Knowledge

Størmer's theorem

Source 📝

1286:. Any musical tone can be broken into its fundamental frequency and harmonic frequencies, which are integer multiples of the fundamental. This series is conjectured to be the basis of natural harmony and melody. The tonal complexity of ratios between these harmonics is said to get more complex with higher prime factors. To limit this tonal complexity, an interval is said to be 635:-smooth squarefree number, 2): 1, 3, 5, 6, 10, 15, and 30, each of which leads to a Pell equation. The number of solutions per Pell equation required by Lehmer's method is max(3, (5 + 1)/2) = 3, so this method generates three solutions to each Pell equation, as follows. 1327:). That is, the only pairs of consecutive integers that have only powers of two and three in their prime factorizations are (1,2), (2,3), (3,4), and (8,9). If this is extended to the 5-limit, six additional superparticular ratios are available: 5/4 (the 270: 1269:
describe a computational procedure that, empirically, finds many but not all of the consecutive pairs of smooth numbers described by Størmer's theorem, and is much faster than using Pell's equation to find all solutions.
1202: 1068: 120: 2060: 1982: 1252:> 3, has a prime factor greater than or equal to 137. Størmer's theorem is an important part of his proof, in which he reduces the problem to the solution of 128 Pell equations. 136: 1891: 554: 396: 872:
primes is at most 3 − 2. Lehmer's result produces a tighter bound for sets of small primes: (2 − 1) × max(3,(
1282:, musical intervals can be described as ratios between positive integers. More specifically, they can be described as ratios between members of the 1584: 868:
Størmer's original result can be used to show that the number of consecutive pairs of integers that are smooth with respect to a set of
947: 933: 919: 897: 1105: 974: 1307:
Størmer's theorem allows all possible superparticular ratios in a given limit to be found. For example, in the 3-limit (
2145: 926:
OEIS also lists the number of pairs of this type where the larger of the two integers in the pair is square (sequence
1828: 1304:
are very important in just tuning theory as they represent ratios between adjacent members of the harmonic series.
57: 40: 43:
that there are only a finite number of pairs of this type, but Størmer gave a procedure for finding them all.
2140: 2093: 1987: 1909: 1662: 1255:
Several authors have extended Størmer's work by providing methods for listing the solutions to more general
265:{\displaystyle \left\{p_{1}^{e_{1}}p_{2}^{e_{2}}\cdots p_{k}^{e_{k}}\mid e_{i}\in \{0,1,2,\ldots \}\right\}} 851:= 1 are (31,4), (1921,248), and (119071,15372). The Pell solution (31,4) leads to the pair of consecutive 1542: 1844: 747:= 1 are (19,6), (721,228), and (27379,8658). The Pell solution (19,6) leads to the pair of consecutive 507: 349: 35:
that exist, for a given degree of smoothness, and provides a method for finding all such pairs using
828:= 1 are (11,2), (241,44), and (5291,966). The Pell solution (11,2) leads to the pair of consecutive 672: + 1)/2 for smoothness; the three pairs to be tested are (1,2), (8,9), and (49,50). Both 797:= 1 are (9,2), (161,36), and (2889,646). The Pell solution (9,2) leads to the pair of consecutive 1336: 1283: 1227: 1215:
wrote about this result, saying that it "is very pretty, and there are many applications of it."
774:= 1 are (7,2), (97,28), and (1351,390). The Pell solution (7,2) leads to the pair of consecutive 302:, in each one finding only the smallest solution. A simplified version of the procedure, due to 1820: 1301: 612: 2122: 2075: 1800: 1779: 1750: 1729: 1691: 1652: 1613: 1534: 1256: 306:, is described below; it solves fewer equations but finds more solutions in each equation. 8: 706:= 5, 49, and 485 Lehmer's method forms the three candidate pairs of consecutive numbers ( 2110: 1679: 1630: 1601: 1562: 1308: 406: 299: 1813: 1737:
Luo, Jia Gui (1991). "A generalization of the Störmer theorem and some applications".
