Knowledge

Hypergraph removal lemma

Source đź“ť

587:(partition hypergraphs into pseudorandom blocks) and a counting lemma (estimate the number of hypergraphs in an appropriate pseudorandom block). The key difficulty in the proof is to define the correct notion of hypergraph regularity. There were multiple attempts to define "partition" and "pseudorandom (regular) blocks" in a hypergraph, but none of them are able to give a strong counting lemma. The first correct definition of Szemerédi's regularity lemma for general hypergraphs is given by Rödl et al. 1507: 3925:
This method usually does not give a good quantitative bound, since the hidden constants in hypergraph removal lemma involves the inverse Ackermann function. For a better quantitive bound, Leng, Sah, and Sawhney proved that
1309: 4016: 1301: 1044: 1140: 904: 2951: 3102: 3311: 2649: 3519: 136: 3188: 2716: 1736: 1202: 3390: 2540: 2331: 2214: 2485: 2097: 4392: 3875: 83: 2874: 385: 4147: 3231: 3775: 2052:
arithmetic progression, then use graph removal lemma to show that this graph cannot have too many hyperedges, which in turn shows that the original subset cannot be too big.
1935: 295: 2983: 2572: 2010: 4256: 4173: 2276: 1665: 3010: 690: 473: 4288: 3561: 2159: 29: 5124:
Bergelson, Vitaly; Leibman, Alexander; Ziegler, Tamar (February 2011). "The shifted primes and the multidimensional Szemerédi and polynomial Van der Waerden theorems".
3920: 1897: 1776: 1550: 945: 569: 4089: 1809: 1641: 1603: 3718: 618: 4043: 2788: 2386: 806: 774: 722: 4226: 1841: 4308: 4193: 4118: 4063: 3798: 3681: 3661: 3641: 3621: 3601: 3581: 3430: 3410: 3331: 3142: 3122: 3030: 2828: 2808: 2756: 2736: 2505: 2426: 2406: 2354: 2296: 2254: 2234: 2179: 2117: 2050: 2030: 1955: 1570: 742: 658: 638: 533: 513: 493: 428: 405: 355: 335: 315: 256: 236: 216: 196: 176: 156: 24:
contains few copies of a given sub-hypergraph, then all of the copies can be eliminated by removing a small number of hyperedges. It is a generalization of the
816:
For example, we demonstrate an informal 3-hypergraph version of Szemerédi's regularity lemma, first given by Frankl and Rödl. Consider a partition of edges
4100:
The hypergraph removal lemma is used to prove the multidimensional Szemerédi theorem by J. Solymosi. The statement is that any for any finite subset
1502:{\displaystyle \left|d\left(G_{i}^{(2)},G_{j}^{(2)},G_{k}^{(2)}\right)-d\left(A_{i}^{(2)},A_{j}^{(2)},A_{k}^{(2)}\right)\right|\leq \varepsilon ,} 4397:
It is also used to prove the polynomial Szemerédi theorem, the finite field Szemerédi theorem and the finite abelian group Szemerédi theorem.
1851:
After proving the hypergraph regularity lemma, we can prove a hypergraph counting lemma. The rest of proof proceeds similarly to that of
1647:
We then subsequently define a regular partition as a partition in which the triples of parts that are not regular constitute at most an
4417: 3929: 1207: 950: 1049: 819: 2879: 3035: 3239: 2577: 3435: 88: 5175: 1844: 591: 584: 3147: 2654: 1673: 1145: 4821: 3336: 2510: 2301: 2184: 4570: 2431: 2058: 4317: 3803: 1738:
via a partition of the vertex set. As a result, we have the total data of hypergraph regularity as follows:
808:-hyperedges to regulate them, etc. In the end, we will reach a complex structure of regulating hyperedges. 50: 2833: 2032:. The high level idea of the proof is that, we construct a hypergraph from a subset without any length 594:, the partitions are performed on vertices (1-hyperedge) to regulate edges (2-hyperedge). However, for 360: 4123: 3193: 4893:
Czygrinow, Andrzej; Rödl, Vojtech (January 2000). "An Algorithmic Regularity Lemma for Hypergraphs".
3723: 1902: 261: 4412: 1958: 36: 2956: 2545: 1964: 4511:
Gowers, William (2007-11-01). "Hypergraph regularity and the multidimensional Szemerédi theorem".
4231: 4152: 2259: 1650: 2988: 663: 433: 4261: 3524: 2122: 5068:
Leng, James; Sah, Ashwin; Sawhney, Mehtaab (2024). "Improved Bounds for Szemerédi's Theorem".
3880: 1866: 1745: 1514: 909: 538: 5223: 4858:
Frieze, Alan; Kannan, Ravi (1999-02-01). "Quick Approximation to Matrices and Applications".
4068: 1781: 1608: 1575: 3686: 597: 5218: 4620: 4530: 4457: 4021: 2761: 2359: 779: 747: 695: 4198: 1817: 8: 4407: 1852: 580: 25: 4998:
Nagle, Brendan; Rödl, Vojtěch (2003-07-17). "Regularity properties for triple systems".
4928:
Chung, Fan R.K. (2007-07-05). "Regularity lemmas for hypergraphs and quasi-randomness".
4624: 4534: 4461: 32:. It was first proved by Nagle, Rödl, Schacht and Skokan and, independently, by Gowers. 5133: 5069: 4797: 4520: 4488: 4445: 4293: 4178: 4103: 4048: 3783: 3666: 3646: 3626: 3606: 3586: 3566: 3415: 3395: 3316: 3127: 3107: 3015: 2813: 2793: 2741: 2721: 2490: 2411: 2391: 2339: 2281: 2239: 2219: 2164: 2102: 2035: 2015: 1940: 1555: 727: 643: 623: 518: 498: 478: 413: 390: 340: 320: 300: 241: 221: 201: 181: 161: 141: 4743: 4710: 4651: 4608: 5194: 5151: 5106: 5050: 5015: 4980: 4945: 4910: 4875: 4840: 4789: 4748: 4730: 4691: 4656: 4638: 4589: 4584: 4565: 4546: 4493: 4475: 5184: 5143: 5098: 5042: 5007: 4972: 4937: 4902: 4867: 4830: 4779: 4738: 4722: 4683: 4646: 4628: 4579: 4538: 4483: 4465: 4311: 4542: 1843:
such that the graphs in (1) are extremely pseudorandom (in a fashion resembling
5147: 5033:
Frankl, Peter; Rödl, Vojtěch (2002-02-07). "Extremal problems on set systems".
5102: 4963:
Frankl, P.; Rödl, V. (December 1992). "The Uniformity Lemma for hypergraphs".
4906: 5212: 5198: 5155: 5110: 5054: 5019: 4984: 4949: 4914: 4879: 4844: 4793: 4734: 4695: 4642: 4593: 4550: 4479: 4633: 4470: 4941: 4835: 4816: 4752: 4726: 4687: 4660: 4497: 4444:
Rodl, V.; Nagle, B.; Skokan, J.; Schacht, M.; Kohayakawa, Y. (2005-05-26).
4871: 692:, and fail to find a counting lemma. The correct version has to partition 5189: 5170: 5089:
SOLYMOSI, J. (March 2004). "A Note on a Question of Erdős and Graham".
4976: 4801: 4446:"From The Cover: The hypergraph regularity method and its applications" 28:. The special case in which the graph is a tetrahedron is known as the 21: 5046: 5011: 4815:
Kohayakawa, Yoshiharu; Rödl, Vojtěch; Skokan, Jozef (February 2002).
4784: 4767: 640:-hyperedges using only 1-hyperedge, we will lose information of all 5074: 5138: 4525: 35:
The hypergraph removal lemma can be used to prove results such as
4011:{\displaystyle |A|\leq {\frac {N}{\exp(-(\log \log N)^{c_{k}})}}} 1296:{\displaystyle \left(A_{i}^{(2)},A_{j}^{(2)},A_{k}^{(2)}\right),} 1039:{\displaystyle \left(G_{i}^{(2)},G_{j}^{(2)},G_{k}^{(2)}\right).} 4674:
Chung, Fan R. K. (1990). "Quasi-random classes of hypergraphs".
