Knowledge

Subnet

Source 📝

38: 240: 301:, to a destination host if the network prefixes of origination and destination hosts differ, or sent directly to a target host on the local network if they are the same. Routers constitute logical or physical borders between the subnets, and manage traffic between them. Each subnet is served by a designated default router but may consist internally of multiple physical 290:. All hosts on a subnet have the same network prefix. This prefix occupies the most-significant bits of the address. The number of bits allocated within a network to the prefix may vary between subnets, depending on the network architecture. The host identifier is a unique local identification and is either a host number on the local network or an interface identifier. 679:
Therefore, reserving the subnet values consisting of all zeros and all ones on the public Internet was recommended, reducing the number of available subnets by two for each subnetting. This inefficiency was removed, and the practice was declared obsolete in 1995 and is only relevant when dealing with legacy equipment.
231:
network management when subnets are administratively controlled by different entities in a larger organization. Subnets may be arranged logically in a hierarchical architecture, partitioning an organization's network address space into a tree-like routing structure, or other structures, such as meshes.
1392:
A compliant IPv6 subnet always uses addresses with 64 bits in the host identifier. Given the address size of 128 bits, it therefore has a /64 routing prefix. Although it is technically possible to use smaller subnets, they are impractical for local area networks based on Ethernet technology, because
580:
Subnetting is the process of designating some high-order bits from the host part as part of the network prefix and adjusting the subnet mask appropriately. This divides a network into smaller subnets. The following diagram modifies the above example by moving 2 bits from the host part to the network
1950:
It is the responsibility of the system administrator to ensure that the lengths of prefixes contained in Router Advertisements are consistent with the length of interface identifiers for that link type. an implementation should not assume a particular constant. Rather, it should expect any lengths
230:
The benefits of subnetting an existing network vary with each deployment scenario. In the address allocation architecture of the Internet using CIDR and in large organizations, efficient allocation of address space is necessary. Subnetting may also enhance routing efficiency, or have advantages in
401:
Given an IPv4 source address, its associated subnet mask, and the destination address, a router can determine whether the destination is on a locally connected network or a remote network. The subnet mask of the destination is not needed, and is generally not known to a router. For IPv6, however,
1415:
IPv6 does not implement special address formats for broadcast traffic or network numbers, and thus all addresses in a subnet are acceptable for host addressing. The all-zeroes address is reserved as the subnet-router anycast address. The subnet router anycast address is the lowest address in the
397:
in IPv4, before the introduction of CIDR, the network prefix could be directly obtained from the IP address, based on its highest-order bit sequence. This determined the class (A, B, C) of the address and therefore the subnet mask. Since the introduction of CIDR, however, the assignment of an IP
678:
The IETF originally discouraged the production use of these two subnets. When the prefix length is not available, the larger network and the first subnet have the same address, which may lead to confusion. Similar confusion is possible with the broadcast address at the end of the last subnet.
659:
IPv4 uses specially designated address formats to facilitate recognition of special address functionality. The first and the last subnets obtained by subnetting a larger network have traditionally had a special designation and, early on, special usage implications. In addition, IPv4 uses the
1381:
address space differs significantly from IPv4. The primary reason for subnetting in IPv4 is to improve efficiency in the utilization of the relatively small address space available, particularly to enterprises. No such limitations exist in IPv6, as the large address space available, even to
1416:
subnet, so it looks like the “network address”. If a router has multiple subnets on the same link, then it has multiple subnet router anycast addresses on that link. The first and last address in any network or subnet is not allowed to be assigned to any individual host.
1993:
The Interface Identifier for an Ethernet interface is based on the EUI-64 identifier derived from the interface's built-in 48-bit IEEE 802 address. An IPv6 address prefix used for stateless autoconfiguration of an Ethernet interface must have a length of 64
851:
The remaining bits after the subnet bits are used for addressing hosts within the subnet. In the above example, the subnet mask consists of 26 bits, making it 255.255.255.192, leaving 6 bits for the host identifier. This allows for 62 host combinations (2−2).
417:
of each connected router, subnetting increases routing complexity. However, by careful design of the network, routes to collections of more distant subnets within the branches of a tree hierarchy can be aggregated into a
1672:
Traditionally, it was strongly recommended that subnet zero and the all-ones subnet not be used for addressing. Today, the use of subnet zero and the all-ones subnet is generally accepted and most vendors support their
1782:
It is useful to preserve and extend the interpretation of these special addresses in subnetted networks. This means the values of all zeros and all ones in the subnet field should not be assigned to actual (physical)
2077:
This document moves "Use of /127 Prefix Length Between Routers Considered Harmful" (RFC 3627) to Historic status to reflect the updated guidance contained in "Using 127-Bit IPv6 Prefixes on Inter-Router Links" (RFC
1430:) prefix. However, this recommendation was revised to encourage smaller blocks, for example using 56-bit prefixes. Another common allocation size for residential customer networks has a 64-bit prefix. 327:
The modern standard form of specification of the network prefix is CIDR notation, used for both IPv4 and IPv6. It counts the number of bits in the prefix and appends that number to the address after a
243:
The concept of subnetting the IPv4 address space 200.100.10.0/24, which contains 256 addresses, into two smaller address spaces, namely 200.100.10.0/25 and 200.100.10.128/25 with 128 addresses each
2123:
There are no broadcast addresses in IPv6, their function being superseded by multicast addresses. In IPv6, all zeros and all ones are legal values for any field, unless specifically excluded.
