Knowledge

Laman graph

Source đź“ť

576: 17: 32: 160: − 3 edges is rigid; the condition in the definition of a Laman graph that no subgraph can have too many edges ensures that each edge contributes to reducing the overall number of degrees of freedom, and is not wasted within a subgraph that is already itself rigid due to its other edges. 587:
characterized the two-dimensional minimally rigid graphs (that is, the Laman graphs) in a different way. Henneberg showed that the minimally rigid graphs on two or more vertices are exactly the graphs that can be obtained, starting from a single edge, by a sequence of operations of the following two
147:
in their placement (each point has two independent coordinates), but a rigid graph has only three degrees of freedom (the position of a single one of its vertices and the rotation of the remaining graph around that vertex). Intuitively, adding an edge of fixed length to a graph reduces its number of
129:, that preserves the lengths of all the graph edges. A graph is rigid in this sense if and only if it has a Laman subgraph that spans all of its vertices. Thus, the Laman graphs are exactly the minimally rigid graphs, and they form the bases of the two-dimensional 383:
edges. Thus, in their notation, the Laman graphs are exactly the (2,3)-tight graphs, and the subgraphs of the Laman graphs are exactly the (2,3)-sparse graphs. The same notation can be used to describe other important families of
610:
may be formed using the first operation to form a triangle and then applying the second operation to subdivide each edge of the triangle and connect each subdivision point with the opposite triangle vertex.
180:, a polygon with only three convex vertices, and that the edges incident to every vertex span an angle of less than 180 degrees. The graphs that can be drawn as pointed pseudotriangulations are exactly the 508: 510:, based on testing whether doubling one edge of the given graph results in a multigraph that is (2,2)-tight (equivalently, whether it can be decomposed into two edge-disjoint 565: 352: 320: 239: 381: 288: 958:, Leibniz International Proceedings in Informatics (LIPIcs), vol. 144, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 79:1–79:12, 422:
vertices and no edges, with two pebbles placed on each vertex, and performs a sequence of the following two kinds of steps to create all of the edges of the graph:
259: 184:
Laman graphs. However, Laman graphs have planar embeddings that are not pseudotriangulations, and there are Laman graphs that are not planar, such as the
1003: 426:
Create a new directed edge connecting any two vertices that both have two pebbles, and remove one pebble from the start vertex of the new edge.
156:
degrees of freedom of the initial point placement to the three degrees of freedom of a rigid graph. However, not every graph with 2
453:
of the given graph, then it is necessarily (2,3)-sparse, and vice versa. However, faster algorithms are possible, running in time
973: 934: 595:
Subdivide an edge of the graph, and add an edge connecting the newly formed vertex to a third previously existing vertex.
862: 1033: 745: 144: 456: 804: 114: 98: 450: 173: 1028: 592:
Add a new vertex to the graph, together with edges connecting it to two previously existing vertices.