1135:{\displaystyle \left(G_{i}^{(2)},G_{j}^{(2)},G_{k}^{(2)}\right)} 899:{\displaystyle E(K_{n})=G_{1}^{(2)}\cup \dots \cup G_{l}^{(2)}} 4817:"Hypergraphs, Quasi-randomness, and Conditions for Regularity" 574: 3521:. Therefore, by the hypergraph removal lemma, we can remove 2946:{\displaystyle \alpha _{i}=\sum _{j\neq i}(j-i)v_{j}\in A} 3097:{\displaystyle \alpha _{i+1}-\alpha _{i}=-\sum _{j}v_{j}} 5123: 3306:{\displaystyle (v_{j}\in V_{j})_{j\in \setminus \{i\}}} 2644:{\displaystyle (v_{j}\in V_{j})_{j\in \setminus \{i\}}} 811: 776:-hyperedges, we can go a level deeper and partition on 579:
The high level idea of the proof is similar to that of
4443: 3514:{\displaystyle {\frac {1}{k}}e(G)=O(N^{k-1})=o(N^{k})} 1142:
is "pseudorandom" in the sense that for all subgraphs
131:{\displaystyle \delta =\delta (\varepsilon ,r,m)>0} 5168: 4320: 4296: 4264: 4234: 4201: 4181: 4155: 4126: 4106: 4071: 4051: 4024: 3932: 3883: 3806: 3786: 3726: 3689: 3669: 3649: 3629: 3609: 3589: 3569: 3527: 3438: 3418: 3398: 3339: 3319: 3242: 3196: 3150: 3130: 3110: 3038: 3018: 2991: 2959: 2882: 2836: 2816: 2796: 2764: 2744: 2724: 2657: 2580: 2548: 2513: 2493: 2434: 2414: 2394: 2362: 2342: 2304: 2284: 2262: 2242: 2222: 2187: 2167: 2125: 2105: 2061: 2038: 2018: 1967: 1943: 1905: 1869: 1820: 1784: 1748: 1676: 1653: 1611: 1578: 1558: 1517: 1312: 1210: 1148: 1052: 953: 912: 822: 782: 750: 730: 698: 666: 646: 626: 600: 541: 521: 501: 481: 436: 416: 393: 363: 343: 323: 303: 264: 244: 224: 204: 184: 164: 144: 91: 53: 4814: 1670:In addition to this, we need to further regularize 1667:fraction of all triples of parts in the partition. 4386: 4302: 4282: 4250: 4220: 4187: 4167: 4141: 4112: 4083: 4057: 4037: 4010: 3914: 3869: 3792: 3769: 3712: 3675: 3655: 3635: 3615: 3595: 3575: 3555: 3513: 3424: 3404: 3384: 3325: 3305: 3225: 3182: 3136: 3116: 3096: 3024: 3004: 2977: 2945: 2868: 2822: 2802: 2782: 2750: 2730: 2710: 2643: 2566: 2534: 2499: 2479: 2420: 2400: 2380: 2348: 2325: 2290: 2270: 2248: 2228: 2208: 2173: 2153: 2111: 2091: 2044: 2024: 2004: 1949: 1929: 1891: 1835: 1803: 1770: 1730: 1659: 1635: 1597: 1564: 1544: 1501: 1295: 1196: 1134: 1038: 939: 898: 800: 768: 736: 716: 684: 652: 632: 612: 563: 527: 507: 487: 467: 422: 399: 379: 349: 329: 309: 289: 250: 230: 210: 190: 170: 150: 130: 77: 5169:Furstenberg, H.; Katznelson, Y. (December 1991). 3144:arithmetic progression, it must be the case that 410:An equivalent formulation is that, for any graph 317:, then it is possible to eliminate all copies of 47:The hypergraph removal lemma states that for any 5210: 4563: 5171:"A density version of the Hales-Jewett theorem" 4766:Chung, F. R. K.; Graham, R. L. (January 1991). 4613:Proceedings of the National Academy of Sciences 4450:Proceedings of the National Academy of Sciences 3183:{\displaystyle \alpha _{1}=\cdots =\alpha _{k}} 2711:{\displaystyle \sum _{j\neq i}(j-i)v_{j}\in A.} 1858: 5067: 4564:Haviland, Julie; Thomason, Andrew (May 1989). 3032:arithmetic progression with common difference 1731:{\displaystyle G_{1}^{(2)},\dots ,G_{l}^{(2)}} 1197:{\displaystyle A_{i}^{(2)}\subset G_{i}^{(2)}} 4892: 4607:Chung, F. R. K.; Graham, R. L. (1989-11-01). 2099:be a subset that does not contain any length 39:and the multi-dimensional SzemerĂ©di theorem. 4857: 4772:Journal of the American Mathematical Society 4381: 4327: 4290:, that is, a dilated and translated copy of 3298: 3292: 2636: 2630: 2086: 2068: 1924: 1906: 4765: 4708: 4606: 3385:{\displaystyle v_{i}=-\sum _{j\neq i}v_{j}} 2161:be a large enough integer. We can think of 5032: 4962: 4418:Problems involving arithmetic progressions 2535:{\displaystyle \mathbb {Z} /M\mathbb {Z} } 2326:{\displaystyle \mathbb {Z} /M\mathbb {Z} } 2209:{\displaystyle \mathbb {Z} /M\mathbb {Z} } 575:Proof idea of the hypergraph removal lemma 5188: 5137: 5073: 4997: 4834: 4783: 4742: 4650: 4632: 4583: 4524: 4487: 4469: 4129: 2528: 2515: 2480:{\displaystyle V_{1},V_{2},\ldots ,V_{k}} 2319: 2306: 2264: 2202: 2189: 744:-hyperedges. To gain more control of the 5091:Combinatorics, Probability and Computing 5088: 2092:{\displaystyle A\subset \{1,\ldots ,N\}} 4709:Chung, F. R. K.; Graham, R. L. (1990). 4387:{\displaystyle S=\{(0,0),(0,1),(1,0)\}} 947:there are a lot of triangles on top of 5211: 4510: 3870:{\displaystyle kM^{k-2}|A|=o(N^{k-1})} 4927: 4673: 1899:be the size of the largest subset of 1204:with not too few triangles on top of 78:{\displaystyle \varepsilon ,r,m>0} 4439: 4437: 4435: 4433: 2574:, we add a hyperedge among vertices 812:Proof idea for 3-uniform hypergraphs 2869:{\displaystyle v_{1},\ldots ,v_{k}} 583:. We prove a hypergraph version of 198:vertices the following is true: if 13: 5035:Random Structures & Algorithms 5000:Random Structures & Algorithms 4930:Random Structures & Algorithms 3333:that this edge lies in by finding 14: 5235: 4430: 3563:edges to eliminate all copies of 3289: 2627: 724:-hyperedges in order to regulate 495:, we can eliminate all copies of 380:{\displaystyle \varepsilon n^{r}} 258:-uniform hypergraph with at most 4715:Random Structures and Algorithms 4676:Random Structures and Algorithms 4142:{\displaystyle \mathbb {Z} ^{r}} 3226:{\displaystyle \sum _{j}v_{j}=0} 660:-hyperedges in the middle where 5162: 5117: 5082: 5061: 5026: 4991: 4956: 4921: 4886: 4822:Journal of Combinatorial Theory 4094: 3770:{\displaystyle e(G)=o(N^{k-1})} 3313:, we can