882:
The number of consecutive pairs of integers that are smooth with respect to the first
287:-smooth numbers. Further, it gives a method of finding them all using Pell equations. 1824: 937: 1660:
Halsey, G. D.; Hewitt, Edwin (1972). "More on the superparticular ratios in music".
2102: 1715: 1671: 1640: 1593: 1554: 1344: 725: 501:
Lehmer's paper furthermore shows that applying a similar procedure to the equation
1815:
Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments
1787:
Mei, Han Fei; Sun, Sheng Fang (1997). "A further extension of Störmer's theorem".
2118: 2071: 1796: 1775: 1746: 1725: 1687: 1648: 1644: 1609: 1530: 1279: 343:-smooth numbers would be odd. Lehmer's method involves solving the Pell equation 1838: 28: 1621:
Conrey, J. B.; Holmstrom, M. A.; McLaughlin, T. L. (2013). "Smooth neighbors".
1348: 1320: 810: 779: 604: 32: 2134: 1720: 1703: 1316: 1294: 1235: 1231: 1212: 721: 318: 36: 20: 1808: 1699: 1558: 1340: 1260: 608: 494:. Thus one can find all such pairs by testing the numbers of this form for 303: 123: 1332: 1328: 1287: 833: 802: 616: 651:= 1 are (3,2), (17,12), and (99,70). Thus, for each of the three values 2114: 1683: 1605: 1324: 752: 677: 52: 1566: 2106: 1675: 1597: 856: 684:-smooth numbers, but (49,50) is not, as 49 has 7 as a prime factor. 1635: 953:
The size of the solutions can also be bounded: in the case where
805:
and the Pell solution (161,36) leads to the pair of consecutive
567:-smooth square-free numbers other than 1, yields those pairs of 1312: 673: 295:
Størmer's original procedure involves solving a set of roughly
1906:
Sun, Qi; Yuan, Ping Zhi (1989). "On the Diophantine equations
1234:(other than 8,9) in the case where one of the two powers is a 1197:{\displaystyle \log(x-1)<M(2+\log(4S)){\sqrt {S}}-\log(2).} 912:
2, 9, 81, 4375, 9801, 123201, 336141, 11859211, ... (sequence
755:; the other two solutions to the Pell equation do not lead to 1063:{\displaystyle \log(x)<M(2+\log(8S)){\sqrt {2S}}-\log(4),} 699:= 1 are (5,2), (49,20), and (485,198). From the three values 31:, gives a finite bound on the number of consecutive pairs of 1895:
Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl
720: + 1)/2: (2,3), (24,25), and (242,243). Of these, 942: 928: 914: 892: 16:
Gives a finite bound on pairs of consecutive smooth numbers
1420: 1408: 1384: 1372: 571:-smooth numbers separated by 2: the smooth pairs are then 279:. Then Størmer's theorem states that, for every choice of 1620: 1311:), the only possible superparticular ratios are 2/1 (the 1266: 1486: 890:
1, 4, 10, 23, 40, 68, 108, 167, 241, 345, ... (sequence
1789:
Journal of Jishou University (Natural Science Edition)
313:
be the given set of primes, and define a number to be
