: 2484: 2464: 2444: 2424: 2404: 2384: 2379: 2375: 2371: 2368: 2365: 2360: 2356: 2352: 2349: 2344: 2338: 2315: 2310: 2306: 2302: 2299: 2296: 2291: 2287: 2283: 2280: 2275: 2269: 2238: 2235: 2232: 2229: 2226: 2223: 2220: 2217: 2212: 2206: 2200: 2195: 2189: 2183: 2180: 2160: 2140: 2118: 2112: 2087: 2081: 2060: 2059: 2048: 2045: 2038: 2034: 2028: 2022: 2018: 2013: 2008: 2002: 1998: 1993: 1984: 1979: 1976: 1973: 1969: 1963: 1958: 1955: 1952: 1948: 1944: 1939: 1935: 1929: 1925: 1921: 1916: 1912: 1908: 1905: 1898: 1894: 1888: 1882: 1878: 1873: 1868: 1862: 1858: 1853: 1844: 1839: 1836: 1833: 1829: 1823: 1818: 1815: 1812: 1808: 1804: 1801: 1796: 1791: 1788: 1773: 1772: 1759: 1755: 1749: 1745: 1741: 1736: 1732: 1728: 1725: 1718: 1714: 1708: 1702: 1698: 1693: 1688: 1682: 1678: 1673: 1664: 1659: 1656: 1653: 1649: 1643: 1638: 1635: 1632: 1628: 1624: 1621: 1616: 1612: 1608: 1603: 1599: 1595: 1592: 1587: 1582: 1579: 1576: 1572: 1566: 1561: 1558: 1555: 1551: 1547: 1544: 1539: 1534: 1531: 1508: 1503: 1498: 1493: 1488: 1485: 1463: 1437: 1432: 1428: 1424: 1421: 1418: 1413: 1409: 1405: 1402: 1397: 1384: 1383: 1372: 1367: 1363: 1359: 1354: 1350: 1346: 1343: 1338: 1333: 1330: 1327: 1323: 1317: 1312: 1309: 1306: 1302: 1298: 1295: 1290: 1284: 1278: 1273: 1267: 1261: 1258: 1231: 1226: 1222: 1218: 1215: 1212: 1207: 1203: 1199: 1196: 1191: 1185: 1158: 1153: 1149: 1145: 1142: 1139: 1134: 1130: 1126: 1123: 1118: 1112: 1098: 1097: 1084: 1080: 1076: 1073: 1070: 1067: 1064: 1057: 1053: 1047: 1043: 1039: 1034: 1030: 1026: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 962: 959: 955: 951: 947: 931:be subsets of 901: 897: 880: 879: 876: 875: 874: 868: 852: 849: 727: 726: 713: 708: 703: 700: 697: 694: 690: 686: 683: 679: 673: 669: 664: 659: 653: 649: 644: 633: 625: 620: 616: 612: 607: 603: 599: 595: 569: 548: 543: 539: 535: 532: 529: 524: 520: 516: 513: 508: 486: 466: 427: 426: 415: 412: 409: 405: 401: 398: 395: 392: 389: 386: 383: 380: 377: 374: 371: 368: 365: 361: 229: 228: 213: 209: 205: 200: 196: 192: 186: 182: 179: 176: 173: 170: 167: 163: 157: 154: 151: 148: 145: 142: 139: 64: 61: 35:states that a 15: 9: 6: 4: 3: 2: 14899: 14888: 14885: 14883: 14880: 14879: 14877: 14868: 14865: 14861: 14860: 14850: 14846: 14842: 14836: 14832: 14828: 14824: 14820: 14816: 14812: 14808: 14804: 14800: 14796: 14792: 14788: 14784: 14780: 14779: 14767: 14763: 14759: 14755: 14751: 14747: 14742: 14737: 14733: 14729: 14728: 14723: 14717: 14710: 14709: 14704: 14698: 14690: 14686: 14681: 14676: 14672: 14668: 14663: 14658: 14654: 14650: 14646: 14640: 14633: 14629: 14625: 14621: 14617: 14613: 14608: 14603: 14599: 14595: 14588: 14581: 14577: 14572: 14567: 14563: 14556: 14549: 14545: 14541: 14537: 14533: 14529: 14525: 14521: 14517: 14511: 14504: 14503: 14498: 14492: 14484: 14483:10.37236/1449 14479: 14475: 14471: 14464: 14457: 14453: 14449: 14447:0-8186-7594-2 14443: 14439: 14435: 14431: 14424: 14417: 14413: 14408: 14403: 14399: 14395: 14388: 14381: 14377: 14373: 14369: 14364: 14359: 14355: 14351: 14347: 14343: 14339: 14338:Komlós, János 14333: 14326: 14322: 14318: 14314: 14310: 14306: 14302: 14298: 14297: 14296:Combinatorica 14292: 14288: 14284: 14283:Komlós, János 14278: 14270: 14266: 14262: 14258: 14254: 14250: 14246: 14242: 14237: 14232: 14228: 14224: 14223: 14218: 14217:Gowers, W. T. 14212: 14204: 14200: 14196: 14192: 14188: 14184: 14180: 14176: 14175: 14170: 14169:Gowers, W. T. 14164: 14156: 14152: 14148: 14144: 14140: 14136: 14131: 14126: 14122: 14118: 14110: 14106: 14105:Rödl, Vojtěch 14099: 14091: 14087: 14083: 14079: 14075: 14071: 14067: 14063: 14055: 14054:Rödl, Vojtěch 14049: 14041: 14037: 14033: 14029: 14025: 14021: 14017: 14016:Rödl, Vojtěch 14013: 14012:Frankl, Peter 14007: 13999: 13995: 13991: 13987: 13981: 13973: 13969: 13964: 13959: 13955: 13951: 13947: 13943: 13937: 13930: 13926: 13922: 13916: 13912: 13908: 13904: 13900: 13894: 13887: 13881: 13877: 13873: 13869: 13862: 13855: 13851: 13847: 13843: 13839: 13838:Rödl, Vojtěch 13832: 13825: 13821: 13817: 13813: 13809: 13805: 13804: 13799: 13795: 13789: 13782: 13778: 13774: 13770: 13766: 13762: 13761: 13756: 13755:Håstad, Johan 13750: 13743: 13739: 13735: 13731: 13727: 13723: 13722: 13721:Combinatorica 13717: 13711: 13709: 13707: 13699: 13695: 13691: 13687: 13683: 13679: 13674: 13669: 13665: 13661: 13654: 13646: 13641: 13637: 13633: 13626: 13619: 13615: 13611: 13607: 13603: 13599: 13595: 13591: 13590: 13589:Combinatorica 13585: 13581: 13577: 13571: 13569: 13561: 13557: 13553: 13549: 13544: 13539: 13534: 13529: 13525: 13521: 13520: 13515: 13509: 13502: 13498: 13494: 13490: 13486: 13482: 13478: 13472: 13465: 13461: 13457: 13453: 13449: 13445: 13441: 13437: 13436: 13431: 13430:Gowers, W. T. 