316:, written in the same form used for IP addresses. For example, the subnet mask for a routing prefix that is composed of the most-significant 24 bits of an IPv4 address is written as 2221:
All customers get one /48 unless they can show that they need more than 65k subnets. If you have lots of consumer customers you may want to assign /56s to private residence sites.
2184: 1908:
For all unicast addresses, except those that start with the binary value 000, Interface IDs are required to be 64 bits long and to be constructed in Modified EUI-64 format.
866:
There is an exception to this rule for 31-bit subnet masks, which means the host identifier is only one bit long for two permissible addresses. In such networks, usually
1725: 1693: 1660: 129:
network starting at the given address, having 24 bits allocated for the network prefix, and the remaining 8 bits reserved for host addressing. Addresses in the range
262:
An address fulfills the functions of identifying the host and locating it on the network in destination routing. The most common network addressing architecture is
227:
when the routing prefixes of the source address and the destination address differ. A router serves as a logical or physical boundary between the subnets.
2209: 449:). The ones indicate bits in the address used for the network prefix and the trailing block of zeros designates that part as being the host identifier. 1389:
methodology. It is used to route traffic between the global allocation spaces and within customer networks between subnets and the Internet at large.
2168:
This anycast address is syntactically the same as a unicast address for an interface on the link with the interface identifier set to zero.
2270:
APNIC, ARIN, and RIPE have revised the end site assignment policy to encourage the assignment of smaller (i.e., /56) blocks to end sites.
406:(NDP). IPv6 address assignment to an interface carries no requirement of a matching on-link prefix and vice versa, with the exception of 671:. The last subnet obtained from subnetting a larger network has all bits in the subnet bit group set to one. It is therefore called the 667:
The first subnet obtained from subnetting a larger network has all bits in the subnet bit group set to zero. It is therefore called
1394: 2180: 1717: 1685: 1652: 870:, only two hosts (the endpoints) may be connected and a specification of network and broadcast addresses is not necessary. 740:
The number of subnets available and the number of possible hosts in a network may be readily calculated. For instance, the
251:. Usually, this address is unique to each device and can either be configured automatically by a network service with the 867: 256: 252: 2376: 2036:
On inter-router point-to-point links, it is useful, for security and other reasons, to use 127-bit IPv6 prefixes.
1398: 2423: 2205: 1386: 682:
Although the all-zeros and the all-ones host values are reserved for the network address of the subnet and its
332: 104: 859:
is the number of bits used for the host portion of the address. The number of available subnets is 2, where
1439: 664:
host address, i.e. the last address within a network, for broadcast transmission to all hosts on the link.
452:
The following example shows the separation of the network prefix and the host identifier from an address (
194:
operation to any IP address in the network, yields the routing prefix. Subnet masks are also expressed in
1385:
As in IPv4, subnetting in IPv6 is based on the concepts of variable-length subnet masking (VLSM) and the
403: 263: 126: 686:, respectively, in systems using CIDR all subnets are available in a subdivided network. For example, a 17: 1419:
In the past, the recommended allocation for an IPv6 customer site was an address space with a 48-bit (
1372: 431: 282:
consists of 128 bits. In both architectures, an IP address is divided into two logical parts, the
2140: 1922: 1880: 1542: 2418: 765:
subnets. The highlighted two address bits become part of the network number in this process.
335:(CIDR). In IPv6 this is the only standards-based form to denote network or routing prefixes. 1924:
IPv6 Stateless Address Autoconfiguration - section 5.5.3.(d) Router Advertisement Processing
2356: 2329: 2302: 2262: 2160: 2115: 2069: 2028: 1985: 1967:
Transmission of IPv6 Packets over Ethernet Networks - section 4 Stateless Autoconfiguration
1942: 1900: 1858: 1816: 1774: 1635: 1597: 1562: 1524: 1510:
Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan
1489: 1444: 195: 65: 31: 2095: 1965: 1824:
This practice is obsolete! Modern software will be able to utilize all definable networks.
1570:
Updated by RFC 1349, RFC 4379, RFC 5884, RFC 6093, RFC 6298, RFC 6633, RFC 6864, RFC 8029.
8: 569: 407: 398:
address to a network interface requires two parameters, the address and a subnet mask.