97:, who in 1970 used them to characterize rigid planar structures. However, this characterization, the 525: 584: 36: 1023: 94: 325: 293: 212: 357: 264: 724: 126: 907:
Daescu, O.; Kurdia, A. (2009), "Towards an optimal algorithm for recognizing Laman graphs",
176:
of a graph, with the properties that the outer face is convex, that every bounded face is a
835: 776: 694: 660: 640: 515: 125:, there will in general be no simultaneous continuous motion of all the points, other than 575: 8: 389: 698: 644: 912: 889: 871: 839: 813: 780: 754: 728: 664: 514:) and then using this decomposition to check whether the given graph is a Laman graph. 244: 951: 997: 969: 930: 668: 784: 16: 959: 922: 893: 881: 823: 764: 702: 648: 130: 122: 831: 772: 768: 740: 682: 656: 118: 102: 843: 964: 857: 827: 799: 736: 732: 177: 169: 25: 885: 1017: 706: 511: 185: 21: 926: 628: 519: 393: 385: 181: 90: 62: 58: 50: 909:
Proc. 42nd Hawaii International Conference on System Sciences (HICSS '09)
652: 397: 85: − 3 edges, and such that the whole graph has exactly 2 860:; Theran, L. (2009), "Sparse hypergraphs and pebble game algorithms", 599:
A sequence of these operations that forms a given graph is known as a
876: 818: 759: 720: 743:(2005), "Planar minimally rigid graphs and pseudo-triangulations", 631:(1970), "On graphs and the rigidity of plane skeletal structures", 917: 954:, in Bender, Michael A.; Svensson, Ola; Herman, Grzegorz (eds.), 31: 418:, by simulating a "pebble game" that begins with a graph with 403:
Based on this characterization, it is possible to recognize
603:
of the graph. For instance, the complete bipartite graph
89: − 3 edges. Laman graphs are named after 152: − 3 edges in a Laman graph reduce the 2 956:
27th Annual European Symposium on Algorithms (ESA 2019)
950:
Rollin, Jonathan; Schlipf, Lena; Schulz, André (2019),
528: 459: 360: 328: 296: 267: 247: 215: 117:: if one places the vertices of a Laman graph in the 802:(2008), "Pebble game algorithms and sparse graphs", 949: 719: 681: 687:Zeitschrift fĂĽr Angewandte Mathematik und Mechanik 559: 502: 375: 346: 314: 282: 253: 233: 1015: 685:(1927), "Ăśber die Gliederung ebener Fachwerke", 449:If these operations can be used to construct an 140:points in the plane are given, then there are 2 746:Computational Geometry Theory and Applications 856: 437:with at least one pebble, move a pebble from 206: 65:of rods and joints in the plane. Formally, a 906: 579:Henneberg construction of the Moser spindle 1002:: CS1 maint: location missing publisher ( 797: 503:{\displaystyle O(n^{3/2}{\sqrt {\log n}})} 433:with at most one pebble to another vertex 202: 990:Die graphische Statik der starren Systeme 987: 963: 916: 875: 817: 758: 570: 518:techniques can be used to test whether a 101:, had already been discovered in 1927 by 574: 241:-sparse if every nonempty subgraph with 30: 15: 522:is a Laman graph more quickly, in time 1016: 627: 583:Before Laman's and Geiringer's work, 148:degrees of freedom by one, so the 2 13: 24:, a planar Laman graph drawn as a 14: 1045: 952:"Recognizing planar Laman graphs" 863:European Journal of Combinatorics 429:If an edge points from a vertex 981: 943: 900: 850: 791: 723:; Orden, David; Rote, GĂĽnter; 713: 675: 621: 560:{\displaystyle O(n\log ^{3}n)} 554: 532: 497: 463: 341: 329: 309: 297: 228: 216: 81:-vertex subgraph has at most 