13425: 13418: 13414: 13410: 13406: 13401: 13396: 13391: 13386: 13382: 13378: 13377: 13372: 13368: 13367:Conlon, David 13362: 13360: 13355: 13347: 13345: 13341: 13337: 13333: 13329: 13324: 13310: 13301: 13287: 13267: 13245: 13241: 13220: 13211: 13209: 13204: 13201: 13196: 13194: 13189: 13185: 13181: 13176: 13173: 13172:blow-up lemma 13169: 13165: 13164:Gábor Sárközy 13161: 13157: 13155: 13151: 13147: 13143: 13139: 13135: 13127: 13118: 13104: 13101: 13098: 13094: 13090: 13087: 13084: 13080: 13076: 13073: 13070: 13067: 13045: 13041: 13037: 13029: 13025: 13021: 13016: 13012: 13005: 13002: 12994: 12990: 12986: 12981: 12977: 12970: 12948: 12938: 12928: 12924: 12903: 12899: 12895: 12892: 12872: 12868: 12864: 12861: 12855: 12850: 12840: 12832: 12829: 12824: 12809: 12805: 12801: 12796: 12792: 12785: 12782: 12774: 12770: 12766: 12761: 12757: 12750: 12740: 12737: 12734: 12730: 12723: 12714: 12695: 12680: 12676: 12672: 12667: 12663: 12656: 12653: 12645: 12641: 12637: 12632: 12628: 12621: 12611: 12608: 12605: 12601: 12587: 12577: 12569: 12565: 12560: 12558: 12548: 12533: 12529: 12525: 12520: 12516: 12509: 12506: 12498: 12494: 12490: 12485: 12481: 12474: 12456: 12446: 12438: 12434: 12427: 12424: 12421: 12417: 12413: 12411: 12401: 12386: 12382: 12378: 12373: 12369: 12362: 12359: 12351: 12347: 12343: 12338: 12334: 12327: 12310: 12306: 12294: 12290: 12274: 12270: 12256: 12253: 12250: 12246: 12242: 12240: 12219: 12216: 12200: 12197: 12195: 12190: 12178: 12164: 12160: 12156: 12153: 12146:is irregular 12131: 12127: 12104: 12100: 12074: 12064: 12056: 12052: 12047: 12040:is irregular 12025: 12021: 11998: 11994: 11944: 11934: 11926: 11914: 11910: 11894: 11890: 11876: 11872: 11868: 11857: 11854: 11838: 11828: 11819: 11770: 11767: 11763: 11758: 11755: 11746: 11732: 11729: 11707: 11703: 11656: 11652: 11629: 11625: 11602: 11598: 11575: 11571: 11545: 11541: 11537: 11534: 11531: 11526: 11522: 11515: 11512: 11503: 11489: 11486: 11449: 11446: 11430: 11427: 11411: 11365: 11355: 11346: 11342: 11298: 11254: 11250: 11244: 11239: 11235: 11231: 11228: 11219: 11205: 11202: 11199: 11196: 11193: 11190: 11187: 11180:-regular for 11147: 11121: 11117: 11113: 11108: 11104: 11086: 11063: 11060: 11057: 11054: 11051: 11048: 11045: 11023: 10999: 10995: 10972: 10968: 10964: 10951: 10947: 10943: 10938: 10934: 10927: 10924: 10916: 10912: 10908: 10903: 10899: 10892: 10880: 10866: 10863: 10860: 10857: 10854: 10851: 10848: 10808: 10782: 10778: 10774: 10769: 10765: 10754: 10740: 10737: 10734: 10724: 10720: 10707: 10706: 10705: 10691: 10669: 10665: 10661: 10656: 10652: 10628: 10624: 10620: 10617: 10614: 10611: 10608: 10603: 10599: 10594: 10567: 10564: 10561: 10541: 10538: 10535: 10532: 10529: 10526: 10521: 10517: 10513: 10508: 10504: 10484: 10422: 10408: 10395: 10392: 10389: 10381: 10373: 10365: 10338: 10334: 10328: 10325: 10320: 10316: 10311: 10307: 10304: 10301: 10293: 10290: 10283:. By setting 10270: 10267: 10264: 10242: 10238: 10222: 10218: 10208: 10201: 10198: 10193: 10190: 10187: 10183: 10160: 10156: 10140: 10136: 10126: 10119: 10116: 10106: 10077: 10073: 10063: 10056: 10053: 10043: 10040: 10037: 10033: 10005: 10001: 9997: 9987: 9983: 9955: 9951: 9947: 9937: 9898: 9894: 9887: 9884: 9879: 9875: 9867:. By setting 9852: 9848: 9844: 9834: 9798: 9794: 9773: 9750: 9745: 9742: 9739: 9721: 9697: 9662: 9659: 9656: 9644: 9639: 9605: 9601: 9597: 9589: 9574: 9571: 9563: 9560: 9557: 9542: 9522: 9519: 9514: 9510: 9505: 9501: 9498: 9495: 9472: 9469: 9466: 9438: 9423: 9420: 9412: 9409: 9406: 9391: 9364: 9335: 9331: 9321: 9314: 9311: 9251: 9247: 9237: 9179: 9176: 9173: 9170: 9167: 9164: 9161: 9152: 9138: 9135: 9132: 9109: 9103: 9078: 9074: 9067: 9064: 9044: 9022: 9018: 8995: 8975:and continue. 8904: 8872: 8868: 8864: 8817: 8784: 8783: 8765: 8761: 8738: 8721: 8720: 8719: 8697: 8694: 8670: 8654: 8650: 8646: 8630: 8627: 8611: 8604: 8569: 8537:-regular and 8522: 8518: 8486: 8388: 8387: 8386: 8324: 8304: 8284: 8281: 8278: 8275: 8272: 8269: 8264: 8260: 8256: 8251: 8247: 8232: 8230: 8226: 8222: 8218: 8208: 8206: 8202: 8198: 8182: 8173: 8157: 8153: 8149: 8141: 8137: 8133: 8129: 8119: 8101: 8098: 8094: 8089: 8068: 8045: 8042: 8037: 8021: 8017: 8014: 8004: 8003: 8002: 8000: 7986: 7951: 7937: 7885: 7861: 7858: 7855: 7808: 7800: 7795: 7777: 7774: 7770: 7765: 7744: 7719: 7709: 7701: 7698: 7694: 7683: 7679: 7675: 7672: 7657: 7653: 7649: 7646: 7633: 7629: 7625: 7620: 7616: 7609: 7604: 7599: 7596: 7593: 7590: 7587: 7583: 7579: 7573: 7570: 7567: 7561: 7557: 7549: 7548: 7547: 7533: 7530: 7527: 7524: 7521: 7501: 7494: 7493:Frieze-Kannan 7473: 7469: 7465: 7462: 7459: 7454: 7450: 7443: 7413: 7410: 7407: 7401: 7398: 7389: 7380: 7366: 7358: 7357:sparse graphs 7353: 7351: 7346: 