298: 224: 1754: 64:
Computers that belong to the same subnet are addressed with an identical group of its
2372: 2254: 683: 154: 255:(DHCP), manually by an administrator, or automatically by the operating system with 2413: 2346: 2319: 2292: 2244: 2150: 2105: 2059: 2018: 1975: 1932: 1890: 1848: 1806: 1764: 1625: 1587: 1552: 1514: 1479: 413:
Since each locally connected subnet must be represented by a separate entry in the
394: 271: 248: 2359: 2340: 2305: 2286: 2265: 2234: 2163: 2118: 2072: 2049: 2031: 2008: 2007:
M. Kohno; B. Nitzan; R. Bush; Y. Matsuzaki; L. Colitti; T. Narten (April 2011).
1988: 1945: 1903: 1861: 1842: 1819: 1796: 1638: 1615: 1600: 1581: 1565: 1527: 1508: 2332: 2313: 1777: 1492: 1469: 306: 93: 2407: 2258: 2142:
IP Version 6 Addressing Architecture - section 2.6.1 Required Anycast Address
2136: 2091: 1876: 1721: 1689: 1656: 414: 297:
of IP packets across multiple networks via special gateway computers, called
72:. This results in the logical division of an IP address into two fields: the 2181:"Subnet Router Anycast Addresses – what are they, how do they work? – Into6" 1882:
IP Version 6 Addressing Architecture - section 2.5.1. Interface Identifiers
581:
prefix to form four smaller subnets each one quarter of the previous size.
419: 279: 275: 175:
is a large address block with 2 addresses, having a 32-bit routing prefix.
549: 191: 57:. The practice of dividing a network into two or more networks is called 1911:(Updated by RFC 5952, RFC 6052, RFC 7136, RFC 7346, RFC 7371, RFC 8064.) 1579: 479:). The operation is visualized in a table using binary address formats. 37: 1750: 1465: 69: 54: 1840: 2351: 2324: 2297: 2249: 2155: 2110: 2064: 2023: 1980: 1937: 1895: 1853: 1811: 1769: 1630: 1617:
IPv6 Subnet Model: The Relationship between Links and Subnet Prefixes
1592: 1557: 1519: 1484: 239: 2006: 855:
In general, the number of available hosts on a subnet is 2−2, where
863:
is the number of bits used for the network portion of the address.
441:
An IPv4 subnet mask consists of 32 bits; it is a sequence of ones (
390:
and its network prefix consisting of the most significant 32 bits.
302: 552:
operation of IP address and the subnet mask is the network prefix
1580:
T. Narten; E. Nordmark; W. Simpson; H. Soliman (September 2007).
568:, is derived by the bitwise AND operation of the address and the 294: 187: 2097:
IP Version 6 Addressing Architecture - section 2 IPv6 Addressing
103:
may be expressed as the first address of a network, written in
2388:
CCNA Cisco Certified Network Associate Study Guide 5th Edition
1841:
A. Retana; R. White; V. Fuller; D. McPherson (December 2000).
402:
on-link determination is different in detail and requires the
111:), and ending with the bit-length of the prefix. For example, 1412:
subnets for point-to-point links, which have only two hosts.
2232: 1920: 1613: 2240: 2146: 2101: 2055: 2014: 1971: 1928: 1886: 1802: 1760: 1621: 1548: 1475: 1378: 331:(/) character separator. This notation was introduced with 267: 247:
Computers participating in an IP network have at least one
158: 1718:"Document ID 13711 - Subnet Zero and the All-Ones Subnet" 1686:"Document ID 13711 - Subnet Zero and the All-Ones Subnet" 1653:"Document ID 13711 - Subnet Zero and the All-Ones Subnet" 1794: 1748: 1544:
Requirements for Internet Hosts -- Communication Layers
1463: 312:
The routing prefix of an address is identified by the
178:
For IPv4, a network may also be characterized by its
