Knowledge

Dense graph

Source 📝

687:
is an extension of the concept of graph density defined above from finite graphs to infinite graphs. Intuitively, an infinite graph has arbitrarily large finite subgraphs with any density less than its upper density, and does not have arbitrarily large finite subgraphs with density greater than its
39:. The distinction of what constitutes a dense or sparse graph is ill-defined, and is often represented by 'roughly equal to' statements. Due to this, the way that density is defined often depends on the context of the problem. 356: 203: 468: 1114: 541: 1147: 1133: 619: 505: 674: 1340: 1131:
considered that the sparsity/density dichotomy makes it necessary to consider infinite graph classes instead of single graph instances. They defined
940:
edges (except for graphs with fewer than 3 vertices), and that any subgraph of a planar graph is planar, together imply that the planar graphs are
218: 69: 1205: 1469:
Telle, Jan Arne; Villanger, Yngve (2012), "FPT algorithms for domination in biclique-free graphs", in Epstein, Leah; Ferragina, Paolo (eds.),
212:, simple graphs, the maximum possible edges is twice that of undirected graphs (as there are two directions to an edge) so the density is: 1311: 372: 1415: 924:
Other graph families not characterized by their sparsity can also be described in this way. For instance the facts that any
1145:-subdivision in a subgraph of a graph in the class. To the contrary, if such a threshold does not exist, the class is 1056: 1474: 1438: 1365: 1249: 1471:
Algorithms – ESA 2012: 20th Annual European Symposium, Ljubljana, Slovenia, September 10–12, 2012, Proceedings
1382:(2010), "From Sparse Graphs to Nowhere Dense Structures: Decompositions, Independence, Dualities and Limits", 1241: 510: 914: 28: 550: 701: 1022: 484: 1395: 1379: 1163: 1158:
The classes of graphs with bounded degeneracy and of nowhere dense graphs are both included in the
1499: 624: 1391: 1375: 1215:; Moré, Jorge J. (1983), "Estimation of sparse Jacobian matrices and graph coloring Problems", 369:
is the number of vertices in the graph. The maximum number of edges for an undirected graph is
1306: 705: 32: 1425: 1332: 1298: 31:
in which the number of edges is close to the maximal number of edges (where every pair of
8: 1159: 871: 1447: 1276: 1411: 1361: 1255: 1245: 1212: 1197: 1179: 949: 1478: 1457: 1403: 1320: 1286: 1224: 544: 1482: 1421: 1328: 1294: 1267:
Lee, Audrey; Streinu, Ileana (2008), "Pebble game algorithms and sparse graphs",
957: 1151:. Properties of the nowhere dense vs somewhere dense dichotomy are discussed in 1433: 1290: 1184: 471: 209: 1461: 1407: 1324: 1493: 1259: 351:{\displaystyle D={\frac {|E|}{2{\binom {|V|}{2}}}}={\frac {|E|}{|V|(|V|-1)}}} 35:
is connected by one edge). The opposite, a graph with only a few edges, is a
1137:
graph classes as those classes of graphs for which there exists a threshold
700:
with density α have a bounded number of vertices. It can be shown using the
925: 902: 198:{\displaystyle D={\frac {|E|}{\binom {|V|}{2}}}={\frac {2|E|}{|V|(|V|-1)}}} 60: 1358:
Data Structures and Algorithms with Object-Oriented Design Patterns in C++
481:
For families of graphs of increasing size, one often calls them sparse if
910: 20: 1026: 883: 1436:; Theran, L. (2009), "Sparse hypergraphs and pebble game algorithms", 1452: 1281: 1402:, Algorithms and Combinatorics, vol. 28, Heidelberg: Springer, 1228: 46:
of simple graphs is defined to be the ratio of the number of edges
1021:-sparse is equivalent to the graphs in the family having bounded 693: 1049:-sparse graphs. Similarly, the graphs of degeneracy at most 463:{\displaystyle {\binom {|V|}{2}}={\frac {|V|(|V|-1)}{2}}} 1390: 1374: 1152: 1128: 1309:(1964), "Decomposition of finite graphs into forests", 547:, a more restrictive definition of sparse is used like 688:
upper density. Formally, the upper density of a graph
1123: 1059: 627: 553: 513: 487: 375: 221: 72: 979:-sparsity may be performed in polynomial time when 704:that the upper density can only be 1 or one of the 1108: 696:of the values α such that the finite subgraphs of 668: 613: 535: 499: 462: 350: 197: 1386:, European Mathematical Society, pp. 135–165 1095: 1074: 404: 379: 1491: 1109:{\displaystyle \left(d,{\binom {d+1}{2}}\right)} 1477:, vol. 7501, Springer, pp. 802–812, 1468: 1167: 1029:. More precisely, it follows from a result of 795:(see, e.g., Diestel, edition 5, p. 189). 1432: 1305: 1202:Dictionary of Algorithms and Data Structures, 1030: 807: 277: 252: 123: 98: 1400:Sparsity: Graphs, Structures, and Algorithms 1141:such that every complete graph appears as a 56:with respect to the maximum possible edges. 1211: 1009:such that the graphs in the family are all 475: 1312:Journal of the London Mathematical Society 1266: 803: 798: 1451: 1338: 1280: 1117: 16:Graph with almost the max amount of edges 822:-sparse if every nonempty subgraph with 1235: 878:-tight graphs, forests are exactly the 1492: 1355: 1153:Nešetřil & Ossona de Mendez (2012) 1129:Nešetřil & Ossona de Mendez (2010) 1033:that the graphs of arboricity at most 536:{\displaystyle |V|\rightarrow \infty } 1339:Lick, Don R; White, Arthur T (1970). 1001:For a graph family, the existence of 967:Streinu and Theran show that testing 948:-sparse graph is planar. Similarly, 1162:, graph families that exclude some 470:, so the maximal density is 1 (for 13: 1217:SIAM Journal on Numerical Analysis 1124:Sparse and dense classes of graphs 1078: 614:{\displaystyle |E|=O(|V|\log |V|)} 530: 383: 256: 102: 14: 1511: 1475:Lecture Notes in Computer Science 1439:European Journal of Combinatorics 1208:. Retrieved on 29 September 2005. 1384:European Congress of Mathematics 882:-sparse graphs, and graphs with 679: 474:) and the minimal density is 0 ( 1345:Canadian Journal of Mathematics 663: 659: 651: 647: 637: 629: 608: 604: 596: 585: 577: 573: 563: 555: 527: 523: 515: 500:{\displaystyle D\rightarrow 0} 491: 451: 441: 433: 429: 425: 417: 394: 386: 342: 332: 324: 320: 316: 308: 301: 293: 267: 259: 240: 232: 189: 179: 171: 167: 163: 155: 148: 140: 113: 105: 91: 83: 1: 1242:Graduate Texts in Mathematics 1190: 1483:10.1007/978-3-642-33090-2_69 