7344: 7340: 7336: 7332: 7312: 7308: 7297: 7293: 7282: 7277: 7274: 7271: 7267: 7262: 7257: 7248: 7244: 7240: 7235: 7231: 7224: 7216: 7210: 7207: 7201: 7198: 7195: 7188: 7183: 7175: 7174: 7173: 7152: 7148: 7139: 7129: 7125: 7116: 7110: 7104: 7084: 7064: 7041: 7035: 7032: 7026: 7023: 7020: 6997: 6972: 6968: 6964: 6959: 6955: 6928: 6922: 6919: 6914: 6910: 6906: 6903: 6900: 6895: 6891: 6870: 6850: 6830: 6827: 6824: 6801: 6795: 6789: 6783: 6763: 6755: 6750: 6737: 6723: 6701: 6698: 6694: 6671: 6667: 6646: 6636: 6623: 6603: 6557: 6553: 6525: 6521: 6509: 6505: 6489: 6485: 6471: 6467: 6456: 6443: 6439: 6435: 6430: 6426: 6418: 6414: 6406: 6402: 6398: 6393: 6389: 6382: 6375: 6367: 6361: 6355: 6352: 6349: 6342: 6334: 6333: 6332: 6313: 6310: 6307: 6303: 6294: 6290: 6286: 6281: 6278: 6275: 6271: 6243: 6239: 6183: 6180: 6177: 6173: 6150: 6146: 6114: 6111: 6108: 6104: 6095: 6091: 6087: 6082: 6079: 6076: 6072: 6065: 6057: 6054: 6051: 6047: 6038: 6034: 6030: 6025: 6022: 6019: 6015: 6005: 5995: 5982: 5978: 5974: 5969: 5965: 5957: 5953: 5945: 5941: 5937: 5932: 5928: 5921: 5911: 5898: 5894: 5890: 5885: 5881: 5873: 5865: 5864: 5863: 5823: 5819: 5794: 5790: 5750: 5746: 5733: 5726: 5722: 5706: 5696: 5683: 5679: 5675: 5670: 5666: 5658: 5654: 5644: 5640: 5627: 5620: 5616: 5600: 5590: 5577: 5573: 5569: 5564: 5560: 5552: 5548: 5538: 5534: 5521: 5514: 5510: 5494: 5487: 5479: 5473: 5467: 5464: 5461: 5454: 5450: 5434: 5427: 5426: 5425: 5409: 5405: 5382: 5378: 5355: 5352: 5349: 5345: 5274: 5270: 5266: 5261: 5258: 5255: 5251: 5228: 5224: 5220: 5215: 5212: 5209: 5205: 5184: 5159: 5155: 5151: 5146: 5142: 5115: 5112: 5109: 5098: 5078: 5073: 5069: 5065: 5049: 5046: 5030: 5023: 5022: 5021: 5005: 5001: 4978: 4974: 4905: 4882: 4876: 4851: 4847: 4843: 4840: 4837: 4832: 4828: 4821: 4806: 4801: 4783: 4762: 4758: 4754: 4751: 4748: 4745: 4742: 4737: 4726: 4723: 4720: 4714: 4711: 4703: 4699: 4695: 4690: 4686: 4679: 4665: 4648: 4644: 4624: 4607: 4603: 4591: 4583: 4572: 4561: 4558: 4544: 4538: 4532: 4529: 4526: 4519: 4518: 4517: 4501: 4497: 4493: 4490: 4468: 4464: 4460: 4457: 4429: 4412: 4408: 4388: 4371: 4367: 4330: 4327: 4324: 4318: 4315: 4307: 4303: 4299: 4294: 4290: 4283: 4275: 4264: 4253: 4250: 4221: 4214: 4211: 4208: 4202: 4199: 4195: 4186: 4182: 4175: 4172: 4167: 4163: 4156: 4148: 4144: 4137: 4134: 4129: 4125: 4117: 4113: 4109: 4097: 4084: 4073: 4069: 4063: 4058: 4050: 4039: 4031: 4027: 4015: 4009: 4003: 4000: 3997: 3990: 3989: 3988: 3974: 3966: 3942: 3938: 3928: 3915: 3902: 3898: 3894: 3888: 3885: 3882: 3876: 3873: 3869: 3860: 3856: 3849: 3846: 3841: 3837: 3830: 3822: 3818: 3811: 3808: 3803: 3799: 3791: 3787: 3780: 3779: 3778: 3764: 3761: 3756: 3752: 3748: 3745: 3742: 3737: 3733: 3712: 3689: 3686: 3683: 3672: 3667: 3640: 3637: 3628: 3616: 3569: 3538: 3534: 3530: 3525: 3521: 3492: 3488: 3484: 3481: 3478: 3473: 3469: 3462: 3397: 3384: 3364: 3361: 3358: 3335: 3332: 3329: 3323: 3320: 3312: 3300: 3295: 3280: 3258: 3250: 3239: 3231: 3227: 3190: 3178: 3173: 3158: 3147: 3134: 3123: 3119: 3113: 3108: 3098: 3094: 3090: 3085: 3081: 3074: 3063: 3046: 3042: 3022: 3005: 3001: 2987: 2982: 2979: 2976: 2972: 2966: 2961: 2958: 2955: 2951: 2947: 2939: 2935: 2919: 2918: 2917: 2897: 2894: 2891: 2885: 2882: 2871: 2858: 2845: 2842: 2839: 2833: 2827: 2819: 2815: 2811: 2806: 2802: 2795: 2784: 2767: 2763: 2743: 2726: 2722: 2708: 2703: 2700: 2697: 2693: 2687: 2682: 2679: 2676: 2672: 2668: 2662: 2647: 2646: 2645: 2631: 2606: 2602: 2598: 2593: 2589: 2582: 2579: 2576: 2554: 2550: 2529: 2507: 2503: 2482: 2462: 2442: 2422: 2402: 2377: 2373: 2369: 2366: 2363: 2358: 2354: 2347: 2342: 2308: 2304: 2300: 2297: 2294: 2289: 2285: 2278: 2273: 2256: 2250: 2233: 2230: 2227: 2221: 2218: 2210: 2198: 2193: 2178: 2158: 2138: 2116: 2085: 2068: 2063: 2046: 2043: 2036: 2032: 2020: 2016: 2000: 1996: 1982: 1977: 1974: 1971: 1967: 1961: 1956: 1953: 1950: 1946: 1942: 1937: 1927: 1923: 1919: 1914: 1910: 1903: 1896: 1892: 1880: 1876: 1860: 1856: 1842: 1837: 1834: 1831: 1827: 1821: 1816: 1813: 1810: 1806: 1802: 1786: 1779: 1778: 1777: 1757: 1747: 1743: 1739: 1734: 1730: 1723: 1716: 1712: 1700: 1696: 1680: 1676: 1662: 1657: 1654: 1651: 1647: 1641: 1636: 1633: 1630: 1626: 1622: 1614: 1610: 1606: 1601: 1597: 1590: 1585: 1580: 1577: 1574: 1570: 1564: 1559: 1556: 1553: 1549: 1545: 1529: 1522: 1521: 1520: 1496: 1483: 1430: 1426: 1422: 1419: 1416: 1411: 1407: 1400: 1365: 1361: 1357: 1352: 1348: 1341: 1336: 1331: 1328: 1325: 1321: 1315: 1310: 1307: 1304: 1300: 1296: 1288: 1276: 1271: 1256: 1249: 1248: 1247: 1224: 1220: 1216: 1213: 1210: 1205: 1201: 1194: 1189: 1151: 1147: 1143: 1140: 1137: 1132: 1128: 1121: 1116: 1082: 1074: 1071: 1068: 1062: 1055: 1051: 1041: 1028: 1017: 1011: 1008: 1005: 999: 992: 991: 990: 986: 982: 976: 960: 957: 949: 935: 929: 925: 920: 919:Definition 4. 