Knowledge

Spatial network

Source đź“ť

943:, spatial networks have been also studied intensively during the 1970s in quantitative geography. Objects of studies in geography are inter alia locations, activities and flows of individuals, but also networks evolving in time and space. Most of the important problems such as the location of nodes of a network, the evolution of transportation networks and their interaction with population and activity density are addressed in these earlier studies. On the other side, many important points still remain unclear, partly because at that time datasets of large networks and larger computer capabilities were lacking. Recently, spatial networks have been the subject of studies in 27: 60: 908:
Decomposition of a space map into a complete set of intersecting axial lines or overlapping convex spaces produces the axial map or overlapping convex map respectively. Algorithmic definitions of these maps exist, and this allows the mapping from an arbitrary shaped space map to a network amenable to graph mathematics to be carried out in a relatively well defined manner. Axial maps are used to analyse
907:
as the spatial elements. Loosely, an axial line is the 'longest line of sight and access' through open space, and a convex space the 'maximal convex polygon' that can be drawn in open space. Each of these elements is defined by the geometry of the local boundary in different regions of the space map.
814:
There are examples of networks, which seem to be not "directly" embedded in space. Social networks for instance connect individuals through friendship relations. But in this case, space intervenes in the fact that the connection probability between two individuals usually decreases with the distance
863:
In the "real" world, many aspects of networks are not deterministic - randomness plays an important role. For example, new links, representing friendships, in social networks are in a certain manner random. Modelling spatial networks in respect of stochastic operations is consequent. In many cases
806:. Planar networks build up an important group out of the spatial networks, but not all spatial networks are planar. Indeed, the airline passenger networks is a non-planar example: Many large airports in the world are connected through direct flights. 899:. It can be notoriously difficult to decide what a spatial element should be in complex spaces involving large open areas or many interconnected paths. The originators of space syntax, Bill Hillier and Julienne Hanson use 770:
alone does not contain all the information. Characterizing and understanding the structure, resilience and the evolution of spatial networks is crucial for many different fields ranging from urbanism to epidemiology.
831:
for the same set of points. Voronoi tessellations are interesting for spatial networks in the sense that they provide a natural representation model to which one can compare a real world network.
873: 576: 786:
One might think of the 'space map' as being the negative image of the standard map, with the open space cut out of the background buildings or walls.
738:(see figure in the right), where nodes are distributed uniformly at random over a two-dimensional plane; a pair of nodes are connected if the 900: 1143: 1122: 683: 779:
An urban spatial network can be constructed by abstracting intersections as nodes and streets as links, which is referred to as a
1209: 916:
where space patterns are often more convexly articulated, however both convex and axial maps may be used in either situation.
780: 1254: 566: 295: 827:, which is a way of dividing space into a number of regions. The dual graph for a Voronoi diagram corresponds to the 1249: 1170: 961: 924: 839:
Examining the topology of the nodes and edges itself is another way to characterize networks. The distribution of
640: 223: 1234: 536: 802:
In many applications, such as railways, roads, and other transportation networks, the network is assumed to be
526: 868:
is used to approximate data sets of processes on spatial networks. Other stochastic aspects of interest are:
521: 1244: 1239: 920: 676: 635: 152: 912:, where the system generally comprises linear segments, whereas convex maps are more often used to analyse 707: 481: 325: 272: 87: 516: 852: 956: 879: 645: 551: 546: 511: 310: 208: 147: 233: 996: 669: 571: 531: 38: 429: 1095:
Hillier B, Hanson J, 1984, The social logic of space (Cambridge University Press, Cambridge, UK).