1990: 1912: 1847: 1108: 977: 843:= 30, the first three solutions to the Pell equation 820:= 15, the first three solutions to the Pell equation 789:= 10, the first three solutions to the Pell equation 510: 428:
Pell equations to solve. For each such equation, let
352: 139: 60: 1547:
Biographical Memoirs of Fellows of the Royal Society
766:= 6, the first three solutions to the Pell equation 739:= 5, the first three solutions to the Pell equation 691:= 3, the first three solutions to the Pell equation 643:= 1, the first three solutions to the Pell equation 283:, there are only finitely many pairs of consecutive 2083:Walker, D. T. (1967). "On the diophantine equation 1841:(1897). "Quelques théorèmes sur l'équation de Pell 1545:(1958). "Fredrik Carl Mulertz Stormer, 1874-1957". 1509:
Cao, Zhen Fu (1991). "On the Diophantine equation (
1207: 904:The largest integer from all these pairs, for each 130:-smooth numbers are defined as the set of integers 2054: 1976: 1885: 1812: 1360: 1196: 1062: 548: 390: 264: 114: 1819:(2nd ed.). New York: Da Capo Press. p.  1474: 1396: 658:= 3, 17, and 99, Lehmer's method tests the pair ( 2132: 1585:Proceedings of the American Mathematical Society 472:Then, as Lehmer shows, all consecutive pairs of 275:that can be generated by products of numbers in 863: 1263:criteria for the solutions to Pell equations. 1574:Chein, E. Z. (1976). "A note on the equation 115:{\displaystyle P=\{p_{1},p_{2},\dots p_{k}\}} 1659: 1492: 1293:when both its numerator and denominator are 254: 230: 109: 67: 1092:, and in the case where the smooth pair is 950:), as both types of pair arise frequently. 335:; otherwise there could be no consecutive 1719: 1634: 1267:Conrey, Holmstrom & McLaughlin (2013) 420:is generated as a product of a subset of 1757: 1241: 2055:{\displaystyle (ax^{n}+1)/(ax+1)=y^{2}} 1977:{\displaystyle (ax^{n}-1)/(ax-1)=y^{2}} 1905: 1837: 1541: 1464: 1439: 1366: 2133: 2082: 1807: 1786: 1698: 1480: 1468: 1460: 1426: 1414: 1402: 1390: 1378: 1573: 1223: 732:-smooth numbers but (242,243) is not. 603:To find the ten consecutive pairs of 1758:Mabkhout, M. (1993). "Minoration de 1768:Rend. Sem. Fac. Sci. Univ. Cagliari 1736: 1508: 1456: 1452: 1230:on the nonexistence of consecutive 321:if all its prime factors belong to 13: 1886:{\displaystyle x^{2}-Dy^{2}=\pm 1} 1273: 1088:is the product of all elements of 14: 2157: 1351:). All are musically meaningful. 