915: 899: 895: 885: 877: 872: 871: 869: 866: 865: 864: 857: 848: 845: 835: 830: 829:Gowers (1997) 825: 815: 808: 805: 799: 789: 785: 781: 777:in the range 775: 769: 763: 759:such that if 757: 751: 747: 744: 736: 731: 711: 698: 692: 684: 681: 671: 667: 651: 647: 631: 618: 614: 610: 605: 601: 593: 585: 584: 583: 581: 567: 559:is called an 541: 537: 533: 530: 527: 522: 518: 511: 484: 464: 456: 455:Definition 3. 451: 441: 413: 410: 407: 403: 396: 393: 390: 384: 381: 375: 372: 369: 363: 359: 351: 350: 349: 345: 341: 333: 329: 322: 319: ⊆  318: 312: 309: ⊆  308: 303: 295: 289: 280: 279:Definition 2. 275: 264: 259: 256: 250: 243: 239: 235: 207: 194: 184: 177: 174: 171: 165: 161: 155: 149: 146: 143: 137: 130: 129: 128: 124: 120: 114: 109: 103: 99: 94: 93:Definition 1. 89: 86: 81: 76: 60: 58: 54: 50: 46: 42: 41:random graphs 38: 34: 30: 21: 14818: 14790: 14731: 14725: 14716: 14707: 14703:Tao, Terence 14697: 14662:math/0504472 14652: 14648: 14645:Tao, Terence 14639: 14597: 14593: 14587: 14571:math/0612838 14561: 14555: 14523: 14519: 14510: 14501: 14497:Tao, Terence 14491: 14473: 14469: 14463: 14429: 14423: 14397: 14393: 14387: 14363:math/9612213 14353: 14349: 14332: 14300: 14294: 14277: 14226: 14220: 14211: 14178: 14172: 14163: 14120: 14116: 14098: 14065: 14061: 14048: 14023: 14019: 14006: 13989: 13980: 13953: 13949: 13936: 13902: 13893: 13867: 13861: 13848:(1): 15–29, 13845: 13841: 13831: 13807: 13801: 13788: 13764: 13758: 13749: 13725: 13719: 13716:Frieze, Alan 13663: 13659: 13653: 13631: 13625: 13593: 13587: 13533:math/0503572 13523: 13522:, Series A, 13517: 13514:Tao, Terence 13508: 13484: 13480: 13471: 13439: 13433: 13424: 13380: 13374: 13336:cut distance 13325: 13302: 13212: 13205: 13197: 13177: 13160:János Komlós 13158: 13132: 12715: 12179: 11747: 11504: 11404:, such that 11220: 11092: 11083: 10987:for all but 10644:and subsets 10495: 10414: 9722: 9620:. We return 9153: 9096:parts. Here 8978: 8717: 8238: 8214: 8174: 8125: 8060: 7978: 7953:A partition 7952: 7796: 7736: 7492: 7390: 7386: 7354: 7347: 7328: 6753: 6752: 6748: 6740:Applications 6638: 6544: 6137: 5772: 5096: 5095: 4966:where every 4804: 4803: 4799: 4237: 3964: 3963: 3670: 3669: 3399: 3210: 2915: 2254: 2253: 2066: 2065: 2061: 1775: 1385: 1099: 984: 980: 977:of the pair 974: 933: 927: 923: 918: 917: 883: 881: 862: 843: 833: 823: 813: 810: 803: 797: 787: 783: 779: 773: 767: 761: 755: 749: 734: 733: 729: 560: 454: 453: 429: 343: 339: 331: 327: 320: 316: 310: 306: 298: 293: 287: 278: 277: 269: 254: 248: 241: 237: 233: 230: 122: 118: 115:of the pair 113:edge density 112: 107: 101: 97: 92: 91: 84: 74: 66: 32: 26: 14734:: 252–270, 14655:(1): 8–28, 14068:(1): 1–42, 13956:: 199–245, 13477:Roth, K. F. 13330:(and hence 13208:half graphs 13200:Terence Tao 13193:Terence Tao 13146:hypergraphs 11748:By setting 8722:Start with 8221:Krivelevich 8219:, Fischer, 8136:dense graph 8132:maximum cut 440:half graphs 324:satisfying 252:and one in 57:hypergraphs 14876:Categories 14807:Komlós, J. 14783:Komlós, J. 14600:: 80–145, 14516:Alon, Noga 14400:: 80–109, 13920:0897912640 13794:Alon, Noga 13673:1905.06917 13666:: 107070, 13645:1810.07275 13576:Alon, Noga 13371:Fox, Jacob 13350:References 13332:precompact 13140:, and in ( 12916:, at most 11590:from each 11335:that is a 11291:that is a 11080:Motivation 10353:, we have 9916:, we have 9813:such that 9535:such that 8199:, such as 7097:is within 6944:such that 6817:, and let 6165:is cut by 5131:such that 3448:. Now, if 914:quantity. 811:The bound 737:For every 450:-regular. 348:, we have 297:is called 14750:1016-443X 14607:0801.1698 14540:0097-5397 14402:CiteSeerX 14236:0710.3032 14125:CiteSeerX 13698:155100313 13464:115242956 13390:1107.4829 13311:ε 13268:ε 13221:ε 13088:− 13074:− 13068:≥ 13042:ϵ 13038:≥ 13003:− 12925:ϵ 12893:≥ 12862:≤ 12830:≥ 12783:− 12731:∑ 12654:− 12602:∑ 12507:− 12418:∑ 12414:≥ 12360:− 12247:∑ 12217:− 12198:≥ 12154:≤ 12048:≤ 11873:ϵ 11869:≤ 11756:δ 11535:⋯ 11487:≤ 11447:≤ 11428:− 11236:ϵ 11203:≤ 11191:≤ 11148:ϵ 11061:≤ 11055:≤ 11049:≤ 10996:ϵ 10969:ϵ 10965:≤ 10925:− 10864:≤ 10858:≤ 10852:≤ 10809:ϵ 10738:δ 10684:for each 10662:⊂ 10562:δ 10527:≥ 10518:ϵ 10514:≥ 10505:ϵ 10492:Statement 10390:≤ 10317:ϵ 10305:≤ 10209:ϵ 10127:ϵ 10117:≤ 10064:ϵ 10054:≤ 9998:≤ 9948:≤ 9895:ϵ 9845:≤ 9771:∀ 9602:ϵ 9572:− 9511:ϵ 9499:≤ 9421:≥ 9322:ϵ 9312:≤ 9238:ϵ 9229:to be an 9192:, we set 9180:⋯ 9133:ϵ 9075:ϵ 9065:≤ 9019:ϵ 8869:ϵ 8865:≤ 8818:ϵ 8762:ϵ 8695:≤ 8651:ϵ 8602:-regular. 