2 1: 614: 407:-vertex Laman graphs in time 769:10.1016/j.comgeo.2004.07.003 174:planar straight-line drawing 163: 73:vertices such that, for all 7: 207:Streinu & Theran (2009) 197: 170:pointed pseudotriangulation 108: 26:pointed pseudotriangulation 10: 1050: 965:10.4230/LIPIcs.ESA.2019.79 828:10.1016/j.disc.2007.07.104 683:Pollaczek-Geiringer, Hilda 633:J. Engineering Mathematics 45:, a non-planar Laman graph 886:10.1016/j.ejc.2008.12.018 347:{\displaystyle (k,\ell )} 315:{\displaystyle (k,\ell )} 234:{\displaystyle (k,\ell )} 61:describing the minimally 707:10.1002/zamm.19270070107 396:, and graphs of bounded 376:{\displaystyle kn-\ell } 354:-sparse and has exactly 283:{\displaystyle kn-\ell } 209:define a graph as being 203:Lee & Streinu (2008) 37:complete bipartite graph 1034:Mathematics of rigidity 911:, IEEE, pp. 1–10, 99:Geiringer–Laman theorem 95:University of Amsterdam 988:Henneberg, L. (1911), 927:10.1109/HICSS.2009.470 601:Henneberg construction 580: 571:Henneberg construction 561: 504: 377: 348: 316: 284: 255: 235: 113:Laman graphs arise in 46: 28: 731:; Servatius, Herman; 578: 562: 505: 445:and reverse the edge. 378: 349: 317: 285: 261:vertices has at most 256: 236: 127:Euclidean congruences 34: 19: 805:Discrete Mathematics 526: 457: 358: 326: 294: 265: 245: 213: 729:Servatius, Brigitte 699:1927ZaMM....7...58P 645:1970JEnMa...4..331L 653:10.1007/BF01534980 585:Lebrecht Henneberg 581: 557: 500: 373: 344: 312: 280: 251: 231: 145:degrees of freedom 47: 29: 975:978-3-95977-124-5 936:978-0-7695-3450-3 725:Santos, Francisco 495: 254:{\displaystyle n} 131:rigidity matroids 1041: 1029:Geometric graphs 1008: 1007: 1001: 993: 985: 979: 978: 967: 947: 941: 939: 920: 904: 898: 896: 879: 870:(8): 1944–1964, 854: 848: 846: 821: 812:(8): 1425–1437, 795: 789: 787: 762: 741:Whiteley, Walter 717: 711: 709: 679: 673: 671: 625: 566: 564: 563: 558: 547: 546: 509: 507: 506: 501: 496: 485: 483: 482: 478: 444: 440: 436: 432: 421: 417: 406: 382: 380: 379: 374: 353: 351: 350: 345: 322:-tight if it is 321: 319: 318: 313: 289: 287: 286: 281: 260: 258: 257: 252: 240: 238: 237: 232: 123:general position 57:are a family of 1049: 1048: 1044: 1043: 1042: 1040: 1039: 1038: 1014: 1013: 1012: 1011: 995: 994: 986: 982: 976: 948: 944: 937: 905: 901: 855: 851: 800:Streinu, Ileana 796: 792: 737:Streinu, Ileana 733:Souvaine, Diane 718: 714: 680: 676: 626: 622: 617: 609: 573: 542: 538: 527: 524: 523: 484: 474: 470: 466: 458: 455: 454: 442: 438: 434: 430: 419: 408: 404: 359: 356: 355: 327: 324: 323: 295: 292: 291: 266: 263: 262: 246: 243: 242: 214: 211: 210: 200: 193: 166: 119:Euclidean plane 115:rigidity theory 111: 103:Hilda Geiringer 44: 12: 11: 5: 1047: 1037: 1036: 1031: 1026: 1024:Graph families 1010: 1009: 980: 974: 942: 935: 899: 849: 790: 753:(1–2): 31–61, 712: 674: 639:(4): 331–340, 619: 618: 616: 613: 607: 597: 596: 593: 572: 569: 556: 553: 550: 545: 541: 537: 534: 531: 512:spanning trees 499: 494: 491: 488: 481: 477: 473: 469: 465: 462: 447: 446: 427: 372: 369: 366: 363: 343: 340: 337: 334: 331: 311: 308: 305: 302: 299: 279: 276: 273: 270: 250: 230: 227: 224: 221: 218: 199: 196: 191: 178:pseudotriangle 165: 162: 110: 107: 69:is a graph on 42: 9: 6: 4: 3: 2: 1046: 1035: 1032: 1030: 1027: 1025: 1022: 1021: 1019: 1005: 999: 991: 984: 977: 971: 966: 961: 957: 953: 946: 938: 932: 928: 924: 919: 914: 