1218: 1208:Generalizations and applications 476:-smooth numbers are of the form 465:is the largest of the primes in 441:be the generated solutions, for 290: 1708:Illinois Journal of Mathematics 1259:, or by providing more general 1226:used Størmer's method to prove 549:{\displaystyle x^{2}-Dy^{2}=1,} 391:{\displaystyle x^{2}-2qy^{2}=1} 2036: 2021: 2013: 1991: 1958: 1943: 1935: 1913: 1445: 1432: 1188: 1182: 1163: 1160: 1151: 1136: 1127: 1115: 1054: 1048: 1026: 1023: 1014: 999: 990: 984: 1: 2094:American Mathematical Monthly 1663:American Mathematical Monthly 1501: 339:-smooth numbers, because all 1645:10.1080/10586458.2013.768483 864:Number and size of solutions 595:solutions of that equation. 46: 7: 1278:In the musical practice of 627:-smooth squarefree numbers 623:= {2,3,5}. There are seven 10: 2162: 1493:Halsey & Hewitt (1972) 713: − 1)/2, ( 665: − 1)/2, ( 598: 2146:Theorems in number theory 1704:"On a Problem of Størmer" 1244:proved that every number 728:are pairs of consecutive 680:are pairs of consecutive 1893:et leurs applications". 1623:Experimental Mathematics 1354: 41:Thue–Siegel–Roth theorem 445:in the range from 1 to 2056: 1978: 1887: 1721:10.1215/ijm/1256067456 1559:10.1098/rsbm.1958.0021 1302:superparticular ratios 1198: 1064: 613:superparticular ratios 605:{2,3,5}-smooth numbers 550: 392: 266: 116: 39:. It follows from the 2057: 1979: 1888: 1465:Sun & Yuan (1989) 1257:diophantine equations 1199: 1065: 631:(omitting the eighth 551: 393: 267: 117: 2141:Mathematics of music 2064:Sichuan Daxue Xuebao 1988: 1910: 1845: 1739:Sichuan Daxue Xuebao 1461:Mei & Sun (1997) 1228:Catalan's conjecture 1106: 975: 587:is one of the first 573:(x − 1, x + 1) 508: 350: 137: 58: 964:are required to be 456:(inclusive), where 416:. Each such number 213: 188: 166: 2052: 1974: 1883: 1451:In particular see 1347:), and 81/80 (the 1309:Pythagorean tuning 1194: 1060: 546: 407:square-free number 388: 262: 192: 167: 145: 112: 1670:(10): 1096–1100. 1523:Chinese Sci. Bull 1171: 1037: 51:If one chooses a 25:Størmer's theorem 2153: 2126: 2079: 2061: 2059: 2058: 2053: 2051: 2050: 2020: 2006: 2005: 1983: 1981: 1980: 1975: 1973: 1972: 1942: 1928: 1927: 1902: 1892: 1890: 1889: 1884: 1873: 1872: 1857: 1856: 1834: 1818: 1804: 1783: 1754: 1733: 1723: 1695: 1656: 1638: 1617: 1570: 1538: 1496: 1490: 1484: 1478: 1472: 1449: 1443: 1436: 1430: 1424: 1418: 1412: 1406: 1400: 1394: 1388: 1382: 1376: 1370: 1364: 1323:), and 9/8 (the 1203: 1201: 1200: 1195: 1172: 1167: 1098: 1091: 1087: 1083: 1069: 1067: 1066: 1061: 1038: 1030: 967: 963: 956: 945: 931: 917: 895: 855:-smooth numbers 832:-smooth numbers 809:-smooth numbers 801:-smooth numbers 778:-smooth numbers 751:-smooth numbers 594: 586: 574: 570: 566: 563:ranges over all 562: 555: 553: 552: 547: 536: 535: 520: 519: 497: 493: 475: 468: 464: 455: 444: 440: 427: 423: 419: 415: 411: 404: 397: 395: 394: 389: 381: 380: 362: 361: 342: 338: 334: 324: 316: 312: 298: 286: 282: 278: 271: 269: 268: 263: 261: 257: 226: 225: 212: 211: 210: 200: 187: 186: 185: 175: 165: 164: 163: 153: 129: 121: 119: 