8570:ϵ 8519:ϵ 8270:≥ 8261:ϵ 8257:≥ 8248:ϵ 8235:Statement 8183:ϵ 8150:ϵ 8128:algorithm 8099:− 8095:ϵ 8069:ϵ 8046:ϵ 8043:≤ 8038:◻ 8034:‖ 8018:− 8012:‖ 7987:ϵ 7775:− 7771:ϵ 7745:ϵ 7702:ϵ 7699:≤ 7676:∩ 7650:∩ 7584:∑ 7580:− 7531:⊆ 7502:ϵ 7463:… 7367:ε 7268:∏ 7208:∈ 7189:∏ 7140:⋯ 7117:ε 7033:∈ 6998:ε 6920:⊆ 6904:… 6825:ε 6724:ε 6699:− 6695:ε 6668:ε 6647:ε 6624:◻ 6604:ε 6554:ε 6468:ε 6457:ε 6419:∑ 6362:∈ 6343:∑ 6300:∖ 6101:∖ 6044:∖ 5996:ε 5958:∑ 5912:ε 5874:∑ 5838:given by 5697:ε 5659:∑ 5591:ε 5553:∑ 5474:∈ 5455:∑ 5370:'s. Each 5267:⊂ 5221:⊂ 5185:ε 5070:ε 5047:≥ 4906:ε 4841:… 4784:◻ 4759:ε 4755:⋅ 4752:ε 4749:⋅ 4746:ε 4712:− 4592:≥ 4562:− 4494:∈ 4461:∈ 4316:− 4254:− 4200:− 4179:∖ 4141:∖ 4040:− 3899:ε 3853:∖ 3815:∖ 3762:⊂ 3743:⊂ 3713:ε 3638:≥ 3482:… 3385:◻ 3321:≥ 3240:≥ 2973:∑ 2952:∑ 2694:∑ 2673:∑ 2367:… 2298:… 2219:≥ 1968:∑ 1947:∑ 1943:≤ 1828:∑ 1807:∑ 1648:∑ 1627:∑ 1571:∑ 1550:∑ 1420:… 1322:∑ 1301:∑ 1214:… 1141:… 685:ε 682:≤ 632:ε 594:∑ 568:ε 531:… 411:ε 408:≤ 382:− 63:Statement 14766:15201345 14705:(2012), 14632:15421306 14499:(2009), 14456:38681854 14269:56118006 14203:14632612 14155:14126774 13944:(1975), 13929:17495443 13824:34786604 13742:15231198 13618:44645628 13560:14337591 13340:graphons 11617:and let 9154:Now for 8809:that is 8412:refines 7999:-regular 7799:graphons 6461:-regular 6000:-regular 5916:-regular 5701:-regular 5595:-regular 5099:For all 3777:, then, 3671:Lemma 2. 3629:′ 3570:′ 3351:for all 2542:in part 2495:in part 2067:Lemma 1. 743:positive 636:-regular 302:-regular 51:for his 14849:1966181 14799:1395865 14758:2306658 14689:2212136 14667:Bibcode 14612:Bibcode 14576:Bibcode 14548:2411033 14380:1635264 14325:6720143 14317:1466579 14261:2373376 14241:Bibcode 14195:2195580 14147:2198495 14090:7458739 14082:2069663 14040:1884430 13998:0540024 13972:0369312 13781:5120748 13678:Bibcode 13610:1804820 13552:2259060 13501:0051853 13456:1445389 13417:1623986 13409:2989432 13344:compact 9010:be an 8225:Szegedy 8140:NP-hard 7794:parts. 6596:is not 5177:is not 4898:is not 4805:Lemma 3 3967:Define 3705:is not 2475:, with 983:,  926:,  791:and an 746:integer 240:,  121:,  100:,  14847:  14837:  14797:  14764:  14756:  14748:  14687:  14630:  14546:  14538:  14454:  14444:  14404:  14378:  14323:  14315:  14267:  14259:  14201:  14193:  14153:  14145:  14127:  14088:  14080:  14038:  13996:  13970:  13927:  13917:  13882:  13822:  13779:  13740:  13696:  13616:  13608:  13558:  13550:  13499:  13462:  13454:  13415:  13407:  13188:Kannan 13184:Frieze 13154:Gowers 11139:to be 11038:pairs 8753:be an 8223:, and 6863:be an 6843:. Let 6572:since 6138:Since 5908:  5773:Where 5587:  5097:Proof: 4516:), so 3965:Proof: 2255:Proof: 1476:to be 975:energy 973:. The 937:. Set 231:where 111:. The 80:vertex 14762:S2CID 14657:arXiv 14628:S2CID 14602:arXiv 14566:arXiv 14452:S2CID 14358:arXiv 14321:S2CID 14265:S2CID 14231:arXiv 14199:S2CID 14151:S2CID 14086:S2CID 13925:S2CID 13820:S2CID 13777:S2CID 13738:S2CID 13694:S2CID 13668:arXiv 13640:arXiv 13614:S2CID 13556:S2CID 13528:arXiv 13460:S2CID 13413:S2CID 13385:arXiv 9304:with 9057:with 8951:with 8714:Proof 8134:in a 7979:weak 6222:, so 851:Proof 807:sets. 801:into 497:sets 477:into 37:graph 14835:ISBN 14746:ISSN 14536:ISSN 14442:ISBN 13915:ISBN 13880:ISBN 13186:and 13180:Rödl 13166:and 13150:Rödl 13102:> 12013:and 11730:> 11462:and 11221:Let 11197:< 10735:> 10565:> 10539:> 10459:and 9598:< 8628:< 8361:and 8282:> 8217:Alon 8203:and 8001:if: 6828:> 6756:Let 5243:and 4743:> 4483:and 3874:> 2522:and 2435:and 2326:and 2257:Let 2151:and 2100:and 1173:and 921:Let 819:O(ε) 741:and 291:and 281:For 95:Let 82:set 14827:doi 14736:doi 14675:doi 14620:doi 14528:doi 14478:doi 14434:doi 14412:doi 14368:doi 14305:doi 14249:doi 14227:166 14183:doi 14135:doi 14070:doi 14028:doi 13958:doi 13907:doi 13872:doi 13850:doi 13812:doi 13769:doi 13730:doi 13686:doi 13598:doi 13538:doi 13524:113 13489:doi 13444:doi 13395:doi 13117:. 11745:. 11671:in 11502:. 10800:is 10298:max 9720:. 9680:as 9151:. 8561:is 8510:is 8231:. 7977:is 7845:of 7172:of 7077:in 6990:is 5337:by 4942:of 4869:of 3585:of 1448:of 1242:of 1169:of 582:if 27:In 14878:: 14845:MR 14843:, 14833:, 14821:, 14813:; 14795:MR 14785:; 14760:, 14754:MR 14752:, 14744:, 14732:17 14730:, 14685:MR 14683:, 14673:, 14665:, 14651:, 14626:, 14618:, 14610:, 14596:, 14574:, 14564:, 14544:MR 14542:, 14534:, 14524:38 14522:, 14472:, 14450:, 14440:, 14410:, 14398:16 14396:, 14376:MR 14374:, 14366:, 14354:12 14352:, 14344:; 14340:; 14319:, 14313:MR 14311:, 14301:17 14299:, 14289:; 14285:; 14263:, 14257:MR 14255:, 14247:, 14239:, 14197:, 14191:MR 14189:, 14179:15 14177:, 14149:, 14143:MR 14141:, 14133:, 14121:28 14119:, 14107:; 14084:, 14078:MR 14076:, 14066:25 14064:, 14036:MR 14034:, 14024:20 14022:, 14014:; 13994:MR 13968:MR 13966:, 13954:27 13952:, 13948:, 13923:, 13913:, 13878:, 13846:26 13844:, 13818:, 13808:67 13806:, 13775:, 13765:48 13763:, 13736:, 13726:19 13724:, 13705:^ 13692:, 13684:, 13676:, 13664:98 13662:, 13638:, 13612:, 13606:MR 13604:, 13594:20 13592:, 13582:; 13567:^ 13554:, 13548:MR 13546:, 13536:, 13497:MR 13495:, 13485:28 13483:, 13458:, 13452:MR 13450:, 13438:, 13411:, 13405:MR 13403:, 13393:, 13381:22 13379:, 13369:; 13358:^ 13346:. 