find a unique copy of 2810:contains an isomorphic copy of 2507:element vertex sets indexed by 1937:that does not contain a length 1930:{\displaystyle \{1,\ldots ,N\}} 290:{\displaystyle \delta n^{v(H)}} 5176:Journal d'Analyse MathĂ©matique 4851: 4808: 4759: 4702: 4667: 4600: 4557: 4504: 4378: 4366: 4360: 4348: 4342: 4330: 4258:contains a subset of the form 4209: 4202: 4002: 3986: 3967: 3961: 3942: 3934: 3909: 3903: 3893: 3885: 3864: 3845: 3835: 3827: 3764: 3745: 3736: 3730: 3699: 3693: 3550: 3531: 3508: 3495: 3486: 3467: 3458: 3452: 3286: 3280: 3270: 3243: 2924: 2912: 2777: 2765: 2686: 2674: 2624: 2618: 2608: 2581: 2375: 2363: 2278:, it also doesn't have length 1999: 1993: 1984: 1978: 1886: 1880: 1830: 1824: 1796: 1790: 1765: 1752: 1723: 1717: 1693: 1687: 1630: 1612: 1605:among all triangles on top of 1590: 1584: 1539: 1521: 1475: 1469: 1451: 1445: 1427: 1421: 1390: 1384: 1366: 1360: 1342: 1336: 1280: 1274: 1256: 1250: 1232: 1226: 1189: 1183: 1165: 1159: 1122: 1116: 1098: 1092: 1074: 1068: 1023: 1017: 999: 993: 975: 969: 931: 913: 891: 885: 861: 855: 839: 826: 795: 783: 763: 751: 711: 699: 558: 545: 462: 457: 451: 440: 282: 276: 119: 101: 1: 4423: 3683:, we need to remove at least 3643:, to eliminate all copies of 2978:{\displaystyle 1\leq i\leq j} 2567:{\displaystyle 1\leq i\leq k} 2005:{\displaystyle r_{k}(N)=o(N)} 4585:10.1016/0012-365x(89)90093-9 4251:{\displaystyle \delta n^{r}} 4195:large enough, any subset of 4168:{\displaystyle \delta >0} 3780:The number of hyperedges in 2271:{\displaystyle \mathbb {Z} } 2119:arithmetic progression. Let 1859:Proof of SzemerĂ©di's theorem 1845:SzemerĂ©di's regularity lemma 1660:{\displaystyle \varepsilon } 592:SzemerĂ©di's regularity lemma 585:SzemerĂ©di's regularity lemma 42: 7: 5126:Comptes Rendus MathĂ©matique 4566:"Pseudo-random hypergraphs" 4543:10.4007/annals.2007.166.897 4401: 4065:. It is the best bound for 3603:. Since every hyperedge of 3005:{\displaystyle \alpha _{i}} 1811:sits pseudorandomly on top; 906:such that for most triples 685:{\displaystyle 1<j<k} 468:{\displaystyle o(n^{v(H)})} 10: 5240: 5148:10.1016/j.crma.2010.11.028 4768:"Quasi-Random Set Systems" 4711:"Quasi-random hypergraphs" 4609:"Quasi-random hypergraphs" 4283:{\displaystyle a\cdot S+d} 3556:{\displaystyle o(N^{k-1})} 3392:. The number of copies of 2298:arithmetic progression in 2256:arithmetic progression in 2154:{\displaystyle M=k^{2}N+1} 1552:denotes the proportion of 5103:10.1017/s0963548303005959 4907:10.1137/s0097539799351729 4895:SIAM Journal on Computing 3236:Thus, for each hyperedge 30:tetrahedron removal lemma 4965:Graphs and Combinatorics 3915:{\displaystyle |A|=o(N)} 2790:-uniform hypergraph. If 1957:arithmetic progression. 1892:{\displaystyle r_{k}(N)} 1771:{\displaystyle E(K_{n})} 1545:{\displaystyle d(X,Y,Z)} 940:{\displaystyle (i,j,k),} 620:, if we simply regulate 564:{\displaystyle o(n^{r})} 297:subgraphs isomorphic to 18:hypergraph removal lemma 4634:10.1073/pnas.86.21.8175 4471:10.1073/pnas.0502771102 4314:is a special case when 4084:{\displaystyle k\geq 5} 3877:, which concludes that 3623:is in a unique copy of 1804:{\displaystyle G^{(3)}} 1636:{\displaystyle (X,Y,Z)} 1598:{\displaystyle G^{(3)}} 4942:10.1002/rsa.3240020208 4836:10.1006/jcta.2001.3217 4727:10.1002/rsa.3240010108 4688:10.1002/rsa.3240010401 4388: 4304: 4284: 4252: 4222: 4189: 4169: 4143: 4114: 4085: 4059: 4039: 4012: 3916: 3871: 3794: 3771: 3714: 3713:{\displaystyle e(G)/k} 3677: 3657: 3637: 3617: 3597: 3577: 3557: 3515: 3426: 3406: 3386: 3327: 3307: 3227: 3184: 3138: 3118: 3098: 3026: 3006: 2979: 2947: 2870: 2824: 2804: 2784: 2752: 2732: 2712: 2645: 2568: 2536: 2501: 2481: 2422: 2402: 2382: 2350: 2327: 2292: 2272: 2250: 2230: 2210: 2175: 2155: 2113: 2093: 2046: 2026: 2006: 1951: 1931: 1893: 1837: 1805: 1778:into graphs such that 1772: 1732: 1661: 1637: 1599: 1572:-uniform hyperedge in 1566: 1546: 1503: 1297: 1198: 1136: 1040: 941: 900: 802: 770: 738: 718: 686: 654: 634: 614: 613:{\displaystyle k>2} 565: 529: 509: 489: 469: 424: 401: 381: 351: 331: 311: 291: 252: 232: 212: 192: 172: 152: 132: 79: 4872:10.1007/s004930050052 4513:Annals of Mathematics 4389: 4305: 4285: 4253: 4223: 4190: 4170: 4144: 4115: 4086: 4060: 4040: 4038:{\displaystyle c_{k}} 4013: 3917: 3872: 3795: 3772: 3715: 3678: 3658: 3638: 3618: 3598: 3578: 3558: 3516: 3427: 3407: 3387: 3328: 3308: 3228: 3185: 3139: 3119: 3099: 3027: 3007: 2985:. However, note that 2980: 2948: 2871: 2825: 2805: 2785: 2783:{\displaystyle (k-1)} 2753: 2733: 2713: 2646: 2569: 2537: 2502: 2482: 2423: 2403: 2383: 2381:{\displaystyle (k-1)} 2351: 2328: 2293: 2273: 2251: 2231: 2211: 2176: 2156: 2114: 2094: 2047: 2027: 2007: 1952: 1932: 1894: 1838: 1806: 1773: 1733: 1662: 1638: 1600: 1567: 1547: 1504: 1298: 1199: 1137: 1041: 942: 901: 803: 801:{\displaystyle (k-2)} 771: 769:{\displaystyle (k-1)} 739: 719: 717:{\displaystyle (k-1)} 687: 655: 635: 615: 566: 530: 510: 490: 470: 425: 402: 382: 352: 332: 312: 292: 253: 233: 213: 193: 173: 153: 133: 80: 16:In graph theory, the 4571:Discrete Mathematics 4318: 4294: 4262: 4232: 4221:{\displaystyle ^{r}} 4199: 4179: 4153: 4124: 4104: 4069: 4049: 4022: 3930: 3881: 3804: 3784: 3724: 3687: 3667: 3647: 3627: 3607: 3587: 3567: 3525: 3436: 3416: 3396: 3337: 3317: 3240: 3194: 3148: 3128: 3108: 3036: 3016: 2989: 2957: 2880: 2834: 2814: 2794: 2762: 2742: 2722: 2655: 2578: 2546: 