2134: 2089: 1921:S. Thomson; T. Narten; T. Jinmei (September 2007). 1874: 1844:Using 31-Bit Prefixes on IPv4 Point-to-Point Links 754:network may be subdivided into the following four 2010:Using 127-Bit IPv6 Prefixes on Inter-Router Links 436: 234: 41:Creating a subnet by dividing the host identifier 2405: 654: 293:This addressing structure permits the selective 107:(CIDR) notation, followed by a slash character ( 30:For subnets in the mathematics of topology, see 2233:T. Narten; G. Huston; L. Roberts (March 2011). 732:, reduces only the host count in each subnets. 1737:the last subnet, known as the all-ones subnet 1614:H. Singh; W. Beebee; E. Nordmark (July 2010). 1506: 1366: 425: 2399:(4th ed.). San Francisco, London: Wiley. 2394: 2342:DNS Encodings of Network Names and Other Type 2128: 1868: 223:Traffic is exchanged between subnets through 2226: 1795:Troy Pummill; Bill Manning (December 1995). 198:like an IP address. For example, the prefix 1963: 697:network can be divided into sixteen usable 1583:Neighbor Discovery for IP version 6 (IPv6) 2350: 2323: 2296: 2248: 2154: 2109: 2083: 2063: 2047: 2022: 1979: 1936: 1894: 1852: 1810: 1768: 1629: 1591: 1556: 1540: 1518: 1483: 1827:(Informational RFC, demoted to category 238: 36: 2315:Utility of subnets of Internet networks 2041: 2000: 1957: 1914: 1834: 1788: 1742: 1705:the first subnet, known as subnet zero 708:networks. Each broadcast address, i.e. 14: 2406: 2385: 1756:Internet Standard Subnetting Procedure 1607: 1573: 1534: 1500: 1471:Internet Standard Subnetting Procedure 2395:Groth, David; Skandier, Toby (2005). 2366: 1798:Variable Length Subnet Table For IPv4 1457: 1382:end-users, is not a limiting factor. 2236:IPv6 Address Assignment to End Sites 2198: 735: 27:Logical subdivision of an IP network 1395:stateless address autoconfiguration 644:00000000.00000000.00000000.00000010 631:11000000.00000000.00000010.10000000 601:11000000.00000000.00000010.10000010 538:00000000.00000000.00000000.10000010 525:11000000.00000000.00000010.00000000 512:11111111.11111111.11111111.00000000 499:11000000.00000000.00000010.10000010 257:stateless address autoconfiguration 253:Dynamic Host Configuration Protocol 24: 2279: 422:and represented by single routes. 25: 2435: 53:, is a logical subdivision of an 1997:(Updated by RFC 6085, RFC 8064.) 1507:V. Fuller; T. Li (August 2006). 445:) followed by a block of zeros ( 92:is an identifier for a specific 2390:. San Francisco, London: Sybex. 2212:from the original on 2010-04-26 2187:from the original on 2022-07-02 2173: 1728:from the original on 2014-02-09 1696:from the original on 2014-02-09 1663:from the original on 2014-02-09 1541:R. Braden, ed. (October 1989). 1399:Internet Engineering Task Force 1710: 1678: 1645: 1387:Classless Inter-Domain Routing 874:Subnet masks and IP Addresses 437:Determining the network prefix 338:For example, the IPv4 network 333:Classless Inter-Domain Routing 235:Network addressing and routing 105:Classless Inter-Domain Routing 13: 1: 2288:Requirements for IPv4 Routers 1964:M. Crawford (December 1998). 1450: 655:Special addresses and subnets 575: 274:since approximately 2006. An 145:belong to this network, with 1440:Autonomous system (Internet) 7: 2051:RFC 3627 to Historic Status 2048:W. George (February 2012). 1433: 1367:Internet Protocol version 6 837:11000000.10101000.00000101. 820:11000000.10101000.00000101. 803:11000000.10101000.00000101. 786:11000000.10101000.00000101. 614:11111111.11111111.11111111. 426:Internet Protocol version 4 404:Neighbor Discovery Protocol 305:segments interconnected by 266:(IPv4), but its successor, 264:Internet Protocol version 4 212:would have the subnet mask 127:Internet Protocol version 4 10: 2440: 1370: 560:. The host part, which is 429: 29: 2367:Blank, Andrew G. (2006). 1951:of interface identifiers. 1586:. Network Working Group. 1513:. Network Working Group. 1393:64 bits are required for 1373:IPv6 subnetting reference 432:IPv4 subnetting reference 1547:. Network Working Group 368:, and the IPv6 notation 278:consists of 32 bits. An 270:, has been increasingly 190:that, when applied by a 2206:"IPv6 Addressing Plans" 382:designates the address 1954:(Updated by RFC 7527.) 