13300:. 13162:, 13156:. 12119:, 11255:20 10020:, 8207:. 7546:: 7345:. 3609:, 2249:. 2171:, 1297::= 1018::= 847:. 336:, 314:, 156::= 88:. 59:. 31:, 14852:. 14829:: 14802:. 14738:: 14692:. 14677:: 14669:: 14659:: 14653:1 14622:: 14614:: 14604:: 14598:5 14578:: 14568:: 14530:: 14480:: 14474:6 14436:: 14414:: 14370:: 14360:: 14307:: 14272:. 14251:: 14243:: 14233:: 14206:. 14185:: 14158:. 14137:: 14113:k 14093:. 14072:: 14058:k 14043:. 14030:: 14001:. 13975:. 13960:: 13909:: 13874:: 13852:: 13814:: 13771:: 13732:: 13688:: 13680:: 13670:: 13642:: 13600:: 13540:: 13530:: 13491:: 13446:: 13440:7 13397:: 13387:: 13288:G 13246:0 13242:V 13105:0 13099:3 13095:/ 13091:1 13085:2 13081:/ 13077:1 13071:1 13046:0 13035:) 13030:j 13026:V 13022:, 13017:i 13013:V 13009:( 13006:d 13000:) 12995:j 12991:W 12987:, 12982:i 12978:W 12974:( 12971:d 12949:2 12944:| 12939:P 12935:| 12929:0 12904:2 12900:/ 12896:1 12873:2 12869:/ 12865:1 12859:) 12856:r 12851:2 12846:| 12841:P 12837:| 12833:8 12825:2 12820:| 12815:) 12810:j 12806:V 12802:, 12797:i 12793:V 12789:( 12786:d 12780:) 12775:j 12771:W 12767:, 12762:i 12758:W 12754:( 12751:d 12747:| 12741:j 12738:, 12735:i 12727:( 12724:P 12696:2 12691:| 12686:) 12681:j 12677:V 12673:, 12668:i 12664:V 12660:( 12657:d 12651:) 12646:j 12642:W 12638:, 12633:i 12629:W 12625:( 12622:d 12618:| 12612:j 12609:, 12606:i 12597:E 12588:2 12583:| 12578:P 12574:| 12570:4 12566:1 12561:= 12549:2 12544:| 12539:) 12534:j 12530:V 12526:, 12521:i 12517:V 12513:( 12510:d 12504:) 12499:j 12495:W 12491:, 12486:i 12482:W 12478:( 12475:d 12471:| 12466:E 12457:2 12452:| 12447:P 12443:| 12439:4 12435:1 12428:j 12425:, 12422:i 12402:2 12397:| 12392:) 12387:j 12383:V 12379:, 12374:i 12370:V 12366:( 12363:d 12357:) 12352:j 12348:W 12344:, 12339:i 12335:W 12331:( 12328:d 12324:| 12319:E 12311:2 12307:n 12301:| 12295:j 12291:V 12286:| 12281:| 12275:i 12271:V 12266:| 12257:j 12254:, 12251:i 12243:= 12233:) 12228:P 12223:( 12220:q 12214:) 12209:Q 12204:( 12201:q 12191:r 12165:3 12161:/ 12157:1 12132:i 12128:W 12105:i 12101:W 12075:2 12070:| 12065:P 12061:| 12057:3 12053:1 12026:j 12022:W 11999:i 11995:W 11972:Q 11945:2 11940:| 11935:P 11931:| 11927:3 11921:| 11915:j 11911:V 11906:| 11901:| 11895:i 11891:V 11886:| 11877:0 11863:) 11858:2 11855:n 11850:( 11839:4 11834:| 11829:P 11825:| 11820:r 11796:Q 11771:M 11768:2 11764:1 11759:= 11733:0 11708:i 11704:W 11681:Q 11657:i 11653:v 11630:i 11626:W 11603:i 11599:V 11576:i 11572:v 11551:} 11546:k 11542:V 11538:, 11532:, 11527:1 11523:V 11519:{ 11516:= 11513:P 11490:M 11483:| 11477:Q 11471:| 11450:r 11444:) 11439:P 11434:( 11431:q 11425:) 11420:Q 11415:( 11412:q 11390:P 11366:4 11361:| 11356:P 11352:| 11347:/ 11343:r 11321:Q 11299:r 11277:P 11251:/ 11245:3 11240:0 11232:= 11229:r 11206:k 11200:j 11194:i 11188:1 11165:| 11159:P 11153:| 11127:) 11122:j 11118:W 11114:, 11109:i 11105:W 11101:( 11064:k 11058:j 11052:i 11046:1 11024:2 11019:| 11012:P 11006:| 11000:0 10973:0 10961:| 10957:) 10952:j 10948:V 10944:, 10939:i 10935:V 10931:( 10928:d 10922:) 10917:j 10913:W 10909:, 10904:i 10900:W 10896:( 10893:d 10889:| 10867:k 10861:j 10855:i 10849:1 10826:| 10820:P 10814:| 10788:) 10783:j 10779:W 10775:, 10770:i 10766:W 10762:( 10741:n 10731:| 10725:i 10721:W 10716:| 10692:i 10670:i 10666:V 10657:i 10653:W 10629:k 10625:V 10621:, 10618:. 10615:. 10612:. 10609:, 10604:1 10600:V 10595:= 10590:P 10568:0 10542:0 10536:. 10533:. 10530:. 10522:1 10509:0 10469:Q 10445:P 10423:1 10396:. 10393:M 10386:| 10382:Q 10378:| 10374:, 10370:| 10366:P 10362:| 10339:i 10335:M 10329:2 10326:+ 10321:0 10312:/ 10308:1 10302:i 10294:= 10291:M 10271:1 10268:+ 10265:i 10243:i 10239:M 10235:) 10229:| 10223:i 10219:M 10214:| 10205:( 10202:M 10199:= 10194:1 10191:+ 10188:i 10184:M 10161:i 10157:M 10153:) 10147:| 10141:i 10137:M 10132:| 10123:( 10120:M 10113:| 10107:i 10101:P 10094:| 10090:) 10084:| 10078:i 10074:P 10069:| 10060:( 10057:M 10050:| 10044:1 10041:+ 10038:i 10034:P 10029:| 10006:i 10002:M 9994:| 9988:i 9984:P 9979:| 9956:0 9952:M 9944:| 9938:0 9932:P 9925:| 9904:) 9899:0 9891:( 9888:M 9885:= 9880:0 9876:M 9853:i 9849:M 9841:| 9835:i 9829:P 9822:| 9799:i 9795:M 9774:i 9751:, 9746:1 9743:+ 9740:i 9734:P 9708:) 9703:Q 9698:, 9693:P 9688:( 9668:) 9663:1 9660:+ 9657:i 9651:P 9645:, 9640:i 9634:P 9628:( 9606:0 9595:) 9590:i 9584:P 9578:( 9575:q 9569:) 