944:-sparse. However, not every 7: 1307:Nash-Williams, C. St. J. A. 1173: 808:Streinu & Theran (2009) 365:is the number of edges and 10: 1516: 1291:10.1016/j.disc.2007.07.104 1236:Diestel, Reinhard (2005), 1168:Telle & Villanger 2012 669:{\displaystyle |E|=O(|V|)} 1462:10.1016/j.ejc.2008.12.018 1408:10.1007/978-3-642-27875-4 1396:Ossona de Mendez, Patrice 1380:Ossona de Mendez, Patrice 1360:, John Wiley & Sons, 1164:complete bipartite graph 909:-sparse graphs, and the 860:-sparse and has exactly 810:define a graph as being 804:Lee & Streinu (2008) 63:, the graph density is: 1325:10.1112/jlms/s1-39.1.12 799:Sparse and tight graphs 476:Coleman & Moré 1983 1356:Preiss, first (1998), 1110: 706:superparticular ratios 670: 615: 537: 501: 464: 352: 199: 1341:"k-Degenerate graphs" 1204:Paul E. Black (ed.), 1118:Lick & White 1970 1111: 932:vertices has at most 826:vertices has at most 671: 616: 538: 502: 465: 353: 200: 1269:Discrete Mathematics 1160:biclique-free graphs 1057: 1031:Nash-Williams (1964) 625: 551: 511: 485: 373: 219: 70: 1244:, Springer-Verlag, 956:-sparse and planar 702:Erdős–Stone theorem 1392:Nešetřil, Jaroslav 1376:Nešetřil, Jaroslav 1213:Coleman, Thomas F. 1106: 1025:or having bounded 950:outerplanar graphs 666: 611: 533: 497: 460: 348: 195: 1417:978-3-642-27874-7 1180:Bounded expansion 1093: 987:are integers and 458: 402: 346: 284: 275: 193: 128: 121: 1507: 1485: 1464: 1455: 1446:(8): 1944–1964, 1428: 1387: 1370: 1352: 1335: 1301: 1284: 1275:(8): 1425–1437, 1262: 1231: 1116:-sparse graphs ( 1115: 1113: 1112: 1107: 1105: 1101: 1100: 1099: 1098: 1089: 1077: 1052: 1048: 1037:are exactly the 1036: 1020: 1008: 1004: 997: 986: 982: 978: 963: 958:bipartite graphs 955: 947: 943: 939: 931: 920: 917:are exactly the 908: 905:are exactly the 901:-sparse graphs. 900: 889:are exactly the 888: 881: 877: 874:are exactly the 869: 859: 848:-tight if it is 847: 835: 825: 821: 794: 793: 791: 790: 784: 781: 772: 770: 769: 766: 763: 756: 754: 753: 750: 747: 740: 738: 737: 734: 731: 724: 722: 721: 718: 715: 699: 691: 675: 673: 672: 667: 662: 654: 640: 632: 620: 618: 617: 612: 607: 599: 588: 580: 566: 558: 545:computer science 543:. Sometimes, in 542: 540: 539: 534: 526: 518: 506: 504: 503: 498: 469: 467: 466: 461: 459: 454: 444: 436: 428: 420: 414: 409: 408: 407: 398: 397: 389: 382: 368: 364: 357: 355: 354: 349: 347: 345: 335: 327: 319: 311: 305: 304: 296: 290: 285: 283: 282: 281: 280: 271: 270: 262: 255: 244: 243: 235: 229: 204: 202: 201: 196: 194: 192: 182: 174: 166: 158: 152: 151: 143: 134: 129: 127: 126: 117: 116: 108: 101: 95: 94: 86: 80: 55: 53: 1515: 1514: 1510: 1509: 1508: 1506: 1505: 1504: 1490: 1489: 1418: 1368: 1351:(5): 1082–1096. 1252: 1229:10.1137/0720013 1196:Paul E. Black, 1193: 1176: 1166:as a subgraph ( 1134:somewhere dense 1126: 1094: 1079: 1073: 1072: 1071: 1064: 1060: 1058: 1055: 1054: 1050: 1038: 1034: 1010: 1006: 1002: 988: 984: 980: 968: 961: 953: 945: 941: 933: 929: 921:-tight graphs. 