118: 113: 108: 107: 92: 91: 79: 78: 2161: 2160: 2156: 2155: 2154: 2152: 2151: 2150: 2131: 2130: 2129: 2107:10.2307/2314877 2046: 2042: 2016: 2001: 1997: 1989: 1986: 1985: 1968: 1964: 1938: 1923: 1919: 1911: 1908: 1907: 1868: 1864: 1852: 1848: 1846: 1843: 1842: 1831: 1676:10.2307/2317424 1598:10.2307/2041579 1543:Chapman, Sydney 1504: 1499: 1491: 1487: 1479: 1475: 1450: 1446: 1437: 1433: 1425: 1421: 1413: 1409: 1401: 1397: 1389: 1385: 1377: 1373: 1365: 1361: 1357: 1300:. Furthermore, 1284:harmonic series 1280:just intonation 1276: 1274:In music theory 1242:Mabkhout (1993) 1221: 1210: 1166: 1107: 1104: 1103: 1093: 1089: 1085: 1074: 1029: 976: 973: 972: 965: 958: 954: 941: 927: 913: 891: 877: 866: 718: 711: 704: 670: 663: 656: 601: 588: 576: 572: 568: 564: 560: 531: 527: 515: 511: 509: 506: 505: 495: 490: 485:− 1)/2, ( 483: 477: 473: 466: 462: 457: 452: 446: 442: 438: 434: 429: 425: 424:, so there are 421: 417: 413: 409: 402: 376: 372: 357: 353: 351: 348: 347: 340: 336: 332: 326: 322: 314: 310: 296: 293: 284: 280: 276: 221: 217: 206: 202: 201: 196: 181: 177: 176: 171: 159: 155: 154: 149: 144: 140: 138: 135: 134: 127: 103: 99: 87: 83: 74: 70: 59: 56: 55: 49: 17: 12: 11: 5: 2159: 2149: 2148: 2143: 2128: 2127: 2101:(5): 504–513. 2080: 2049: 2045: 2041: 2038: 2035: 2032: 2029: 2026: 2023: 2019: 2015: 2012: 2009: 2004: 2000: 1996: 1993: 1971: 1967: 1963: 1960: 1957: 1954: 1951: 1948: 1945: 1941: 1937: 1934: 1931: 1926: 1922: 1918: 1915: 1903: 1882: 1879: 1876: 1871: 1867: 1863: 1860: 1855: 1851: 1835: 1829: 1805: 1791:(in Chinese). 1784: 1774:(2): 135–148. 1755: 1745:(4): 469–474. 1734: 1696: 1657: 1629:(2): 195–202. 1618: 1571: 1539: 1529:(4): 275–278. 1505: 1503: 1500: 1498: 1497: 1485: 1473: 1444: 1440:Chapman (1958) 1431: 1419: 1407: 1395: 1383: 1371: 1367:Størmer (1897) 1358: 1356: 1353: 1349:syntonic comma 1345:minor semitone 1343:), 25/24 (the 1339:), 16/15 (the 1321:perfect fourth 1275: 1272: 1232:perfect powers 1220: 1219:In mathematics 1217: 1209: 1206: 1205: 1204: 1193: 1190: 1187: 1184: 1181: 1178: 1175: 1170: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1078:= max(3, (max( 1071: 1070: 1059: 1056: 1053: 1050: 1047: 1044: 1041: 1036: 1033: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 998: 995: 992: 989: 986: 983: 980: 968:-smooth, then 924: 923: 902: 901: 875: 865: 862: 861: 860: 837: 814: 783: 760: 759:-smooth pairs. 