1011: 865: 652: 471: 238: 172: 127: 828: 735: 702: 556: 541: 456: 20: 1259: 1176: 986: 844: 840: 711: 657: 476: 446: 335: 290: 843:
of the nodes is often considered, regarding the structure of edges it is useful to find the
1118: 1053: 727: 424: 305: 8: 1001: 715: 461: 330: 320: 315: 167: 112: 102: 1057: 1216:. Washington, DC: Mathematical Association of America. pp. 174–194. Archived from 1069: 1043: 981: 884: 739: 300: 253: 228: 117: 107: 935:
While networks and graphs were already for a long time the subject of many studies in
919:
Currently, there is a move within the space syntax community to integrate better with
1217: 1166: 966: 947:, to connect probabilities and stochastic processes with networks in the real world. 743: 597: 263: 213: 122: 97: 1201: 794:
The following aspects are some of the characteristics to examine a spatial network:
1158: 1073: 1061: 940: 751: 356: 345: 243: 203: 187: 1065: 971: 824: 755: 592: 373: 157: 92: 46: 1205: 1162: 1006: 763: 759: 602: 408: 383: 378: 352: 341: 218: 182: 177: 137: 75: 766:
are all examples where the underlying space is relevant and where the graph's
1228: 991: 976: 909: 731: 561: 466: 451: 393: 142: 132: 1187: 904: 896: 848: 803: 506: 403: 258: 936: 26: 726:
objects, i.e., the nodes are located in a space equipped with a certain
944: 441: 398: 388: 30:
A random geometric graph, one of the simplest models of spatial network
606: 162: 1086:
M. Barthelemy, "Morphogenesis of Spatial Networks", Springer (2018).
59: 1194:. Contemporary Mathematics, no. 342, American Mathematical Society. 913: 767: 747: 723: 1048: 927:
they produce interlinks with commercially available GIS systems.
895:
Another definition of spatial network derives from the theory of
730:. The simplest mathematical realization of spatial network is a 1200: 890: 1141: 858: 789: 1226: 1142:Bandelt, Hans-JĂĽrgen; Chepoi, Victor (2008). 742:is smaller than a given neighborhood radius. 677: 1214:Geometry at Work: Papers in Applied Geometry 1144:"Metric graph theory and geometry: a survey" 1210:"Bridges between geometry and graph theory" 1034:Barthelemy, M. (2011). "Spatial Networks". 1033: 823:A spatial network can be represented by a 684: 670: 1047: 891:Approach from the theory of space syntax 25: 1227: 1098: 1029: 1027: 1192:Towards a Theory of Geometric Graphs 1186: 1111: 1089: 1080: 744:Transportation and mobility networks 16:Network representing spatial objects 1024: 939:, physics, mathematical sociology, 13: 14: 1271: 962:Spatial network analysis software 859:Probability and spatial networks 58: 1125:from the original on 2014-01-10 810:The way it is embedded in space 790:Characterizing spatial networks 1108:. Edward Arnold, London, 1969. 921:geographic information systems 1: 1106:Network analysis in geography 1104:P. Haggett and R.J. Chorley. 1066:10.1016/j.physrep.2010.11.002 1017: 847:, or the generalization, the 1153:. Contemporary Mathematics. 7: 1255:Application-specific graphs 950: 853:relative neighborhood graph 774: 760:social and contact networks 10: 1276: 1212:. In Gorini, C. A. (ed.). 957:Hyperbolic geometric graph 930: 764:biological neural networks 18: 878:Stochastic geometry: the 835:Mixing space and topology 537:Exponential random (ERGM) 204:Informational (computing) 1250:Environmental psychology 997:Topological graph theory 224:Scientific collaboration 19:Not to be confused with 1012:Interdependent networks 923:(GIS), and much of the 866:spatial Poisson process 653:Category:Network theory 173:Preferential attachment 1235:Geometric graph theory 1190:; et al. (2004). 