2511: 2491: 2432: 2412: 2392: 2388:-uniform hypergraph 2360: 2340: 2336:We will construct a 2302: 2282: 2260: 2240: 2236:doesn't have length 2220: 2185: 2165: 2123: 2103: 2059: 2036: 2016: 1965: 1941: 1903: 1867: 1836:{\displaystyle V(G)} 1818: 1782: 1746: 1674: 1651: 1609: 1576: 1556: 1515: 1310: 1208: 1146: 1050: 951: 910: 820: 780: 748: 728: 696: 664: 644: 624: 598: 539: 519: 499: 479: 434: 414: 391: 361: 357:by removing at most 341: 321: 301: 262: 242: 222: 202: 182: 162: 158:-uniform hypergraph 142: 89: 51: 4625:1989PNAS...86.8175C 4535:2007arXiv0710.3032G 4462:2005PNAS..102.8109R 4413:SzemerĂ©di's theorem 4408:Graph removal lemma 2487:, all of which are 1959:SzemerĂ©di's theorem 1853:Graph removal lemma 1727: 1697: 1479: 1455: 1431: 1394: 1370: 1346: 1284: 1260: 1236: 1193: 1169: 1126: 1102: 1078: 1027: 1003: 979: 895: 865: 581:graph removal lemma 37:SzemerĂ©di's theorem 26:graph removal lemma 20:states that when a 5190:10.1007/bf03041066 4977:10.1007/bf02351586 4384: 4300: 4280: 4248: 4218: 4185: 4165: 4139: 4110: 4081: 4055: 4035: 4018:for some constant 4008: 3912: 3867: 3790: 3767: 3710: 3673: 3653: 3633: 3613: 3593: 3573: 3553: 3511: 3422: 3402: 3382: 3371: 3323: 3303: 3223: 3206: 3180: 3134: 3114: 3094: 3083: 3022: 3002: 2975: 2943: 2911: 2866: 2820: 2800: 2780: 2748: 2728: 2708: 2673: 2641: 2564: 2532: 2497: 2477: 2418: 2398: 2378: 2346: 2323: 2288: 2268: 2246: 2226: 2206: 2171: 2151: 2109: 2089: 2042: 2022: 2002: 1947: 1927: 1889: 1833: 1801: 1768: 1728: 1707: 1677: 1657: 1633: 1595: 1562: 1542: 1499: 1459: 1435: 1411: 1374: 1350: 1326: 1293: 1264: 1240: 1216: 1194: 1173: 1149: 1132: 1106: 1082: 1058: 1036: 1007: 983: 959: 937: 896: 875: 845: 798: 766: 734: 714: 682: 650: 630: 610: 561: 525: 505: 485: 465: 420: 397: 377: 347: 327: 307: 287: 248: 228: 208: 188: 168: 148: 138:such that for any 128: 75: 5047:10.1002/rsa.10017 5012:10.1002/rsa.10094 4619:(21): 8175–8177. 4456:(23): 8109–8113. 4303:{\displaystyle S} 4228:of size at least 4188:{\displaystyle n} 4113:{\displaystyle S} 4058:{\displaystyle k} 4006: 3793:{\displaystyle G} 3676:{\displaystyle G} 3656:{\displaystyle H} 3636:{\displaystyle H} 3616:{\displaystyle G} 3596:{\displaystyle G} 3576:{\displaystyle H} 3447: 3425:{\displaystyle G} 3405:{\displaystyle H} 3356: 3326:{\displaystyle H} 3197: 3137:{\displaystyle k} 3117:{\displaystyle A} 3074: 3025:{\displaystyle k} 2896: 2823:{\displaystyle H} 2803:{\displaystyle G} 2751:{\displaystyle k} 2731:{\displaystyle H} 2658: 2500:{\displaystyle M} 2421:{\displaystyle A} 2401:{\displaystyle G} 2349:{\displaystyle k} 2291:{\displaystyle k} 2249:{\displaystyle k} 2229:{\displaystyle A} 2174:{\displaystyle A} 2112:{\displaystyle k} 2045:{\displaystyle k} 2025:{\displaystyle k} 2012:for any constant 1950:{\displaystyle k} 1565:{\displaystyle 3} 737:{\displaystyle k} 653:{\displaystyle j} 633:{\displaystyle k} 528:{\displaystyle G} 508:{\displaystyle H} 488:{\displaystyle H} 423:{\displaystyle G} 400:{\displaystyle G} 350:{\displaystyle G} 330:{\displaystyle H} 310:{\displaystyle H} 251:{\displaystyle r} 231:{\displaystyle n} 211:{\displaystyle G} 191:{\displaystyle m} 171:{\displaystyle H} 151:{\displaystyle r} 5231: 5203: 5202: 5192: 5166: 5160: 5159: 5141: 5132:(3–4): 123–125. 5121: 5115: 5114: 5086: 5080: 5079: 5077: 5065: 5059: 5058: 5030: 5024: 5023: 4995: 4989: 4988: 4960: 4954: 4953: 4925: 4919: 4918: 4901:(4): 1041–1066. 4890: 4884: 4883: 4855: 4849: 4848: 4838: 4812: 4806: 4805: 4787: 4763: 4757: 4756: 4746: 4706: 4700: 4699: 4671: 4665: 4664: 4654: 4636: 4604: 4598: 4597: 4587: 4578:(1–3): 255–278. 4561: 4555: 4554: 4528: 4508: 4502: 4501: 4491: 4473: 4441: 4393: 4391: 4390: 4385: 4309: 4307: 4306: 4301: 4289: 4287: 4286: 4281: 4257: 4255: 4254: 4249: 4247: 4246: 4227: 4225: 4224: 4219: 4217: 4216: 4194: 4192: 4191: 4186: 4174: 4172: 4171: 4166: 4148: 4146: 4145: 4140: 4138: 4137: 4132: 4119: 4117: 4116: 4111: 4090: 4088: 4087: 4082: 4064: 4062: 4061: 4056: 4044: 4042: 4041: 4036: 4034: 4033: 4017: 4015: 4014: 4009: 4007: 4005: 4001: 4000: 3999: 3998: 3950: 3945: 3937: 3921: 3919: 3918: 3913: 3896: 3888: 3876: 3874: 3873: 3868: 3863: 3862: 3838: 3830: 3825: 3824: 3799: 3797: 3796: 3791: 3776: 3774: 3773: 3768: 3763: 3762: 3719: 3717: 3716: 3711: 3706: 3682: 3680: 3679: 3674: 3662: 3660: 3659: 3654: 3642: 3640: 3639: 3634: 3622: 3620: 3619: 3614: 3602: 3600: 3599: 3594: 3582: 3580: 3579: 3574: 3562: 3560: 3559: 3554: 3549: 3548: 3520: 3518: 3517: 3512: 3507: 3506: 3485: 3484: 3448: 3440: 3431: 3429: 3428: 3423: 3411: 3409: 3408: 3403: 3391: 3389: 3388: 3383: 3381: 3380: 3370: 3349: 3348: 3332: 3330: 3329: 3324: 3312: 3310: 3309: 3304: 3302: 3301: 3268: 3267: 3255: 3254: 3232: 3230: 3229: 3224: 3216: 3215: 3205: 3189: 3187: 3186: 3181: 3179: 3178: 3160: 3159: 3143: 3141: 3140: 3135: 3123: 3121: 3120: 3115: 3103: 3101: 3100: 3095: 3093: 3092: 3082: 3067: 3066: 3054: 3053: 3031: 3029: 3028: 3023: 3011: 3009: 3008: 3003: 3001: 3000: 2984: 2982: 2981: 2976: 2952: 2950: 2949: 2944: 2936: 2935: 2910: 2892: 2891: 2875: 2873: 2872: 2867: 2865: 2864: 2846: 2845: 2829: 2827: 2826: 2821: 2809: 2807: 2806: 2801: 2789: 2787: 2786: 2781: 2757: 2755: 2754: 2749: 2738:be the complete 2737: 2735: 2734: 2729: 2717: 2715: 2714: 2709: 2698: 2697: 2672: 2650: 2648: 2647: 2642: 2640: 2639: 2606: 2605: 2593: 2592: 2573: 2571: 2570: 2565: 2541: 2539: 2538: 