9564:1 9561:+ 9558:i 9552:P 9546:( 9543:q 9523:1 9520:+ 9515:0 9506:/ 9502:1 9496:i 9476:] 9473:1 9470:, 9467:0 9464:[ 9444:) 9439:i 9433:P 9427:( 9424:q 9418:) 9413:1 9410:+ 9407:i 9401:P 9395:( 9392:q 9371:| 9365:i 9359:P 9352:| 9348:) 9342:| 9336:i 9332:P 9327:| 9318:( 9315:M 9288:i 9284:P 9258:| 9252:i 9248:P 9243:| 9213:1 9210:+ 9207:i 9203:P 9177:, 9174:1 9171:, 9168:0 9165:= 9162:i 9139:t 9136:= 9113:) 9110:t 9107:( 9104:M 9084:) 9079:0 9071:( 9068:M 9045:G 9023:0 8996:0 8990:P 8961:Q 8937:P 8915:) 8910:Q 8905:, 8900:P 8895:( 8873:0 8860:Q 8835:| 8829:P 8823:| 8795:Q 8766:0 8739:0 8733:P 8698:M 8691:| 8685:Q 8679:| 8655:0 8647:+ 8644:) 8639:P 8634:( 8631:q 8625:) 8620:Q 8615:( 8612:q 8587:| 8581:P 8575:| 8547:Q 8523:0 8496:P 8484:. 8470:Q 8446:P 8422:P 8398:Q 8371:Q 8347:P 8325:G 8305:M 8285:0 8279:. 8276:. 8273:. 8265:1 8252:0 8158:2 8154:n 8102:2 8090:4 8027:P 8022:W 8015:W 7963:P 7938:W 7916:P 7891:P 7886:W 7865:] 7862:1 7859:, 7856:0 7853:[ 7831:P 7809:W 7778:2 7766:4 7720:2 7715:| 7710:V 7706:| 7695:| 7690:| 7684:j 7680:V 7673:T 7669:| 7664:| 7658:i 7654:V 7647:S 7643:| 7639:) 7634:j 7630:V 7626:, 7621:i 7617:V 7613:( 7610:d 7605:k 7600:1 7597:= 7594:j 7591:, 7588:i 7577:) 7574:T 7571:, 7568:S 7565:( 7562:e 7558:| 7534:V 7528:T 7525:, 7522:S 7479:} 7474:k 7470:V 7466:, 7460:, 7455:1 7451:V 7447:{ 7444:= 7439:P 7417:) 7414:E 7411:, 7408:V 7405:( 7402:= 7399:G 7313:. 7309:) 7304:| 7298:i 7294:V 7289:| 7283:k 7278:1 7275:= 7272:i 7263:( 7258:) 7254:) 7249:j 7245:V 7241:, 7236:i 7232:V 7228:( 7225:d 7220:) 7217:H 7214:( 7211:E 7205:} 7202:j 7199:, 7196:i 7193:{ 7184:( 7159:| 7153:k 7149:V 7144:| 7136:| 7130:1 7126:V 7121:| 7114:) 7111:H 7108:( 7105:e 7085:G 7065:H 7045:) 7042:H 7039:( 7036:E 7030:} 7027:j 7024:, 7021:i 7018:{ 6978:) 6973:j 6969:V 6965:, 6960:i 6956:V 6952:( 6932:) 6929:G 6926:( 6923:V 6915:k 6911:V 6907:, 6901:, 6896:1 6892:V 6871:n 6851:G 6831:0 6805:] 6802:k 6799:[ 6796:= 6793:) 6790:H 6787:( 6784:V 6764:H 6702:5 6672:5 6582:P 6558:5 6526:2 6522:n 6516:| 6510:j 6506:V 6501:| 6496:| 6490:i 6486:V 6481:| 6472:4 6449:) 6444:j 6440:V 6436:, 6431:i 6427:V 6423:( 6415:+ 6412:) 6407:j 6403:V 6399:, 6394:i 6390:V 6386:( 6383:q 6376:2 6372:] 6368:k 6365:[ 6359:) 6356:j 6353:, 6350:i 6347:( 6319:} 6314:j 6311:, 6308:i 6304:A 6295:i 6291:V 6287:, 6282:j 6279:, 6276:i 6272:A 6268:{ 6244:i 6240:V 6233:Q 6208:Q 6184:j 6181:, 6178:i 6174:A 6151:i 6147:V 6123:) 6120:} 6115:i 6112:, 6109:j 6105:A 6096:j 6092:V 6088:, 6083:i 6080:, 6077:j 6073:A 6069:{ 6066:, 6063:} 6058:j 6055:, 6052:i 6048:A 6039:i 6035:V 6031:, 6026:j 6023:, 6020:i 6016:A 6012:{ 6009:( 6006:q 5988:) 5983:j 5979:V 5975:, 5970:i 5966:V 5962:( 5954:+ 5951:) 5946:j 5942:V 5938:, 5933:i 5929:V 5925:( 5922:q 5904:) 5899:j 5895:V 5891:, 5886:i 5882:V 5878:( 5848:Q 5824:i 5820:V 5795:i 5791:V 5784:Q 5758:) 5751:j 5747:V 5740:Q 5734:, 5727:i 5723:V 5716:Q 5710:( 5707:q 5689:) 5684:j 5680:V 5676:, 5671:i 5667:V 5663:( 5655:+ 5652:) 5645:j 5641:V 5634:Q 5628:, 5621:i 5617:V 5610:Q 5604:( 5601:q 5583:) 5578:j 5574:V 5570:, 5565:i 5561:V 5557:( 5549:= 5546:) 5539:j 5535:V 5528:Q 5522:, 5515:i 5511:V 5504:Q 5498:( 5495:q 5488:2 5484:] 5480:k 5477:[ 5471:) 5468:j 5465:, 5462:i 5459:( 5451:= 5448:) 5443:Q 5438:( 5435:q 5410:k 5406:2 5383:i 5379:V 5356:j 5353:, 5350:i 5346:A 5323:P 5299:Q 5275:j 5271:V 5262:i 5259:, 5256:j 5252:A 5229:i 5225:V 5216:j 5213:, 5210:i 5206:A 5165:) 5160:j 5156:V 5152:, 5147:i 5143:V 5139:( 5119:) 5116:j 5113:, 5110:i 5107:( 5079:. 5074:5 5066:+ 5063:) 5058:P 5053:( 5050:q 5044:) 5039:Q 5034:( 5031:q 5006:k 5002:2 4979:i 4975:V 4952:P 4928:Q 4886:) 4883:G 4880:( 4877:V 4857:} 4852:k 4848:V 4844:, 4838:, 4833:1 4829:V 4825:{ 4822:= 4817:P 4763:2 4738:2 4734:) 4730:) 4727:W 4724:, 4721:U 4718:( 4715:d 4709:) 4704:1 4700:W 4696:, 4691:1 4687:U 4683:( 4680:d 4677:( 4670:| 4666:W 4662:| 4655:| 4649:1 4645:W 4640:| 4629:| 4625:U 4621:| 4614:| 4608:1 4604:U 4599:| 4589:] 4584:2 4580:) 4576:] 4573:Z 4570:[ 4566:E 4559:Z 4556:( 4553:[ 4549:E 4545:= 4542:) 4539:Z 4536:( 4533:r 4530:a 4527:V 4502:1 4498:W 4491:y 4469:1 4465:U 4458:x 4434:| 4430:W 4426:| 4419:| 4413:1 4409:W 4404:| 4393:| 4389:U 4385:| 4378:| 4372:1 4368:U 4363:| 4338:| 4334:) 4331:W 4328:, 4325:U 4322:( 4319:d 4313:) 4308:1 4304:W 4300:, 4295:1 4291:U 4287:( 4284:d 4280:| 4276:= 4272:| 4268:] 4265:Z 4262:[ 4258:E 4251:Z 4247:| 4222:) 4218:) 4215:W 4212:, 4209:U 4206:( 4203:q 4196:) 4192:} 4187:1 4183:W 4176:W 4173:, 4168:1 4164:W 4160:{ 4157:, 4154:} 4149:1 4145:U 4138:U 4135:, 4130:1 4126:U 4122:{ 4118:( 4114:q 4110:( 4102:| 4098:W 4094:| 4089:| 4085:U 4081:| 4074:2 4070:n 4064:= 4059:2 4055:] 4051:Z 4048:[ 4044:E 4037:] 4032:2 4028:Z 4024:[ 4020:E 4016:= 4013:) 4010:Z 4007:( 4004:r 4001:a 3998:V 3975:Z 3943:2 3939:n 3933:| 3929:W 3925:| 3920:| 3916:U 3912:| 3903:4 3895:+ 3892:) 3889:W 3886:, 3883:U 3880:( 3877:q 3870:) 3866:} 3861:1 3857:W 3850:W 3847:, 3842:1 3838:W 3834:{ 3831:, 3828:} 3823:1 3819:U 3812:U 3809:, 3804:1 3800:U 3796:{ 3792:( 3788:q 3765:W 3757:1 3753:W 3749:, 3746:U 3738:1 3734:U 3693:) 3690:W 3687:, 3684:U 3681:( 3654:) 3649:P 3644:( 3641:q 3635:) 3626:P 3620:( 3617:q 3595:P 3567:P 3544:) 3539:j 3535:V 3531:, 3526:i 3522:V 3518:( 3498:} 3493:m 3489:V 3485:, 3479:, 3474:1 3470:V 3466:{ 3463:= 3458:P 3434:P 3410:P 3377:. 