1401:recommends the use of 244: 161:address specification 96:or network interface. 42: 2424:Internet architecture 2397:Network + Study Guide 2386:Lammle, Todd (2005). 592:Dot-decimal notation 490:Dot-decimal notation 460:) and its associated 346:with the subnet mask 242: 125:is the prefix of the 66:most-significant bits 40: 1497:Updated by RFC 6918. 1445:Network segmentation 868:point-to-point links 572:of the subnet mask. 408:link-local addresses 196:dot-decimal notation 32:Subnet (mathematics) 2149:. sec. 2.6.1. 1931:. sec. 5.5.3. 1889:. sec. 2.5.1. 1551:. sec. 3.3.1. 875: 395:classful networking 2369:TCP/IP Foundations 2208:. ARIN IPv6 Wiki. 1377:The design of the 873: 777:Broadcast address 548:The result of the 245: 43: 2183:. 30 March 2014. 2139:(February 2006). 2094:(February 2006). 1879:(February 2006). 1364: 1363: 849: 848: 833:192.168.5.192/26 816:192.168.5.128/26 774:Network (binary) 736:Subnet host count 684:broadcast address 652: 651: 546: 545: 155:broadcast address 16:(Redirected from 2431: 2400: 2391: 2382: 2363: 2354: 2352:10.17487/RFC1101 2336: 2327: 2325:10.17487/RFC0917 2309: 2300: 2298:10.17487/RFC1812 2273: 2272: 2252: 2250:10.17487/RFC6177 2230: 2224: 2223: 2218: 2217: 2202: 2196: 2195: 2193: 2192: 2177: 2171: 2170: 2158: 2156:10.17487/RFC4291 2132: 2126: 2125: 2113: 2111:10.17487/RFC4291 2087: 2081: 2080: 2067: 2065:10.17487/RFC6547 2045: 2039: 2038: 2026: 2024:10.17487/RFC6164 2004: 1998: 1996: 1983: 1981:10.17487/RFC2464 1961: 1955: 1953: 1940: 1938:10.17487/RFC4862 1918: 1912: 1910: 1898: 1896:10.17487/RFC4291 1872: 1866: 1865: 1856: 1854:10.17487/RFC3021 1838: 1832: 1826: 1814: 1812:10.17487/RFC1878 1792: 1786: 1785: 1772: 1770:10.17487/RFC0950 1746: 1740: 1739: 1734: 1733: 1714: 1708: 1707: 1702: 1701: 1682: 1676: 1675: 1669: 1668: 1649: 1643: 1642: 1633: 1631:10.17487/RFC5942 1611: 1605: 1604: 1595: 1593:10.17487/RFC4861 1577: 1571: 1569: 1560: 1558:10.17487/RFC1122 1538: 1532: 1531: 1522: 1520:10.17487/RFC4632 1504: 1498: 1496: 1487: 1485:10.17487/RFC0950 1461: 1428: 1427: 1424: 1410: 1409: 1406: 1359: 1358: 1344: 1343: 1340: 1330: 1329: 1315: 1314: 1311: 1301: 1300: 1286: 1285: 1282: 1272: 1271: 1257: 1256: 1253: 1243: 1242: 1228: 1227: 1224: 1214: 1213: 1199: 1198: 1195: 1185: 1184: 1170: 1169: 1166: 1156: 1155: 1141: 1140: 1137: 1127: 1126: 1112: 1111: 1108: 1098: 1097: 1083: 1082: 1079: 1069: 1068: 1054: 1053: 1050: 1040: 1039: 1025: 1024: 1021: 1011: 1010: 996: 995: 992: 982: 981: 967: 966: 963: 953: 952: 938: 937: 934: 924: 923: 909: 908: 905: 876: 872: 842: 825: 808: 799:192.168.5.64/26 791: 768: 767: 763: 762: 759: 752: 751: 748: 745: 730: 729: 722: 721: 714: 713: 706: 705: 702: 695: 694: 691: 645: 632: 622:255.255.255.192 619: 602: 584: 583: 570:ones' complement 566: 565: 558: 557: 539: 534:Host identifier 526: 513: 500: 482: 481: 477: 476: 469: 468: 465: 458: 457: 388: 387: 380: 379: 376: 373: 366: 365: 362: 359: 352: 351: 344: 343: 322: 321: 307:network switches 218: 217: 210: 209: 206: 203: 173: 172: 169: 166: 151: 150: 143: 142: 135: 134: 123: 122: 119: 116: 21: 2439: 2438: 2434: 2433: 2432: 2430: 2429: 2428: 2404: 2403: 2379: 2339: 2312: 2285: 2282: 2280:Further reading 2277: 2276: 2261:. BCP 157. 2231: 2227: 2215: 2213: 2204: 2203: 2199: 2190: 2188: 2179: 2178: 2174: 2133: 2129: 2104:. sec. 2. 2088: 2084: 2046: 2042: 2005: 2001: 1974:. sec. 4. 1962: 1958: 1919: 1915: 1873: 1869: 1839: 1835: 1793: 1789: 1753:(August 1985). 1749:Jeffrey Mogul; 1747: 1743: 1731: 1729: 1716: 1715: 1711: 1699: 1697: 1684: 1683: 1679: 1666: 1664: 1651: 1650: 1646: 1612: 1608: 1578: 1574: 1539: 1535: 1505: 1501: 1468:(August 1985). 