2533: 2531: 2523: 2518: 2506: 2504: 2503: 2498: 2486: 2484: 2483: 2478: 2476: 2475: 2457: 2456: 2444: 2443: 2427: 2425: 2424: 2419: 2407: 2405: 2404: 2399: 2387: 2385: 2384: 2379: 2355: 2353: 2352: 2347: 2332: 2330: 2329: 2324: 2322: 2314: 2309: 2297: 2295: 2294: 2289: 2277: 2275: 2274: 2269: 2267: 2255: 2253: 2252: 2247: 2235: 2233: 2232: 2227: 2215: 2213: 2212: 2207: 2205: 2197: 2192: 2180: 2178: 2177: 2172: 2160: 2158: 2157: 2152: 2141: 2140: 2118: 2116: 2115: 2110: 2098: 2096: 2095: 2090: 2051: 2049: 2048: 2043: 2031: 2029: 2028: 2023: 2011: 2009: 2008: 2003: 1977: 1976: 1956: 1954: 1953: 1948: 1936: 1934: 1933: 1928: 1898: 1896: 1895: 1890: 1879: 1878: 1842: 1840: 1839: 1834: 1810: 1808: 1807: 1802: 1800: 1799: 1777: 1775: 1774: 1769: 1764: 1763: 1737: 1735: 1734: 1729: 1726: 1715: 1696: 1685: 1666: 1664: 1663: 1658: 1642: 1640: 1639: 1634: 1604: 1602: 1601: 1596: 1594: 1593: 1571: 1569: 1568: 1563: 1551: 1549: 1548: 1543: 1508: 1506: 1505: 1500: 1489: 1485: 1484: 1480: 1478: 1467: 1454: 1443: 1430: 1419: 1399: 1395: 1393: 1382: 1369: 1358: 1345: 1334: 1302: 1300: 1299: 1294: 1289: 1285: 1283: 1272: 1259: 1248: 1235: 1224: 1203: 1201: 1200: 1195: 1192: 1181: 1168: 1157: 1141: 1139: 1138: 1133: 1131: 1127: 1125: 1114: 1101: 1090: 1077: 1066: 1045: 1043: 1042: 1037: 1032: 1028: 1026: 1015: 1002: 991: 978: 967: 946: 944: 943: 938: 905: 903: 902: 897: 894: 883: 864: 853: 838: 837: 807: 805: 804: 799: 775: 773: 772: 767: 743: 741: 740: 735: 723: 721: 720: 715: 691: 689: 688: 683: 659: 657: 656: 651: 639: 637: 636: 631: 619: 617: 616: 611: 570: 568: 567: 562: 557: 556: 534: 532: 531: 526: 514: 512: 511: 506: 494: 492: 491: 486: 474: 472: 471: 466: 461: 460: 429: 427: 426: 421: 406: 404: 403: 398: 387:hyperedges from 386: 384: 383: 378: 376: 375: 356: 354: 353: 348: 336: 334: 333: 328: 316: 314: 313: 308: 296: 294: 293: 288: 286: 285: 257: 255: 254: 249: 237: 235: 234: 229: 217: 215: 214: 209: 197: 195: 194: 189: 177: 175: 174: 169: 157: 155: 154: 149: 137: 135: 134: 129: 84: 82: 81: 76: 5239: 5238: 5234: 5233: 5232: 5230: 5229: 5228: 5209: 5208: 5207: 5206: 5167: 5163: 5122: 5118: 5087: 5083: 5066: 5062: 5031: 5027: 4996: 4992: 4961: 4957: 4926: 4922: 4891: 4887: 4856: 4852: 4813: 4809: 4785:10.2307/2939258 4764: 4760: 4707: 4703: 4672: 4668: 4605: 4601: 4562: 4558: 4509: 4505: 4442: 4431: 4426: 4404: 4319: 4316: 4315: 4312:Corners theorem 4295: 4292: 4291: 4263: 4260: 4259: 4242: 4238: 4233: 4230: 4229: 4212: 4208: 4200: 4197: 4196: 4180: 4177: 4176: 4154: 4151: 4150: 4133: 4128: 4127: 4125: 4122: 4121: 4105: 4102: 4101: 4097: 4070: 4067: 4066: 4050: 4047: 4046: 4029: 4025: 4023: 4020: 4019: 3994: 3990: 3989: 3985: 3954: 3949: 3941: 3933: 3931: 3928: 3927: 3892: 3884: 3882: 3879: 3878: 3852: 3848: 3834: 3826: 3814: 3810: 3805: 3802: 3801: 3785: 3782: 3781: 3752: 3748: 3725: 3722: 3721: 3702: 3688: 3685: 3684: 3668: 3665: 3664: 3648: 3645: 3644: 3628: 3625: 3624: 3608: 3605: 3604: 3588: 3585: 3584: 3568: 3565: 3564: 3538: 3534: 3526: 3523: 3522: 3502: 3498: 3474: 3470: 3439: 3437: 3434: 3433: 3417: 3414: 3413: 3397: 3394: 3393: 3376: 3372: 3360: 3344: 3340: 3338: 3335: 3334: 3318: 3315: 3314: 3273: 3269: 3263: 3259: 3250: 3246: 3241: 3238: 3237: 3211: 3207: 3201: 3195: 3192: 3191: 3174: 3170: 3155: 3151: 3149: 3146: 3145: 3129: 3126: 3125: 3109: 3106: 3105: 3088: 3084: 3078: 3062: 3058: 3043: 3039: 3037: 3034: 3033: 3017: 3014: 3013: 2996: 2992: 2990: 2987: 2986: 2958: 2955: 2954: 2931: 2927: 2900: 2887: 2883: 2881: 2878: 2877: 2860: 2856: 2841: 2837: 2835: 2832: 2831: 2815: 2812: 2811: 2795: 2792: 2791: 2763: 2760: 2759: 2743: 2740: 2739: 2723: 2720: 2719: 2693: 2689: 2662: 2656: 2653: 2652: 2651:if and only if 2611: 2607: 2601: 2597: 2588: 2584: 2579: 2576: 2575: 2547: 2544: 2543: 2527: 2519: 2514: 2512: 2509: 2508: 2492: 2489: 2488: 2471: 2467: 2452: 2448: 2439: 2435: 2433: 2430: 2429: 2413: 2410: 2409: 2393: 2390: 2389: 2361: 2358: 2357: 2341: 2338: 2337: 2318: 2310: 2305: 2303: 2300: 2299: 2283: 2280: 2279: 2263: 2261: 2258: 2257: 2241: 2238: 2237: 2221: 2218: 2217: 2201: 2193: 2188: 2186: 2183: 2182: 2181:as a subset of 2166: 2163: 2162: 2136: 2132: 2124: 2121: 2120: 2104: 2101: 2100: 2060: 2057: 2056: 2037: 2034: 2033: 2017: 2014: 2013: 1972: 1968: 1966: 1963: 1962: 1942: 1939: 1938: 1904: 1901: 1900: 1874: 1870: 1868: 1865: 1864: 1861: 1819: 1816: 1815: 1814:a partition of 1789: 1785: 1783: 1780: 1779: 1759: 1755: 1747: 1744: 1743: 1742:a partition of 1716: 1711: 1686: 1681: 1675: 1672: 1671: 1652: 1649: 1648: 1610: 1607: 1606: 1583: 1579: 1577: 1574: 1573: 1557: 1554: 1553: 1516: 1513: 1512: 1468: 1463: 1444: 1439: 1420: 1415: 1410: 1406: 1383: 1378: 1359: 1354: 1335: 1330: 1325: 1321: 1317: 1313: 1311: 1308: 1307: 1273: 1268: 1249: 1244: 1225: 1220: 1215: 1211: 1209: 1206: 1205: 1182: 1177: 1158: 1153: 1147: 1144: 1143: 1115: 1110: 1091: 1086: 1067: 1062: 1057: 1053: 1051: 1048: 1047: 1016: 1011: 992: 987: 968: 963: 958: 954: 952: 949: 948: 911: 908: 907: 884: 879: 854: 849: 833: 829: 821: 818: 817: 814: 781: 778: 777: 749: 746: 745: 729: 726: 725: 697: 694: 693: 665: 662: 661: 645: 642: 641: 625: 622: 621: 599: 596: 595: 577: 552: 548: 540: 537: 536: 520: 517: 516: 500: 497: 496: 480: 477: 476: 447: 443: 435: 432: 431: 415: 412: 411: 392: 389: 388: 371: 367: 362: 359: 358: 342: 339: 338: 322: 319: 318: 302: 299: 298: 272: 268: 263: 260: 259: 243: 240: 239: 223: 220: 219: 203: 200: 199: 183: 180: 179: 163: 160: 159: 143: 140: 139: 90: 87: 86: 85:, there exists 52: 49: 48: 45: 12: 11: 5: 5237: 5227: 5226: 5221: 5205: 5204: 5161: 5116: 5097:(2): 263–267. 