918: 915:rigidity theory 906: 890: 886: 879: 875: 861: 849: 837: 827: 823: 811: 801: 785: 782: 777: 776: 774: 767: 764: 761: 760: 758: 751: 748: 745: 744: 742: 735: 732: 729: 728: 726: 719: 716: 713: 712: 710: 708: 697: 689: 682: 658: 650: 636: 628: 626: 623: 622: 603: 595: 584: 576: 562: 554: 552: 549: 548: 522: 514: 512: 509: 508: 486: 483: 482: 472:complete graphs 440: 432: 424: 416: 415: 413: 403: 393: 385: 384: 378: 377: 376: 374: 371: 370: 366: 362: 331: 323: 315: 307: 306: 300: 292: 291: 289: 276: 266: 258: 257: 251: 250: 249: 245: 239: 231: 230: 228: 220: 217: 216: 178: 170: 162: 154: 153: 147: 139: 135: 133: 122: 112: 104: 103: 97: 96: 90: 82: 81: 79: 71: 68: 67: 59:For undirected 49: 47: 17: 12: 11: 5: 1513: 1503: 1502: 1500:Graph families 1488: 1487: 1466: 1430: 1416: 1388: 1372: 1366: 1353: 1336: 1303: 1264: 1250: 1233: 1223:(1): 187–209, 1209: 1192: 1189: 1188: 1187: 1185:Dense subgraph 1182: 1175: 1172: 1125: 1122: 1104: 1097: 1092: 1088: 1085: 1082: 1076: 1070: 1067: 1063: 800: 797: 681: 678: 665: 661: 657: 653: 649: 646: 643: 639: 635: 631: 610: 606: 602: 598: 594: 591: 587: 583: 579: 575: 572: 569: 565: 561: 557: 532: 529: 525: 521: 517: 496: 493: 490: 457: 453: 450: 447: 443: 439: 435: 431: 427: 423: 419: 412: 406: 401: 396: 392: 388: 381: 359: 358: 344: 341: 338: 334: 330: 326: 322: 318: 314: 310: 303: 299: 295: 288: 279: 274: 269: 265: 261: 254: 248: 242: 238: 234: 227: 224: 206: 205: 191: 188: 185: 181: 177: 173: 169: 165: 161: 157: 150: 146: 142: 138: 132: 125: 120: 115: 111: 107: 100: 93: 89: 85: 78: 75: 15: 9: 6: 4: 3: 2: 1512: 1501: 1498: 1497: 1495: 1484: 1480: 1476: 1472: 1467: 1463: 1459: 1454: 1449: 1445: 1441: 1440: 1435: 1431: 1427: 1423: 1419: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1367:0-471-24134-2 1363: 1359: 1354: 1350: 1346: 1342: 1337: 1334: 1330: 1326: 1322: 1318: 1314: 1313: 1308: 1304: 1300: 1296: 1292: 1288: 1283: 1278: 1274: 1270: 1265: 1261: 1257: 1253: 1251:3-540-26183-4 1247: 1243: 1239: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1207: 1203: 1199: 1195: 1194: 1186: 1183: 1181: 1178: 1177: 1171: 1169: 1165: 1161: 1156: 1154: 1150: 1149: 1148:nowhere dense 1144: 1140: 1136: 1135: 1130: 1121: 1119: 1102: 1090: 1086: 1083: 1080: 1068: 1065: 1061: 1046: 1042: 1032: 1028: 1024: 1018: 1014: 999: 996: 992: 976: 972: 965: 959: 951: 937: 927: 922: 916: 912: 904: 903:Pseudoforests 898: 894: 885: 873: 868: 864: 857: 853: 845: 841: 834: 830: 819: 815: 809: 805: 796: 788: 780: 707: 703: 695: 686: 685:Upper density 680:Upper density 677: 655: 644: 641: 633: 600: 592: 589: 581: 570: 567: 559: 546: 519: 494: 488: 479: 477: 473: 455: 448: 445: 437: 421: 410: 399: 390: 339: 336: 328: 312: 297: 286: 272: 263: 246: 236: 225: 222: 215: 214: 213: 211: 186: 183: 175: 159: 144: 136: 130: 118: 109: 87: 76: 73: 66: 65: 64: 62: 61:simple graphs 57: 52: 45: 44:graph density 40: 38: 34: 30: 26: 22: 1470: 1453:math/0703921 1443: 1437: 1399: 1383: 1357: 1348: 1344: 1316: 1310: 1282:math/0702129 1272: 1268: 1238:Graph Theory 1237: 1220: 1216: 1201: 1198:Sparse graph 1157: 1146: 1142: 1138: 1132: 1127: 1044: 1040: 1016: 1012: 1000: 994: 990: 974: 970: 966: 935: 926:planar graph 923: 911:Laman graphs 896: 892: 870:edges. Thus 866: 862: 855: 851: 843: 839: 832: 828: 817: 813: 802: 786: 778: 684: 683: 480: 360: 207: 58: 50: 43: 41: 37:sparse graph 36: 24: 18: 1434:Streinu, I. 913:arising in 836:edges, and 25:dense graph 21:mathematics 1191:References 1027:arboricity 1023:degeneracy 884:arboricity 1319:(1): 12, 1260:181535575 964:-sparse. 