1464:Jeffrey Mogul; 1462: 1458: 1453: 1436: 1425: 1422: 1421: 1407: 1404: 1403: 1375: 1369: 1356: 1355: 1341: 1338: 1337: 1327: 1326: 1312: 1309: 1308: 1298: 1297: 1283: 1280: 1279: 1269: 1268: 1254: 1251: 1250: 1240: 1239: 1225: 1222: 1221: 1211: 1210: 1196: 1193: 1192: 1182: 1181: 1167: 1164: 1163: 1153: 1152: 1138: 1135: 1134: 1124: 1123: 1109: 1106: 1105: 1096:255.255.255.128 1095: 1094: 1080: 1077: 1076: 1067:255.255.255.192 1066: 1065: 1051: 1048: 1047: 1038:255.255.255.224 1037: 1036: 1022: 1019: 1018: 1009:255.255.255.240 1008: 1007: 993: 990: 989: 980:255.255.255.248 979: 978: 964: 961: 960: 951:255.255.255.252 950: 949: 935: 932: 931: 922:255.255.255.254 921: 920: 906: 903: 902: 836: 819: 802: 785: 782:192.168.5.0/26 760: 757: 756: 749: 746: 743: 742: 738: 727: 726: 719: 718: 711: 710: 703: 700: 699: 692: 689: 688: 673:all-ones subnet 657: 643: 630: 627:Network prefix 613: 600: 578: 563: 562: 555: 554: 537: 524: 521:Network prefix 511: 498: 474: 473: 466: 463: 462: 455: 454: 439: 434: 428: 385: 384: 377: 374: 371: 370: 363: 360: 357: 356: 349: 348: 341: 340: 319: 318: 288:host identifier 249:network address 237: 215: 214: 207: 204: 201: 200: 186:, which is the 170: 167: 164: 163: 148: 147: 140: 139: 132: 131: 120: 117: 114: 113: 86:host identifier 35: 28: 23: 22: 15: 12: 11: 5: 2437: 2427: 2426: 2421: 2416: 2402: 2401: 2392: 2383: 2377: 2364: 2337: 2310: 2281: 2278: 2275: 2274: 2225: 2197: 2172: 2127: 2082: 2040: 1999: 1956: 1913: 1867: 1833: 1787: 1741: 1724:. 2005-08-10. 1709: 1692:. 2005-08-10. 1677: 1659:. 2005-08-10. 1644: 1606: 1572: 1533: 1499: 1455: 1454: 1452: 1449: 1448: 1447: 1442: 1435: 1432: 1368: 1365: 1362: 1361: 1352: 1349: 1346: 1333: 1332: 1323: 1320: 1317: 1304: 1303: 1294: 1291: 1288: 1275: 1274: 1265: 1262: 1259: 1246: 1245: 1236: 1233: 1230: 1217: 1216: 1207: 1204: 1201: 1188: 1187: 1178: 1175: 1172: 1159: 1158: 1149: 1146: 1143: 1130: 1129: 1120: 1117: 1114: 1101: 1100: 1091: 1088: 1085: 1072: 1071: 1062: 1059: 1056: 1043: 1042: 1033: 1030: 1027: 1014: 1013: 1004: 1001: 998: 985: 984: 975: 972: 969: 956: 955: 946: 943: 940: 927: 926: 917: 914: 911: 898: 897: 892: 887: 882: 847: 846: 845:192.168.5.255 843: 834: 830: 829: 828:192.168.5.191 826: 817: 813: 812: 811:192.168.5.127 809: 800: 796: 795: 792: 783: 779: 778: 775: 772: 737: 734: 656: 653: 650: 649: 646: 641: 637: 636: 633: 628: 624: 623: 620: 611: 607: 606: 603: 598: 594: 593: 590: 587: 577: 574: 544: 543: 540: 535: 531: 530: 527: 522: 518: 517: 516:255.255.255.0 514: 509: 505: 504: 501: 496: 492: 491: 488: 485: 438: 435: 427: 424: 415:routing tables 354:is written as 284:network prefix 236: 233: 153:as the subnet 149:198.51.100.255 141:198.51.100.255 101:routing prefix 78:routing prefix 74:network number 26: 9: 6: 4: 3: 2: 2436: 2425: 2422: 2420: 2417: 2415: 2412: 2411: 2409: 2398: 2393: 2389: 2384: 2380: 2378:9780782151138 2374: 2370: 2365: 2361: 2358: 2353: 2348: 2344: 2343: 2338: 2334: 2331: 2326: 2321: 2317: 2316: 2311: 2307: 2304: 2299: 2294: 2290: 2289: 2284: 2283: 2271: 2267: 2264: 2260: 2256: 2251: 2246: 2242: 2238: 2237: 2229: 2222: 2211: 2207: 2201: 2186: 2182: 2176: 2169: 2165: 2162: 2157: 2152: 2148: 2144: 2143: 2138: 2131: 2124: 2120: 2117: 2112: 2107: 2103: 2099: 2098: 2093: 2086: 2079: 2074: 2071: 2066: 2061: 2057: 2053: 2052: 2044: 2037: 2033: 2030: 2025: 2020: 2016: 2012: 2011: 2003: 1995: 1990: 1987: 1982: 1977: 1973: 1969: 1968: 1960: 1952: 1947: 1944: 1939: 1934: 1930: 1926: 1925: 1917: 1909: 1905: 1902: 1897: 1892: 1888: 1884: 1883: 1878: 1871: 1863: 1860: 1855: 1850: 1846: 1845: 1837: 1830: 1825: 1821: 1818: 1813: 1808: 1804: 1800: 1799: 1791: 1784: 1779: 1776: 1771: 1766: 1763:. p. 6. 