5081: 5060: 5041:(2): 131–164. 5025: 5006:(3): 264–332. 4990: 4971:(4): 309–312. 4955: 4936:(2): 241–252. 4920: 4885: 4866:(2): 175–220. 4850: 4829:(2): 307–352. 4807: 4758: 4721:(1): 105–124. 4701: 4682:(4): 363–382. 4666: 4599: 4556: 4519:(3): 897–946. 4503: 4428: 4427: 4425: 4422: 4421: 4420: 4415: 4410: 4403: 4400: 4399: 4398: 4395: 4383: 4380: 4377: 4374: 4371: 4368: 4365: 4362: 4359: 4356: 4353: 4350: 4347: 4344: 4341: 4338: 4335: 4332: 4329: 4326: 4323: 4299: 4279: 4276: 4273: 4270: 4267: 4245: 4241: 4237: 4215: 4211: 4207: 4204: 4184: 4164: 4161: 4158: 4136: 4131: 4109: 4096: 4093: 4080: 4077: 4074: 4054: 4032: 4028: 4004: 3997: 3993: 3988: 3984: 3981: 3978: 3975: 3972: 3969: 3966: 3963: 3960: 3957: 3953: 3948: 3944: 3940: 3936: 3911: 3908: 3905: 3902: 3899: 3895: 3891: 3887: 3866: 3861: 3858: 3855: 3851: 3847: 3844: 3841: 3837: 3833: 3829: 3823: 3820: 3817: 3813: 3809: 3789: 3766: 3761: 3758: 3755: 3751: 3747: 3744: 3741: 3738: 3735: 3732: 3729: 3709: 3705: 3701: 3698: 3695: 3692: 3672: 3652: 3632: 3612: 3592: 3572: 3552: 3547: 3544: 3541: 3537: 3533: 3530: 3510: 3505: 3501: 3497: 3494: 3491: 3488: 3483: 3480: 3477: 3473: 3469: 3466: 3463: 3460: 3457: 3454: 3451: 3446: 3443: 3421: 3401: 3379: 3375: 3369: 3366: 3363: 3359: 3355: 3352: 3347: 3343: 3322: 3300: 3297: 3294: 3291: 3288: 3285: 3282: 3279: 3276: 3272: 3266: 3262: 3258: 3253: 3249: 3245: 3222: 3219: 3214: 3210: 3204: 3200: 3177: 3173: 3169: 3166: 3163: 3158: 3154: 3133: 3124:has no length 3113: 3091: 3087: 3081: 3077: 3073: 3070: 3065: 3061: 3057: 3052: 3049: 3046: 3042: 3021: 2999: 2995: 2974: 2971: 2968: 2965: 2962: 2942: 2939: 2934: 2930: 2926: 2923: 2920: 2917: 2914: 2909: 2906: 2903: 2899: 2895: 2890: 2886: 2863: 2859: 2855: 2852: 2849: 2844: 2840: 2830:with vertices 2819: 2799: 2779: 2776: 2773: 2770: 2767: 2747: 2727: 2707: 2704: 2701: 2696: 2692: 2688: 2685: 2682: 2679: 2676: 2671: 2668: 2665: 2661: 2638: 2635: 2632: 2629: 2626: 2623: 2620: 2617: 2614: 2610: 2604: 2600: 2596: 2591: 2587: 2583: 2563: 2560: 2557: 2554: 2551: 2530: 2526: 2522: 2517: 2496: 2474: 2470: 2466: 2463: 2460: 2455: 2451: 2447: 2442: 2438: 2417: 2397: 2377: 2374: 2371: 2368: 2365: 2345: 2321: 2317: 2313: 2308: 2287: 2266: 2245: 2225: 2216:. Clearly, if 2204: 2200: 2196: 2191: 2170: 2150: 2147: 2144: 2139: 2135: 2131: 2128: 2108: 2088: 2085: 2082: 2079: 2076: 2073: 2070: 2067: 2064: 2041: 2021: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1980: 1975: 1971: 1946: 1926: 1923: 1920: 1917: 1914: 1911: 1908: 1888: 1885: 1882: 1877: 1873: 1860: 1857: 1849: 1848: 1832: 1829: 1826: 1823: 1812: 1798: 1795: 1792: 1788: 1767: 1762: 1758: 1754: 1751: 1725: 1722: 1719: 1714: 1710: 1706: 1703: 1700: 1695: 1692: 1689: 1684: 1680: 1656: 1645: 1644: 1632: 1629: 1626: 1623: 1620: 1617: 1614: 1592: 1589: 1586: 1582: 1561: 1541: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1509: 1498: 1495: 1492: 1488: 1483: 1477: 1474: 1471: 1466: 1462: 1458: 1453: 1450: 1447: 1442: 1438: 1434: 1429: 1426: 1423: 1418: 1414: 1409: 1405: 1402: 1398: 1392: 1389: 1386: 1381: 1377: 1373: 1368: 1365: 1362: 1357: 1353: 1349: 1344: 1341: 1338: 1333: 1329: 1324: 1320: 1316: 1292: 1288: 1282: 1279: 1276: 1271: 1267: 1263: 1258: 1255: 1252: 1247: 1243: 1239: 1234: 1231: 1228: 1223: 1219: 1214: 1191: 1188: 1185: 1180: 1176: 1172: 1167: 1164: 1161: 1156: 1152: 1130: 1124: 1121: 1118: 1113: 1109: 1105: 1100: 1097: 1094: 1089: 1085: 1081: 1076: 1073: 1070: 1065: 1061: 1056: 1035: 1031: 1025: 1022: 1019: 1014: 1010: 1006: 1001: 998: 995: 990: 986: 982: 977: 974: 971: 966: 962: 957: 936: 933: 930: 927: 924: 921: 918: 915: 893: 890: 887: 882: 878: 874: 871: 868: 863: 860: 857: 852: 848: 844: 841: 836: 832: 828: 825: 813: 810: 797: 794: 791: 788: 785: 765: 762: 759: 756: 753: 733: 713: 710: 707: 704: 701: 681: 678: 675: 672: 669: 649: 629: 609: 606: 603: 576: 573: 560: 555: 551: 547: 544: 524: 504: 484: 464: 459: 456: 453: 450: 446: 442: 439: 419: 396: 374: 370: 366: 346: 326: 306: 284: 281: 278: 275: 271: 267: 247: 227: 207: 187: 167: 147: 127: 124: 121: 118: 115: 112: 109: 106: 103: 100: 97: 94: 74: 71: 68: 65: 62: 59: 56: 44: 41: 9: 6: 4: 3: 2: 5236: 5225: 5222: 5220: 5217: 5216: 5214: 5200: 5196: 5191: 5186: 5183:(1): 64–119. 5182: 5178: 5177: 5172: 5165: 5157: 5153: 5149: 5145: 5140: 5135: 5131: 5127: 5120: 5112: 5108: 5104: 5100: 5096: 5092: 5085: 5076: 5071: 5064: 5056: 5052: 5048: 5044: 5040: 5036: 5029: 5021: 5017: 5013: 5009: 5005: 5001: 4994: 4986: 4982: 4978: 4974: 4970: 4966: 4959: 4951: 4947: 4943: 4939: 4935: 4931: 4924: 4916: 4912: 4908: 4904: 4900: 4896: 4889: 4881: 4877: 4873: 4869: 4865: 4861: 4860:Combinatorica 4854: 4846: 4842: 4837: 4832: 4828: 4824: 4823: 4818: 4811: 4803: 4799: 4795: 4791: 4786: 4781: 4777: 4773: 4769: 4762: 4754: 4750: 4745: 4740: 4736: 4732: 4728: 4724: 4720: 4716: 4712: 4705: 4697: 4693: 4689: 4685: 4681: 4677: 4670: 4662: 4658: 4653: 4648: 4644: 4640: 4635: 4630: 4626: 4622: 4618: 4614: 4610: 4603: 4595: 4591: 4586: 4581: 4577: 4573: 4572: 4567: 4560: 4552: 4548: 4544: 4540: 4536: 4532: 4527: 4522: 4518: 4514: 4507: 4499: 4495: 4490: 4485: 4481: 4477: 4472: 4467: 4463: 4459: 4455: 4451: 4447: 