593:⁡ 531:∞ 528:→ 492:→ 446:− 337:− 184:− 1494:Category 1398:(2012), 1174:See also 621:or even 210:directed 33:vertices 1426:2920058 1333:0161333 1299:2392060 1200:, from 792:⁠ 775:⁠ 771:⁠ 759:⁠ 755:⁠ 743:⁠ 739:⁠ 727:⁠ 723:⁠ 711:⁠ 694:infimum 692:is the 1424:  1414:  1364:  1331:  1297:  1258:  1248:  993:< 2 361:where 54:| 48:| 1448:arXiv 1277:arXiv 983:and 962:(2,4) 954:(2,3) 946:(3,6) 942:(3,6) 928:with 919:(2,3) 907:(1,0) 880:(1,1) 876:(1,1) 872:trees 29:graph 27:is a 1412:ISBN 1362:ISBN 1256:OCLC 1246:ISBN 1206:NIST 1053:are 1005:and 989:0 ≤ 960:are 952:are 806:and 773:, … 208:For 42:The 23:, a 1479:doi 1458:doi 1404:doi 1321:doi 1287:doi 1273:308 1225:doi 1170:). 1120:). 938:– 6 789:+ 1 709:0, 590:log 507:as 478:). 19:In 1496:: 1473:, 1456:, 1444:30 1442:, 1422:MR 1420:, 1410:, 1394:; 1378:; 1349:22 1347:. 1343:. 1329:MR 1327:, 1317:39 1315:, 1295:MR 1293:, 1285:, 1271:, 1254:, 1240:, 1221:20 1219:, 1155:. 998:. 865:− 863:kn 854:, 842:, 831:− 829:kn 816:, 757:, 741:, 725:, 676:. 1486:. 1481:: 1465:. 1460:: 1450:: 1429:. 1406:: 1371:. 1323:: 1302:. 1289:: 1279:: 1263:. 1232:. 1227:: 1143:t 1139:t 1103:) 1096:) 1091:2 1087:1 1084:+ 1081:d 1075:( 1069:, 1066:d 1062:( 1051:d 1047:) 1045:a 1043:, 1041:a 1039:( 1035:a 1019:) 1017:l 1015:, 1013:k 1011:( 1007:l 1003:k 995:k 991:l 985:l 981:k 977:) 975:l 973:, 971:k 969:( 936:n 934:3 930:n 899:) 897:k 895:, 893:k 891:( 887:k 867:l 858:) 856:l 852:k 850:( 846:) 844:l 840:k 838:( 833:l 824:n 820:) 818:l 814:k 812:( 787:n 783:/ 779:n 768:5 765:/ 762:4 752:4 749:/ 746:3 736:3 733:/ 730:2 720:2 717:/ 714:1 698:G 690:G 664:) 660:| 656:V 652:| 648:( 645:O 642:= 638:| 634:E 630:| 609:) 605:| 601:V 597:| 586:| 582:V 578:| 574:( 571:O 568:= 564:| 560:E 556:| 524:| 520:V 516:| 495:0 489:D 456:2 452:) 449:1 442:| 438:V 434:| 430:( 426:| 422:V 418:| 411:= 405:) 400:2 395:| 391:V 387:| 380:( 367:V 363:E 343:) 340:1 333:| 329:V 325:| 321:( 317:| 313:V 309:| 302:| 298:E 294:| 287:= 278:) 273:2 268:| 264:V 260:| 253:( 247:2 241:| 237:E 233:| 226:= 223:D 190:) 187:1 180:| 176:V 172:| 168:( 164:| 160:V 156:| 149:| 145:E 141:| 137:2 131:= 124:) 119:2 114:| 110:V 106:| 99:( 92:| 88:E 84:| 77:= 74:D 51:E

Index

mathematics
graph
vertices
simple graphs
directed
complete graphs
Coleman & Moré 1983
computer science
infimum
Erdős–Stone theorem
superparticular ratios
Lee & Streinu (2008)
Streinu & Theran (2009)
trees
arboricity
Pseudoforests
Laman graphs
rigidity theory
planar graph
outerplanar graphs
bipartite graphs
degeneracy
arboricity
Nash-Williams (1964)
Lick & White 1970
Nešetřil & Ossona de Mendez (2010)
somewhere dense
nowhere dense
Nešetřil & Ossona de Mendez (2012)
biclique-free graphs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.