1762: 1758: 1757: 1752: 1745: 1738: 1727: 1723: 1722:Cisco Systems 1719: 1713: 1706: 1695: 1691: 1690:Cisco Systems 1687: 1681: 1674: 1662: 1658: 1657:Cisco Systems 1654: 1648: 1640: 1637: 1632: 1627: 1623: 1619: 1618: 1610: 1602: 1599: 1594: 1589: 1585: 1584: 1576: 1567: 1564: 1559: 1554: 1550: 1546: 1545: 1537: 1529: 1526: 1521: 1516: 1512: 1511: 1503: 1494: 1491: 1486: 1481: 1477: 1473: 1472: 1467: 1460: 1456: 1446: 1443: 1441: 1438: 1437: 1431: 1429: 1417: 1413: 1411: 1400: 1396: 1390: 1388: 1383: 1380: 1374: 1360: 1353: 1350: 1347: 1345: 1335: 1334: 1331: 1328:255.255.128.0 1324: 1321: 1318: 1316: 1306: 1305: 1302: 1299:255.255.192.0 1295: 1292: 1289: 1287: 1277: 1276: 1273: 1270:255.255.224.0 1266: 1263: 1260: 1258: 1248: 1247: 1244: 1241:255.255.240.0 1237: 1234: 1231: 1229: 1219: 1218: 1215: 1212:255.255.248.0 1208: 1205: 1202: 1200: 1190: 1189: 1186: 1183:255.255.252.0 1179: 1176: 1173: 1171: 1161: 1160: 1157: 1154:255.255.254.0 1150: 1147: 1144: 1142: 1132: 1131: 1128: 1125:255.255.255.0 1121: 1118: 1115: 1113: 1103: 1102: 1099: 1092: 1089: 1086: 1084: 1074: 1073: 1070: 1063: 1060: 1057: 1055: 1045: 1044: 1041: 1034: 1031: 1028: 1026: 1016: 1015: 1012: 1005: 1002: 999: 997: 987: 986: 983: 976: 973: 970: 968: 958: 957: 954: 947: 944: 941: 939: 929: 928: 925: 918: 915: 912: 910: 900: 899: 896: 893: 891: 888: 886: 883: 881: 878: 877: 871: 869: 864: 862: 858: 853: 844: 840: 835: 832: 831: 827: 823: 818: 815: 814: 810: 806: 801: 798: 797: 794:192.168.5.63 793: 789: 784: 781: 780: 776: 773: 770: 769: 766: 764: 753: 733: 731: 723: 715: 707: 696: 685: 680: 676: 674: 670: 665: 663: 647: 642: 639: 638: 634: 629: 626: 625: 621: 617: 612: 609: 608: 604: 599: 596: 595: 591: 588: 586: 585: 582: 573: 571: 567: 559: 551: 541: 536: 533: 532: 528: 523: 520: 519: 515: 510: 507: 506: 502: 497: 494: 493: 489: 486: 484: 483: 480: 478: 475:255.255.255.0 471:subnet mask ( 470: 459: 450: 448: 444: 433: 423: 421: 416: 411: 409: 405: 399: 396: 391: 389: 381: 367: 353: 350:255.255.255.0 345: 336: 334: 330: 325: 323: 320:255.255.255.0 315: 310: 308: 304: 300: 296: 291: 289: 285: 281: 277: 273: 269: 265: 260: 258: 254: 250: 241: 232: 228: 226: 221: 219: 216:255.255.255.0 211: 197: 193: 189: 185: 181: 176: 174: 160: 156: 152: 144: 136: 128: 124: 110: 106: 102: 97: 95: 91: 87: 83: 79: 75: 71: 67: 62: 60: 56: 52: 48: 39: 33: 19: 2419:IP addresses 2396: 2387: 2368: 2341: 2314: 2287: 2269: 2235: 2228: 2220: 2214:. Retrieved 2200: 2189:. Retrieved 2175: 2167: 2141: 2130: 2122: 2096: 2085: 2076: 2050: 2043: 2035: 2009: 2002: 1992: 1966: 1959: 1949: 1923: 1916: 1907: 1881: 1870: 1843: 1836: 1828: 1823: 1797: 1790: 1781: 1755: 1744: 1736: 1730:. Retrieved 1712: 1704: 1698:. Retrieved 1680: 1671: 1665:. Retrieved 1647: 1616: 1609: 1582: 1575: 1543: 1536: 1509: 1502: 1470: 1459: 1420: 1418: 1414: 1402: 1391: 1384: 1376: 1354: 1336: 1325: 1307: 1296: 1278: 1267: 1249: 1238: 1220: 1209: 1191: 1180: 1162: 1151: 1133: 1122: 1104: 1093: 1075: 1064: 1046: 1035: 1017: 1006: 988: 977: 959: 948: 930: 919: 901: 894: 889: 885:IP Addresses 884: 879: 865: 860: 856: 854: 850: 838: 821: 804: 787: 755: 741: 739: 725: 717: 709: 698: 687: 681: 677: 672: 668: 666: 661: 658: 635:192.0.2.128 615: 610:Subnet mask 605:192.0.2.130 589:Binary form 579: 561: 553: 547: 508:Subnet mask 503:192.0.2.130 487:Binary form 472: 461: 453: 451: 446: 442: 440: 420:supernetwork 412: 400: 392: 383: 369: 355: 347: 339: 337: 328: 326: 317: 313: 311: 292: 287: 283: 280:IPv6 address 276:IPv4 address 261: 246: 229: 222: 213: 202:198.51.100.0 199: 183: 179: 177: 162: 146: 138: 133:198.51.100.0 130: 115:198.51.100.0 112: 108: 100: 98: 89: 85: 81: 77: 73: 70:IP addresses 63: 58: 50: 46: 44: 2135:R. Hinden; 2090:R. Hinden; 1875:R. Hinden; 1357:255.255.0.0 744:192.168.5.0 669:subnet zero 597:IP address 550:bitwise AND 495:IP address 456:192.0.2.130 314:subnet mask 192:bitwise AND 180:subnet mask 2408:Categories 2216:2010-04-25 2191:2022-06-09 2137:S. Deering 2092:S. Deering 1877:S. Deering 1751:Jon Postel 1732:2010-04-23 1700:2010-04-23 1667:2010-04-25 1466:Jon Postel 1451:References 1371:See also: 640:Host part 576:Subnetting 542:0.0.0.130 529:192.0.2.0 430:See also: 386:2001:db8:: 372:2001:db8:: 165:2001:db8:: 90:rest field 82:rest field 80:, and the 59:subnetting 55:IP network 47:subnetwork 18:Subnetwork 2371:. Wiley. 