4440: 4438: 4436: 4434: 4429: 4419: 4416: 4414: 4411: 4409: 4406: 4405: 4396: 4375: 4372: 4369: 4363: 4357: 4354: 4351: 4345: 4339: 4336: 4333: 4324: 4321: 4313: 4297: 4277: 4274: 4271: 4268: 4265: 4243: 4239: 4235: 4213: 4205: 4182: 4162: 4159: 4156: 4134: 4107: 4099: 4098: 4092: 4078: 4075: 4072: 4052: 4045:depending on 4030: 4026: 3995: 3991: 3982: 3979: 3976: 3973: 3970: 3964: 3958: 3955: 3951: 3946: 3938: 3923: 3906: 3900: 3897: 3889: 3859: 3856: 3853: 3849: 3842: 3839: 3831: 3821: 3818: 3815: 3811: 3807: 3787: 3778: 3759: 3756: 3753: 3749: 3742: 3739: 3733: 3727: 3720:edges. Thus, 3707: 3703: 3696: 3690: 3670: 3650: 3630: 3610: 3590: 3570: 3545: 3542: 3539: 3535: 3528: 3503: 3499: 3492: 3489: 3481: 3478: 3475: 3471: 3464: 3461: 3455: 3449: 3444: 3441: 3419: 3399: 3377: 3373: 3367: 3364: 3361: 3357: 3353: 3350: 3345: 3341: 3320: 3295: 3283: 3277: 3274: 3264: 3260: 3256: 3251: 3247: 3234: 3220: 3217: 3212: 3208: 3202: 3198: 3175: 3171: 3167: 3164: 3161: 3156: 3152: 3131: 3111: 3089: 3085: 3079: 3075: 3071: 3068: 3063: 3059: 3055: 3050: 3047: 3044: 3040: 3019: 2997: 2993: 2972: 2969: 2966: 2963: 2960: 2940: 2937: 2932: 2928: 2921: 2918: 2915: 2907: 2904: 2901: 2897: 2893: 2888: 2884: 2861: 2857: 2853: 2850: 2847: 2842: 2838: 2817: 2797: 2774: 2771: 2768: 2745: 2725: 2705: 2702: 2699: 2694: 2690: 2683: 2680: 2677: 2669: 2666: 2663: 2659: 2633: 2621: 2615: 2612: 2602: 2598: 2594: 2589: 2585: 2561: 2558: 2555: 2552: 2549: 2524: 2520: 2494: 2472: 2468: 2464: 2461: 2458: 2453: 2449: 2445: 2440: 2436: 2415: 2395: 2372: 2369: 2366: 2343: 2334: 2315: 2311: 2285: 2243: 2223: 2198: 2194: 2168: 2148: 2145: 2142: 2137: 2133: 2129: 2126: 2106: 2083: 2080: 2077: 2074: 2071: 2065: 2062: 2053: 2039: 2019: 1996: 1990: 1987: 1981: 1973: 1969: 1961:states that, 1960: 1944: 1921: 1918: 1915: 1912: 1909: 1883: 1875: 1871: 1856: 1854: 1846: 1827: 1821: 1813: 1793: 1786: 1760: 1756: 1749: 1741: 1740: 1739: 1720: 1712: 1708: 1704: 1701: 1698: 1690: 1682: 1678: 1668: 1654: 1627: 1624: 1621: 1618: 1615: 1587: 1580: 1559: 1536: 1533: 1530: 1527: 1524: 1518: 1510: 1496: 1493: 1490: 1486: 1481: 1472: 1464: 1460: 1456: 1448: 1440: 1436: 1432: 1424: 1416: 1412: 1407: 1403: 1400: 1396: 1387: 1379: 1375: 1371: 1363: 1355: 1351: 1347: 1339: 1331: 1327: 1322: 1318: 1314: 1306: 1305: 1304: 1290: 1286: 1277: 1269: 1265: 1261: 1253: 1245: 1241: 1237: 1229: 1221: 1217: 1212: 1186: 1178: 1174: 1170: 1162: 1154: 1150: 1128: 1119: 1111: 1107: 1103: 1095: 1087: 1083: 1079: 1071: 1063: 1059: 1054: 1033: 1029: 1020: 1012: 1008: 1004: 996: 988: 984: 980: 972: 964: 960: 955: 934: 928: 925: 922: 919: 916: 888: 880: 876: 872: 869: 866: 858: 850: 846: 842: 834: 830: 823: 809: 792: 789: 786: 760: 757: 754: 731: 708: 705: 702: 679: 676: 673: 670: 667: 647: 627: 607: 604: 601: 593: 588: 586: 582: 572: 553: 549: 542: 522: 502: 482: 454: 448: 444: 437: 417: 408: 394: 372: 368: 364: 344: 324: 304: 279: 273: 269: 265: 245: 225: 205: 185: 165: 145: 125: 122: 116: 113: 110: 107: 104: 98: 95: 92: 72: 69: 66: 63: 60: 57: 54: 40: 38: 33: 31: 27: 23: 19: 5224:Graph theory 5180: 5174: 5164: 5129: 5125: 5119: 5094: 5090: 5084: 5063: 5038: 5034: 5028: 5003: 4999: 4993: 4968: 4964: 4958: 4933: 4929: 4923: 4898: 4894: 4888: 4863: 4859: 4853: 4826: 4825:. Series A. 4820: 4810: 4775: 4771: 4761: 4718: 4714: 4704: 4679: 4675: 4669: 4616: 4612: 4602: 4575: 4569: 4559: 4516: 4512: 4506: 4453: 4449: 4095:Applications 3924: 3779: 3235: 3012:is a length 2335: 2054: 1862: 1850: 1669: 1646: 1046:We say that 815: 589: 578: 571:hyperedges. 535:by removing 409: 46: 34: 17: 15: 5219:Hypergraphs 2542:. For each 2428:with parts 5213:Categories 5075:2402.17995 4778:(1): 151. 4424:References 475:copies of 22:hypergraph 5199:0021-7670 5156:1631-073X 5139:1007.1839 5111:0963-5483 5055:1042-9832 5020:1042-9832 4985:0911-0119 4950:1042-9832 4915:0097-5397 4880:0209-9683 4845:0097-3165 4794:0894-0347 4735:1042-9832 4696:1042-9832 4643:0027-8424 4594:0012-365X 4551:0003-486X 4526:0710.3032 4480:0027-8424 4269:⋅ 4236:δ 4157:δ 4076:≥ 3980:⁡ 3974:⁡ 3965:− 3959:⁡ 3947:≤ 3857:− 3819:− 3757:− 3543:− 3479:− 3365:≠ 3358:∑ 3354:− 3290:∖ 3278:∈ 3257:∈ 3199:∑ 3172:α 3165:⋯ 3153:α 3076:∑ 3072:− 3060:α 3056:− 3041:α 2994:α 2970:≤ 2964:≤ 2938:∈ 2919:− 2905:≠ 2898:∑ 2885:α 2851:… 2772:− 2758:-partite 2700:∈ 2681:− 2667:≠ 2660:∑ 2628:∖ 2616:∈ 2595:∈ 2559:≤ 2553:≤ 2462:… 2370:− 2356:-partite 2078:… 2066:⊂ 1916:… 1702:… 1655:ε 1494:ε 1491:≤ 1401:− 1171:⊂ 873:∪ 870:⋯ 867:∪ 790:− 758:− 706:− 365:ε 266:δ 105:ε 99:δ 93:δ 55:ε 43:Statement 4753:16594074 4661:16594074 4498:15919821 4402:See also 4175:and any 4091:so far. 3104:. Since 2953:for any 1303:we have 238:-vertex 4802:2939258 4621:Bibcode 4531:Bibcode 4489:1149431 4458:Bibcode 3432:equals 2876:, then 218:is any 5197:  5154:  5109:  5053:  5018:  4983:  4948:  4913:  4878:  4843:  4800:  4792:  4751:  4744:298241 4741:  4733:  4694:  4659:  4652:298241 4649:  4641:  4592:  4549:  4496:  4486:  4478:  4149:, any 1511:where 5134:arXiv 5070:arXiv 4798:JSTOR 4521:arXiv 3190:, so 2408:from 515:from 430:with 337:from 178:with 5195:ISSN 5152:ISSN 5107:ISSN 5051:ISSN 5016:ISSN 4981:ISSN 4946:ISSN 4911:ISSN 4876:ISSN 4841:ISSN 4790:ISSN 4749:PMID 4731:ISSN 4692:ISSN 4657:PMID 4639:ISSN 4590:ISSN 4547:ISSN 4494:PMID 4476:ISSN 4160:> 2718:Let 2055:Let 1863:Let 677:< 671:< 605:> 123:> 70:> 5185:doi 5144:doi 5130:349 5099:doi 5043:doi 5008:doi 4973:doi 4938:doi 4903:doi 4868:doi 4831:doi 4780:doi 4739:PMC 4723:doi 4684:doi 4647:PMC 4629:doi 4580:doi 4539:doi 4517:166 4484:PMC 4466:doi 4454:102 4120:of 3977:log 3971:log 3956:exp 3800:is 3663:in 3583:in 3412:in 590:In 5215:: 5193:. 