733: 716: 709: 702: 685: 668: 661: 654: 600: 597: 557: 556: 545: 542: 539: 534: 530: 526: 523: 518: 514: 488: 481: 460: 450: 436: 432: 399: 398: 387: 384: 379: 375: 371: 368: 365: 360: 356: 330: 300:Pell equations 292: 289: 273: 272: 260: 256: 253: 250: 247: 244: 241: 238: 235: 232: 229: 224: 220: 216: 209: 205: 199: 195: 191: 184: 180: 174: 170: 162: 158: 152: 148: 143: 111: 106: 102: 98: 95: 90: 86: 82: 77: 73: 69: 66: 63: 48: 45: 37:Pell equations 33:smooth numbers 27:, named after 15: 9: 6: 4: 3: 2: 2158: 2147: 2144: 2142: 2139: 2138: 2136: 2124: 2120: 2116: 2112: 2108: 2104: 2100: 2096: 2095: 2090: 2086: 2081: 2077: 2073: 2069: 2065: 2047: 2043: 2039: 2033: 2030: 2027: 2024: 2017: 2010: 2007: 2002: 1998: 1994: 1969: 1965: 1961: 1955: 1952: 1949: 1946: 1939: 1932: 1929: 1924: 1920: 1916: 1904: 1900: 1896: 1880: 1877: 1874: 1869: 1865: 1861: 1858: 1853: 1849: 1840: 1839:Størmer, Carl 1836: 1832: 1830:0-306-71597-X 1826: 1822: 1817: 1816: 1810: 1809:Partch, Harry 1806: 1802: 1798: 1794: 1790: 1785: 1781: 1777: 1773: 1769: 1765: 1761: 1756: 1752: 1748: 1744: 1740: 1735: 1731: 1727: 1722: 1717: 1713: 1709: 1705: 1701: 1700:Lehmer, D. H. 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1665: 1664: 1658: 1654: 1650: 1646: 1642: 1637: 1632: 1628: 1624: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1586: 1581: 1577: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1507: 1506: 1494: 1489: 1482: 1481:Partch (1974) 1477: 1470: 1469:Walker (1967) 1466: 1462: 1458: 1454: 1448: 1441: 1438:As quoted by 1435: 1428: 1427:Lehmer (1964) 1423: 1416: 1415:Lehmer (1964) 1411: 1404: 1403:Lehmer (1964) 1399: 1392: 1391:Lehmer (1964) 1387: 1380: 1379:Lehmer (1964) 1375: 1368: 1363: 1359: 1352: 1350: 1346: 1342: 1338: 1335:), 10/9 (the 1334: 1330: 1326: 1322: 1318: 1317:perfect fifth 1314: 1310: 1305: 1303: 1299: 1297: 1292: 1290: 1285: 1281: 1271: 1268: 1264: 1262: 1258: 1253: 1251: 1247: 1243: 1239: 1237: 1233: 1229: 1225: 1216: 1214: 1213:Louis Mordell 1191: 1185: 1179: 1176: 1173: 1168: 1157: 1154: 1148: 1145: 1142: 1139: 1133: 1130: 1124: 1121: 1118: 1112: 1109: 1102: 1101: 1100: 1096: 1081: 1077: 1057: 1051: 1045: 1042: 1039: 1034: 1031: 1020: 1017: 1011: 1008: 1005: 1002: 996: 993: 987: 981: 978: 971: 970: 969: 961: 951: 949: 944: 939: 935: 930: 921: 916: 911: 910: 909: 907: 899: 894: 889: 888: 887: 885: 880: 878: 871: 858: 854: 850: 846: 842: 838: 835: 831: 827: 823: 819: 815: 812: 808: 804: 800: 796: 792: 788: 784: 781: 777: 773: 769: 765: 761: 758: 754: 750: 746: 742: 738: 734: 731: 727: 723: 719: 712: 705: 698: 694: 690: 686: 683: 679: 675: 671: 664: 657: 650: 646: 642: 638: 637: 636: 634: 630: 626: 622: 618: 614: 611:, giving the 610: 606: 596: 592: 584: 580: 543: 540: 537: 532: 528: 524: 521: 516: 512: 504: 503: 502: 499: 498:-smoothness. 491: 484: 470: 463: 453: 439: 408: 385: 382: 377: 373: 369: 366: 363: 358: 354: 346: 345: 344: 329: 320: 307: 305: 301: 291:The procedure 288: 258: 251: 248: 245: 242: 239: 236: 233: 227: 222: 218: 214: 207: 203: 197: 193: 189: 182: 178: 172: 168: 160: 156: 150: 146: 141: 133: 132: 131: 125: 124:prime numbers 104: 100: 96: 93: 88: 84: 80: 75: 71: 64: 61: 54: 44: 42: 38: 34: 30: 26: 22: 21:number theory 2098: 2092: 2088: 2084: 2067: 2063: 1898: 1894: 1814: 1795:(3): 42–44. 