2259:2070-1721 556:192.0.2.0 358:192.0.2.0 342:192.0.2.0 68:of their 2210:Archived 2185:Archived 1829:Historic 1783:subnets. 1726:Archived 1694:Archived 1661:Archived 1434:See also 771:Network 662:all ones 648:0.0.0.2 303:Ethernet 286:and the 272:deployed 2414:Routing 895:Netmask 299:routers 295:routing 225:routers 188:bitmask 184:netmask 2375:  2257:  2078:6164). 1397:. The 1351:65534 1348:65536 1322:32766 1319:32768 1293:16382 1290:16384 841:000000 824:000000 807:000000 790:000000 618:000000 157:. The 88:. The 51:subnet 1994:bits. 1264:8190 1261:8192 1235:4094 1232:4096 1206:2046 1203:2048 1177:1022 1174:1024 890:Hosts 728:*.255 724:, …, 329:slash 49:, or 2373:ISBN 2360:1101 2306:1812 2266:6177 2255:ISSN 2241:IETF 2164:4291 2147:IETF 2119:4291 2102:IETF 2073:6547 2056:IETF 2032:6164 2015:IETF 1989:2464 1972:IETF 1946:4862 1929:IETF 1904:4291 1887:IETF 1862:3021 1820:1878 1803:IETF 1761:IETF 1673:use. 1639:5942 1622:IETF 1601:4861 1566:1122 1549:IETF 1528:4632 1476:IETF 1379:IPv6 1148:510 1145:512 1119:254 1116:256 1090:126 1087:128 880:Mask 720:*.31 712:*.15 268:IPv6 159:IPv6 99:The 94:host 2357:RFC 2347:doi 2333:917 2330:RFC 2320:doi 2303:RFC 2293:doi 2263:RFC 2245:doi 2161:RFC 2151:doi 2116:RFC 2106:doi 2070:RFC 2060:doi 2029:RFC 2019:doi 1986:RFC 1976:doi 1943:RFC 1933:doi 1901:RFC 1891:doi 1859:RFC 1849:doi 1817:RFC 1807:doi 1778:950 1775:RFC 1765:doi 1636:RFC 1626:doi 1598:RFC 1588:doi 1563:RFC 1553:doi 1525:RFC 1515:doi 1493:950 1490:RFC 1480:doi 1408:127 1061:62 1058:64 1032:30 1029:32 1003:14 1000:16 564:130 393:In 182:or 137:to 84:or 76:or 2410:: 2355:. 2345:. 2328:. 2318:. 2301:. 2291:. 2268:. 2253:. 2243:. 2239:. 2219:. 2166:. 2159:. 2145:. 2121:. 2114:. 2100:. 2075:. 2068:. 2058:. 2054:. 2034:. 2027:. 2017:. 2013:. 1991:. 1984:. 1970:. 1948:. 1941:. 1927:. 1906:. 1899:. 1885:. 1857:. 1847:. 1822:. 1815:. 1805:. 1801:. 1780:. 1773:. 1759:. 1735:. 1720:. 1703:. 1688:. 1670:. 1655:. 1634:. 1624:. 1620:. 1596:. 1561:. 1523:. 1488:. 1478:. 1474:. 1426:48 1342:16 1313:17 1284:18 1255:19 1226:20 1197:21 1168:22 1139:23 1110:24 1081:25 1052:26 1023:27 994:28 974:6 971:8 965:29 936:30 907:31 839:11 822:10 805:01 788:00 761:26 750:24 716:, 704:28 693:24 675:. 616:11 467:24 410:. 378:32 364:24 324:. 309:. 259:. 220:. 208:24 171:32 121:24 61:. 45:A 2381:. 2362:. 2349:: 2335:. 2322:: 2308:. 2295:: 2247:: 2194:. 2153:: 2108:: 2062:: 2021:: 1978:: 1935:: 1893:: 1864:. 1851:: 1831:) 1809:: 1767:: 1641:. 1628:: 1603:. 1590:: 1568:. 1555:: 1530:. 1517:: 1495:. 1482:: 1423:/ 1405:/ 1339:/ 1310:/ 1281:/ 1252:/ 1223:/ 1194:/ 1165:/ 1136:/ 1107:/ 1078:/ 1049:/ 1020:/ 991:/ 962:/ 945:2 942:4 933:/ 916:2 913:2 904:/ 861:n 857:h 758:/ 747:/ 701:/ 690:/ 464:/ 447:0 443:1 375:/ 361:/ 205:/ 168:/ 118:/ 109:/ 34:. 20:)

Index

Subnetwork
Subnet (mathematics)

IP network
most-significant bits
IP addresses
host
Classless Inter-Domain Routing
Internet Protocol version 4
broadcast address
IPv6
bitmask
bitwise AND
dot-decimal notation
routers

network address
Dynamic Host Configuration Protocol
stateless address autoconfiguration
Internet Protocol version 4
IPv6
deployed
IPv4 address
IPv6 address
routing
routers
Ethernet
network switches
Classless Inter-Domain Routing
classful networking

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.