5181:57 5179:. 5173:. 5150:. 5142:. 5128:. 5105:. 5095:13 5093:. 5049:. 5039:20 5037:. 5014:. 5004:23 5002:. 4979:. 4967:. 4944:. 4932:. 4909:. 4899:30 4897:. 4874:. 4864:19 4862:. 4839:. 4827:97 4819:. 4796:. 4788:. 4774:. 4770:. 4747:. 4737:. 4729:. 4717:. 4713:. 4690:. 4678:. 4655:. 4645:. 4637:. 4627:. 4617:86 4615:. 4611:. 4588:. 4576:75 4574:. 4568:. 4545:. 4537:. 4529:. 4515:. 4492:. 4482:. 4474:. 4464:. 4452:. 4448:. 4432:^ 4310:. 3922:. 3777:. 3233:. 2333:. 1855:. 1847:). 407:. 5201:. 5187:: 5158:. 5146:: 5136:: 5113:. 5101:: 5078:. 5072:: 5057:. 5045:: 5022:. 5010:: 4987:. 4975:: 4969:8 4952:. 4940:: 4934:2 4917:. 4905:: 4882:. 4870:: 4847:. 4833:: 4804:. 4782:: 4776:4 4755:. 4725:: 4719:1 4698:. 4686:: 4680:1 4663:. 4631:: 4623:: 4596:. 4582:: 4553:. 4541:: 4533:: 4523:: 4500:. 4468:: 4460:: 4394:. 4382:} 4379:) 4376:0 4373:, 4370:1 4367:( 4364:, 4361:) 4358:1 4355:, 4352:0 4349:( 4346:, 4343:) 4340:0 4337:, 4334:0 4331:( 4328:{ 4325:= 4322:S 4298:S 4278:d 4275:+ 4272:S 4266:a 4244:r 4240:n 4214:r 4210:] 4206:n 4203:[ 4183:n 4163:0 4135:r 4130:Z 4108:S 4079:5 4073:k 4053:k 4031:k 4027:c 4003:) 3996:k 3992:c 3987:) 3983:N 3968:( 3962:( 3952:N 3943:| 3939:A 3935:| 3910:) 3907:N 3904:( 3901:o 3898:= 3894:| 3890:A 3886:| 3865:) 3860:1 3854:k 3850:N 3846:( 3843:o 3840:= 3836:| 3832:A 3828:| 3822:2 3816:k 3812:M 3808:k 3788:G 3765:) 3760:1 3754:k 3750:N 3746:( 3743:o 3740:= 3737:) 3734:G 3731:( 3728:e 3708:k 3704:/ 3700:) 3697:G 3694:( 3691:e 3671:G 3651:H 3631:H 3611:G 3591:G 3571:H 3551:) 3546:1 3540:k 3536:N 3532:( 3529:o 3509:) 3504:k 3500:N 3496:( 3493:o 3490:= 3487:) 3482:1 3476:k 3472:N 3468:( 3465:O 3462:= 3459:) 3456:G 3453:( 3450:e 3445:k 3442:1 3420:G 3400:H 3378:j 3374:v 3368:i 3362:j 3351:= 3346:i 3342:v 3321:H 3299:} 3296:i 3293:{ 3287:] 3284:k 3281:[ 3275:j 3271:) 3265:j 3261:V 3252:j 3248:v 3244:( 3221:0 3218:= 3213:j 3209:v 3203:j 3176:k 3168:= 3162:= 3157:1 3132:k 3112:A 3090:j 3086:v 3080:j 3069:= 3064:i 3051:1 3048:+ 3045:i 3020:k 2998:i 2973:j 2967:i 2961:1 2941:A 2933:j 2929:v 2925:) 2922:i 2916:j 2913:( 2908:i 2902:j 2894:= 2889:i 2862:k 2858:v 2854:, 2848:, 2843:1 2839:v 2818:H 2798:G 2778:) 2775:1 2769:k 2766:( 2746:k 2726:H 2706:. 2703:A 2695:j 2691:v 2687:) 2684:i 2678:j 2675:( 2670:i 2664:j 2637:} 2634:i 2631:{ 2625:] 2622:k 2619:[ 2613:j 2609:) 2603:j 2599:V 2590:j 2586:v 2582:( 2562:k 2556:i 2550:1 2529:Z 2525:M 2521:/ 2516:Z 2495:M 2473:k 2469:V 2465:, 2459:, 2454:2 2450:V 2446:, 2441:1 2437:V 2416:A 2396:G 2376:) 2373:1 2367:k 2364:( 2344:k 2320:Z 2316:M 2312:/ 2307:Z 2286:k 2265:Z 2244:k 2224:A 2203:Z 2199:M 2195:/ 2190:Z 2169:A 2149:1 2146:+ 2143:N 2138:2 2134:k 2130:= 2127:M 2107:k 2087:} 2084:N 2081:, 2075:, 2072:1 2069:{ 2063:A 2040:k 2020:k 2000:) 1997:N 1994:( 1991:o 1988:= 1985:) 1982:N 1979:( 1974:k 1970:r 1945:k 1925:} 1922:N 1919:, 1913:, 1910:1 1907:{ 1887:) 1884:N 1881:( 1876:k 1872:r 1831:) 1828:G 1825:( 1822:V 1797:) 1794:3 1791:( 1787:G 1766:) 1761:n 1757:K 1753:( 1750:E 1724:) 1721:2 1718:( 1713:l 1709:G 1705:, 1699:, 1694:) 1691:2 1688:( 1683:1 1679:G 1643:. 1631:) 1628:Z 1625:, 1622:Y 1619:, 1616:X 1613:( 1591:) 1588:3 1585:( 1581:G 1560:3 1540:) 1537:Z 1534:, 1531:Y 1528:, 1525:X 1522:( 1519:d 1497:, 1487:| 1482:) 1476:) 1473:2 1470:( 1465:k 1461:A 1457:, 1452:) 1449:2 1446:( 1441:j 1437:A 1433:, 1428:) 1425:2 1422:( 1417:i 1413:A 1408:( 1404:d 1397:) 1391:) 1388:2 1385:( 1380:k 1376:G 1372:, 1367:) 1364:2 1361:( 1356:j 1352:G 1348:, 1343:) 1340:2 1337:( 1332:i 1328:G 1323:( 1319:d 1315:| 1291:, 1287:) 1281:) 1278:2 1275:( 1270:k 1266:A 1262:, 1257:) 1254:2 1251:( 1246:j 1242:A 1238:, 1233:) 1230:2 1227:( 1222:i 1218:A 1213:( 1190:) 1187:2 1184:( 1179:i 1175:G 1166:) 1163:2 1160:( 1155:i 1151:A 1129:) 1123:) 1120:2 1117:( 1112:k 1108:G 1104:, 1099:) 1096:2 1093:( 1088:j 1084:G 1080:, 1075:) 1072:2 1069:( 1064:i 1060:G 1055:( 1034:. 1030:) 1024:) 1021:2 1018:( 1013:k 1009:G 1005:, 1000:) 997:2 994:( 989:j 985:G 981:, 976:) 973:2 970:( 965:i 961:G 956:( 935:, 932:) 929:k 926:, 923:j 920:, 917:i 914:( 892:) 889:2 886:( 881:l 877:G 862:) 859:2 856:( 851:1 847:G 843:= 840:) 835:n 831:K 827:( 824:E 796:) 793:2 787:k 784:( 764:) 761:1 755:k 752:( 732:k 712:) 709:1 703:k 700:( 680:k 674:j 668:1 648:j 628:k 608:2 602:k 559:) 554:r 550:n 546:( 543:o 523:G 503:H 483:H 463:) 458:) 455:H 452:( 449:v 445:n 441:( 438:o 418:G 395:G 373:r 369:n 345:G 325:H 305:H 283:) 280:H 277:( 274:v 270:n 246:r 226:n 206:G 186:m 166:H 146:r 126:0 120:) 117:m 114:, 111:r 108:, 102:( 96:= 73:0 67:m 64:, 61:r 58:,

Index

hypergraph
graph removal lemma
tetrahedron removal lemma
Szemerédi's theorem
graph removal lemma
Szemerédi's regularity lemma
Szemerédi's regularity lemma
Szemerédi's regularity lemma
Graph removal lemma
Szemerédi's theorem
Corners theorem
Graph removal lemma
Szemerédi's theorem
Problems involving arithmetic progressions




"From The Cover: The hypergraph regularity method and its applications"
Bibcode
2005PNAS..102.8109R
doi
10.1073/pnas.0502771102
ISSN
0027-8424
PMC
1149431
PMID
15919821
arXiv

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