3365:W 3362:, 3359:U 3339:) 3336:W 3333:, 3330:U 3327:( 3324:q 3318:) 3313:W 3307:P 3301:, 3296:U 3290:P 3284:( 3281:q 3259:2 3255:] 3251:Z 3248:[ 3244:E 3237:] 3232:2 3228:Z 3224:[ 3220:E 3196:) 3191:W 3185:P 3179:, 3174:U 3168:P 3162:( 3159:q 3152:| 3148:W 3144:| 3139:| 3135:U 3131:| 3124:2 3120:n 3114:= 3109:2 3105:) 3099:j 3095:W 3091:, 3086:i 3082:U 3078:( 3075:d 3068:| 3064:W 3060:| 3053:| 3047:j 3043:W 3038:| 3027:| 3023:U 3019:| 3012:| 3006:i 3002:U 2997:| 2988:l 2983:1 2980:= 2977:j 2967:k 2962:1 2959:= 2956:i 2948:= 2945:] 2940:2 2936:Z 2932:[ 2928:E 2901:) 2898:W 2895:, 2892:U 2889:( 2886:d 2883:= 2876:| 2872:W 2868:| 2863:| 2859:U 2855:| 2849:) 2846:W 2843:, 2840:U 2837:( 2834:e 2828:= 2825:) 2820:j 2816:W 2812:, 2807:i 2803:U 2799:( 2796:d 2789:| 2785:W 2781:| 2774:| 2768:j 2764:W 2759:| 2748:| 2744:U 2740:| 2733:| 2727:i 2723:U 2718:| 2709:l 2704:1 2701:= 2698:j 2688:k 2683:1 2680:= 2677:i 2669:= 2666:] 2663:Z 2660:[ 2656:E 2632:Z 2612:) 2607:j 2603:W 2599:, 2594:i 2590:U 2586:( 2583:d 2580:= 2577:Z 2555:j 2551:W 2530:y 2508:i 2504:U 2483:x 2463:W 2443:y 2423:U 2403:x 2383:} 2378:l 2374:W 2370:, 2364:, 2359:1 2355:W 2351:{ 2348:= 2343:W 2337:P 2314:} 2309:k 2305:U 2301:, 2295:, 2290:1 2286:U 2282:{ 2279:= 2274:U 2268:P 2237:) 2234:W 2231:, 2228:U 2225:( 2222:q 2216:) 2211:W 2205:P 2199:, 2194:U 2188:P 2182:( 2179:q 2159:W 2139:U 2117:W 2111:P 2086:U 2080:P 2047:1 2044:= 2037:2 2033:n 2027:| 2021:j 2017:V 2012:| 2007:| 2001:i 1997:V 1992:| 1983:k 1978:1 1975:= 1972:j 1962:k 1957:1 1954:= 1951:i 1938:2 1934:) 1928:j 1924:V 1920:, 1915:i 1911:V 1907:( 1904:d 1897:2 1893:n 1887:| 1881:j 1877:V 1872:| 1867:| 1861:i 1857:V 1852:| 1843:k 1838:1 1835:= 1832:j 1822:k 1817:1 1814:= 1811:i 1803:= 1800:) 1795:P 1790:( 1787:q 1758:2 1754:) 1748:j 1744:V 1740:, 1735:i 1731:V 1727:( 1724:d 1717:2 1713:n 1707:| 1701:j 1697:V 1692:| 1687:| 1681:i 1677:V 1672:| 1663:k 1658:1 1655:= 1652:j 1642:k 1637:1 1634:= 1631:i 1623:= 1620:) 1615:j 1611:V 1607:, 1602:i 1598:V 1594:( 1591:q 1586:k 1581:1 1578:= 1575:j 1565:k 1560:1 1557:= 1554:i 1546:= 1543:) 1538:P 1533:( 1530:q 1507:) 1502:P 1497:, 1492:P 1487:( 1484:q 1462:P 1450:V 1436:} 1431:k 1427:V 1423:, 1417:, 1412:1 1408:V 1404:{ 1401:= 1396:P 1371:) 1366:j 1362:W 1358:, 1353:i 1349:U 1345:( 1342:q 1337:l 1332:1 1329:= 1326:j 1316:k 1311:1 1308:= 1305:i 1294:) 1289:W 1283:P 1277:, 1272:U 1266:P 1260:( 1257:q 1244:W 1230:} 1225:l 1221:W 1217:, 1211:, 1206:1 1202:W 1198:{ 1195:= 1190:W 1184:P 1171:U 1157:} 1152:k 1148:U 1144:, 1138:, 1133:1 1129:U 1125:{ 1122:= 1117:U 1111:P 1083:2 1079:) 1075:W 1072:, 1069:U 1066:( 1063:d 1056:2 1052:n 1046:| 1042:W 1038:| 1033:| 1029:U 1025:| 1015:) 1012:W 1009:, 1006:U 1003:( 1000:q 987:) 985:W 981:U 979:( 961:n 958:= 954:| 950:V 946:| 934:V 928:W 924:U 900:2 896:L 844:m 839:ε 834:M 824:m 814:M 804:k 798:G 793:ε 788:M 784:k 780:m 774:k 768:M 762:G 756:M 750:m 712:2 707:| 702:) 699:G 696:( 693:V 689:| 678:| 672:j 668:V 663:| 658:| 652:i 648:V 643:| 624:) 619:j 615:V 611:, 606:i 602:V 598:( 547:} 542:k 538:V 534:, 528:, 523:1 519:V 515:{ 512:= 507:P 485:k 465:V 448:ε 444:ε 436:ε 432:ε 414:. 404:| 400:) 397:B 394:, 391:A 388:( 385:d 379:) 376:Y 373:, 370:X 367:( 364:d 360:| 346:| 344:Y 340:B 338:| 334:| 332:X 328:A 326:| 321:Y 317:B 311:X 307:A 300:ε 294:Y 288:X 272:ε 258:. 255:Y 249:X 244:) 242:Y 238:X 236:( 234:E 212:| 208:Y 204:| 199:| 195:X 191:| 185:| 181:) 178:Y 175:, 172:X 169:( 166:E 162:| 153:) 150:Y 147:, 144:X 141:( 138:d 125:) 123:Y 119:X 117:( 108:V 102:Y 98:X 85:V 75:G 70:ε

Index

regularity partition
extremal graph theory
graph
random graphs
Endre Szemerédi
bipartite graphs
theorem on arithmetic progressions
hypergraphs
vertex
regular pair
half graphs
positive
integer
Gowers (1997)
refinement
Graph removal lemma
Roth's Theorem on Arithmetic Progressions
hypergraph removal lemma
Szemerédi's theorem
induced subgraphs
sparse graphs
graphons
algorithm
maximum cut
dense graph
NP-hard
theoretical computer science
matrix multiplication
communication complexity
Alon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.