1792: 1788: 1771: 1767: 1763: 1759: 1742: 1738: 1711: 1707: 1667: 1661: 1626: 1622: 1592:(1): 83–84. 1589: 1583: 1579: 1575: 1550: 1546: 1526: 1522: 1518: 1514: 1510: 1488: 1476: 1447: 1434: 1429:, Theorem 8. 1422: 1417:, Theorem 7. 1410: 1398: 1393:, Theorem 2. 1386: 1381:, Theorem 1. 1374: 1362: 1341:minor second 1331:), 6/5 (the 1319:), 4/3 (the 1315:), 3/2 (the 1306: 1295: 1288: 1277: 1265: 1261:divisibility 1254: 1249: 1245: 1240: 1224:Chein (1976) 1222: 1211: 1094: 1079: 1075: 1072: 959: 952: 925: 905: 903: 883: 881: 873: 869: 867: 852: 848: 844: 840: 829: 825: 821: 817: 806: 798: 794: 790: 786: 775: 771: 767: 763: 756: 748: 744: 740: 736: 729: 714: 707: 700: 696: 692: 688: 681: 666: 659: 652: 648: 644: 640: 632: 628: 624: 620: 609:music theory 602: 590: 589:max(3, (max( 582: 578: 558: 500: 486: 479: 471: 458: 448: 430: 400: 327: 308: 304:D. H. Lehmer 294: 274: 50: 29:Carl Størmer 24: 18: 1553:: 257–279. 1333:minor third 1329:major third 1082:) + 1) / 2) 886:primes are 617:just tuning 593:) + 1) / 2) 426:2 − 1 412:other than 2135:Categories 1502:References 1457:Luo (1991) 1453:Cao (1991) 1337:minor tone 1325:whole step 1099:, we have 940:(sequence 938:triangular 847:− 60 824:− 30 793:− 20 770:− 12 743:− 10 53:finite set 2070:: 20–24. 1953:− 1930:− 1878:± 1859:− 1714:: 57–79. 1636:1212.5161 1248:+ 1, for 1180:⁡ 1174:− 1149:⁡ 1122:− 1113:⁡ 1046:⁡ 1040:− 1012:⁡ 982:⁡ 695:− 6 647:− 2 522:− 401:for each 364:− 325:. Assume 252:… 228:∈ 215:∣ 190:⋯ 126:then the 97:… 47:Statement 1811:(1974). 1702:(1964). 879:+1)/2). 575:, where 447:max(3, ( 405:-smooth 2123:0211954 2115:2314877 2091:= ±1". 2076:1059671 1801:1490505 1780:1319302 1751:1148835 1730:0158849 1692:0313189 1684:2317424 1653:3047912 1614:0404133 1606:2041579 1535:1138803 1298:-smooth 946:in the 943:A117583 932:in the 929:A117582 918:in the 915:A117581 896:in the 893:A002071 857:(15,16) 811:(80,81) 726:(24,25) 599:Example 454:+ 1)/2) 2121:  2113:  2074:  1827:  1799:  1778:  1766:+1)". 1749:  1728:  1690:  1682:  1651:  1612:  1604:  1582:+ 1". 1567:769515 1565:  1533:  1517:-1) = 1513:- 1)/( 1467:, and 1313:octave 1291:-limit 1236:square 1073:where 753:(9,10) 619:) let 559:where 492:+ 1)/2 319:smooth 2111:JSTOR 1680:JSTOR 1631:arXiv 1602:JSTOR 1563:JSTOR 1355:Notes 936:) or 908:, is 834:(5,6) 803:(4,5) 780:(3,4) 722:(2,3) 678:(8,9) 674:(1,2) 1984:and 1901:(2). 1825:ISBN 1131:< 1084:and 994:< 957:and 948:OEIS 934:OEIS 920:OEIS 898:OEIS 839:For 816:For 785:For 762:For 735:For 724:and 687:For 676:and 639:For 615:for 607:(in 309:Let 2103:doi 2062:". 