910: 903: 895: 891: 887: 883: 878: 873: 869: 865: 864: 859: 853: 845: 841: 837: 833: 829: 825: 820: 815: 811: 807: 806: 801: 798:Lee, Audrey; 794: 786: 782: 778: 774: 770: 766: 761: 756: 752: 748: 747: 742: 738: 734: 730: 726: 722: 716: 708: 704: 700: 696: 692: 688: 684: 678: 670: 666: 662: 658: 654: 650: 646: 642: 638: 634: 630: 624: 620: 612: 606: 602: 594: 591: 590: 589: 586: 577: 568: 551: 548: 543: 539: 535: 529: 521: 517: 513: 492: 489: 486: 479: 475: 471: 467: 460: 452: 428: 425: 424: 423: 415: 411: 401: 399: 395: 394:pseudoforests 391: 387: 386:sparse graphs 370: 367: 364: 361: 338: 335: 332: 306: 303: 300: 277: 274: 271: 268: 248: 225: 222: 219: 208: 204: 195: 190: 187: 186:utility graph 183: 179: 175: 171: 161: 159: 155: 151: 146: 143: 139: 134: 132: 128: 124: 120: 116: 106: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 63:rigid systems 60: 59:sparse graphs 56: 52: 41: 38: 33: 27: 23: 22:Moser spindle 18: 989: 983: 955: 945: 908: 902: 877:math/0703921 867: 861: 852: 819:math/0702129 809: 803: 793: 760:math/0307347 750: 744: 715: 693:(1): 58–72, 690: 686: 677: 636: 632: 623: 604: 600: 598: 582: 520:planar graph 516:Network flow 448: 413: 409: 402: 388:, including 201: 188: 167: 157: 153: 149: 141: 137: 135: 112: 91:Gerard Laman 86: 82: 78: 74: 70: 66: 55:Laman graphs 54: 51:graph theory 48: 39: 858:Streinu, I. 451:orientation 290:edges, and 67:Laman graph 1018:Categories 721:Haas, Ruth 615:References 398:arboricity 992:, Leipzig 918:0801.2404 669:122631794 629:Laman, G. 549:⁡ 490:⁡ 371:ℓ 368:− 339:ℓ 307:ℓ 278:ℓ 275:− 226:ℓ 164:Planarity 93:, of the 998:citation 785:38637747 198:Sparsity 109:Rigidity 77:, every 894:5477763 836:2392060 777:2131802 695:Bibcode 661:0269535 641:Bibcode 588:types: 972:  933:  892:  842:  834:  783:  775:  667:  659:  182:planar 53:, the 913:arXiv 890:S2CID 872:arXiv 840:S2CID 814:arXiv 781:S2CID 755:arXiv 665:S2CID 390:trees 172:is a 121:, in 1004:link 970:ISBN 931:ISBN 844:2826 205:and 35:The 20:The 960:doi 923:doi 882:doi 824:doi 810:308 765:doi 703:doi 649:doi 608:3,3 540:log 487:log 441:to 192:3,3 136:If 49:In 43:3,3 1020:: 1000:}} 996:{{ 968:, 929:, 921:, 888:, 880:, 868:30 866:, 838:, 832:MR 830:, 822:, 808:, 779:, 773:MR 771:, 763:, 751:31 749:, 739:; 735:; 727:; 701:, 689:, 663:, 657:MR 655:, 647:, 635:, 567:. 400:. 392:, 194:. 168:A 133:. 105:. 1006:) 962:: 940:. 925:: 915:: 897:. 884:: 874:: 847:. 826:: 816:: 788:. 767:: 757:: 710:. 705:: 697:: 691:7 672:. 651:: 643:: 637:4 605:K 555:) 552:n 544:3 536:n 533:( 530:O 498:) 493:n 480:2 476:/ 472:3 468:n 464:( 461:O 443:u 439:v 435:v 431:u 420:n 416:) 414:n 412:( 410:O 405:n 365:n 362:k 342:) 336:, 333:k 330:( 310:) 304:, 301:k 298:( 272:n 269:k 249:n 229:) 223:, 220:k 217:( 189:K 158:n 154:n 150:n 142:n 138:n 87:n 83:k 79:k 75:k 71:n 40:K

Index


Moser spindle
pointed pseudotriangulation

complete bipartite graph
graph theory
sparse graphs
rigid systems
Gerard Laman
University of Amsterdam
Geiringer–Laman theorem
Hilda Geiringer
rigidity theory
Euclidean plane
general position
Euclidean congruences
rigidity matroids
degrees of freedom
pointed pseudotriangulation
planar straight-line drawing
pseudotriangle
planar
utility graph
Lee & Streinu (2008)
Streinu & Theran (2009)
sparse graphs
trees
pseudoforests
arboricity
orientation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