1716:doi 1672:doi 1641:doi 1594:doi 1555:doi 1521:". 1515:abx 1177:log 1146:log 1110:log 1097:± 1 1043:log 1009:log 979:log 435:, y 333:= 2 122:of 19:In 2137:: 2119:MR 2117:. 2109:. 2099:74 2097:. 2089:nY 2087:- 2085:mX 2072:MR 2068:26 2066:. 1897:. 1823:. 1821:73 1797:MR 1793:18 1776:MR 1772:63 1770:. 1747:MR 1743:28 1741:. 1726:MR 1724:. 1710:. 1706:. 1688:MR 1686:. 1678:. 1668:79 1666:. 1649:MR 1647:. 1639:. 1627:22 1625:. 1610:MR 1608:. 1600:. 1590:56 1588:. 1578:= 1561:. 1549:. 1531:MR 1527:36 1525:. 1519:by 1511:ax 1463:, 1459:, 1455:, 1238:. 962:+1 922:). 900:). 581:, 469:. 23:, 2125:. 2105:: 2078:. 2048:2 2044:y 2040:= 2037:) 2034:1 2031:+ 2028:x 2025:a 2022:( 2018:/ 2014:) 2011:1 2008:+ 2003:n 1999:x 1995:a 1992:( 1970:2 1966:y 1962:= 1959:) 1956:1 1950:x 1947:a 1944:( 1940:/ 1936:) 1933:1 1925:n 1921:x 1917:a 1914:( 1899:I 1881:1 1875:= 1870:2 1866:y 1862:D 1854:2 1850:x 1833:. 1803:. 1782:. 1764:x 1762:( 1760:P 1753:. 1732:. 1718:: 1712:8 1694:. 1674:: 1655:. 1643:: 1633:: 1616:. 1596:: 1580:y 1576:x 1569:. 1557:: 1551:4 1537:. 1495:. 1483:. 1471:. 1442:. 1405:. 1369:. 1296:n 1289:n 1250:x 1246:x 1192:. 1189:) 1186:2 1183:( 1169:S 1164:) 1161:) 1158:S 1155:4 1152:( 1143:+ 1140:2 1137:( 1134:M 1128:) 1125:1 1119:x 1116:( 1095:x 1090:P 1086:S 1080:P 1076:M 1058:, 1055:) 1052:4 1049:( 1035:S 1032:2 1027:) 1024:) 1021:S 1018:8 1015:( 1006:+ 1003:2 1000:( 997:M 991:) 988:x 985:( 966:P 960:x 955:x 906:k 884:k 876:k 874:p 870:k 859:. 853:P 849:y 845:x 841:q 836:. 830:P 826:y 822:x 818:q 813:. 807:P 799:P 795:y 791:x 787:q 782:. 776:P 772:y 768:x 764:q 757:P 749:P 745:y 741:x 737:q 730:P 717:i 715:x 710:i 708:x 703:i 701:x 697:y 693:x 689:q 682:P 669:i 667:x 662:i 660:x 655:i 653:x 649:y 645:x 641:q 633:P 629:q 625:P 621:P 591:P 585:) 583:y 579:x 577:( 569:P 565:P 561:D 544:, 541:1 538:= 533:2 529:y 525:D 517:2 513:x 496:P 489:i 487:x 482:i 480:x 478:( 474:P 467:P 461:k 459:p 451:k 449:p 443:i 437:i 433:i 431:x 422:P 418:q 414:2 410:q 403:P 386:1 383:= 378:2 374:y 370:q 367:2 359:2 355:x 341:P 337:P 331:1 328:p 323:P 317:- 315:P 311:P 297:3 285:P 281:P 277:P 259:} 255:} 249:, 246:2 243:, 240:1 237:, 234:0 231:{ 223:i 219:e 208:k 204:e 198:k 194:p 183:2 179:e 173:2 169:p 161:1 157:e 151:1 147:p 142:{ 128:P 110:} 105:k 101:p 94:, 89:2 85:p 81:, 76:1 72:p 68:{ 65:= 62:P

Index

number theory
Carl Størmer
smooth numbers
Pell equations
Thue–Siegel–Roth theorem
finite set
prime numbers
Pell equations
D. H. Lehmer
smooth
square-free number
{2,3,5}-smooth numbers
music theory
superparticular ratios
just tuning
(1,2)
(8,9)
(2,3)
(24,25)
(9,10)
(3,4)
(4,5)
(80,81)
(5,6)
(15,16)
A002071
OEIS
A117581
OEIS
A117582

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.