1163:10.1090/conm/453/08795 829:Delaunay triangulation 781:transportation network 736:random geometric graph 542:Random geometric (RGG) 31: 21:Spatial neural network 987:Modularity (networks) 845:Minimum spanning tree 752:mobile phone networks 658:Category:Graph theory 29: 1245:Environmental design 1240:Architectural theory 874:Poisson line process 819:Voronoi tessellation 1058:2011PhR...499....1B 1002:Small-world network 462:Degree distribution 113:Community structure 1119:"Spatial Networks" 982:Percolation theory 885:Percolation theory 740:Euclidean distance 646:Network scientists 572:Soft configuration 32: 967:Cascading failure 880:ErdĹ‘s–RĂ©nyi graph 694: 693: 614: 613: 522:Bianconi–Barabási 416: 415: 234:Artificial neural 209:Telecommunication 1267: 1221: 1195: 1183: 1181: 1175:. Archived from 1148: 1134: 1133: 1131: 1130: 1115: 1109: 1102: 1096: 1093: 1087: 1084: 1078: 1077: 1051: 1031: 941:computer science 722:associated with 720:spatial elements 700:(sometimes also 686: 679: 672: 557:Stochastic block 547:Hyperbolic (HGN) 496: 495: 359: 348: 280: 279: 188:Social influence 62: 34: 33: 1275: 1274: 1270: 1269: 1268: 1266: 1265: 1264: 1225: 1224: 1202:Pisanski, TomaĹľ 1179: 1173: 1146: 1138: 1137: 1128: 1126: 1117: 1116: 1112: 1103: 1099: 1094: 1090: 1085: 1081: 1036:Physics Reports 1032: 1025: 1020: 972:Complex network 953: 933: 893: 861: 825:Voronoi diagram 798:Planar networks 792: 777: 703:geometric graph 698:spatial network 690: 628: 593:Boolean network 567:Maximum entropy 517:Barabási–Albert 434: 351: 340: 128:Controllability 93:Complex network 80: 67: 66: 65: 64: 63: 47:Network science 24: 17: 12: 11: 5: 1273: 1263: 1262: 1257: 1252: 1247: 1242: 1237: 1223: 1222: 1220:on 2007-09-27. 1197: 1196: 1184: 1182:on 2006-11-25. 1171: 1136: 1135: 1110: 1097: 1088: 1079: 1042:(1–3): 1–101. 1022: 1021: 1019: 1016: 1015: 1014: 1009: 1007:Chemical graph 1004: 999: 994: 989: 984: 979: 974: 969: 964: 959: 952: 949: 932: 929: 914:building plans 910:urban networks 892: 889: 888: 887: 882: 876: 860: 857: 837: 836: 821: 820: 815:between them. 812: 811: 800: 799: 791: 788: 776: 773: 692: 691: 689: 688: 681: 674: 666: 663: 662: 661: 660: 655: 649: 648: 643: 638: 630: 629: 627: 626: 623: 619: 616: 615: 612: 611: 610: 609: 600: 595: 587: 586: 582: 581: 580: 579: 574: 569: 564: 559: 554: 549: 544: 539: 534: 532:Watts–Strogatz 529: 524: 519: 514: 509: 501: 500: 492: 491: 487: 486: 485: 484: 479: 474: 469: 464: 459: 454: 449: 444: 436: 435: 433: 432: 427: 421: 418: 417: 414: 413: 412: 411: 406: 401: 396: 391: 386: 381: 376: 368: 367: 363: 362: 361: 360: 353:Incidence list 349: 342:Adjacency list 338: 333: 328: 323: 318: 313: 311:Data structure 308: 303: 298: 293: 285: 284: 276: 275: 269: 268: 267: 266: 261: 256: 251: 246: 241: 239:Interdependent 236: 231: 226: 221: 216: 211: 206: 198: 197: 193: 192: 191: 190: 185: 183:Network effect 180: 178:Balance theory 175: 170: 165: 160: 155: 150: 145: 140: 138:Social capital 135: 130: 125: 120: 115: 110: 105: 100: 95: 90: 82: 81: 79: 78: 72: 69: 68: 57: 56: 55: 54: 53: 50: 49: 43: 42: 15: 9: 6: 4: 3: 2: 1272: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1232: 1230: 1219: 1215: 1211: 1207: 1206:Randić, Milan 1203: 1199: 1198: 1193: 1189: 1185: 1178: 1174: 1172:9780821842393 1168: 1164: 1160: 1156: 1152: 1151:Contemp. Math 1145: 1140: 1139: 1124: 1120: 1114: 1107: 1101: 1092: 1083: 1075: 1071: 1067: 1063: 1059: 1055: 1050: 1045: 1041: 1037: 1030: 1028: 1023: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 993: 992:Random graphs 990: 988: 985: 983: 980: 978: 977:Planar graphs 975: 973: 970: 968: 965: 963: 960: 958: 955: 954: 948: 946: 942: 938: 928: 926: 922: 917: 915: 911: 906: 905:convex spaces 902: 898: 886: 883: 881: 877: 875: 871: 870: 869: 867: 856: 854: 850: 846: 842: 834: 833: 832: 830: 826: 818: 817: 816: 809: 808: 807: 805: 797: 796: 795: 787: 784: 782: 772: 769: 765: 761: 757: 753: 749: 745: 741: 737: 733: 729: 725: 721: 717: 713: 710:in which the 709: 705: 704: 699: 687: 682: 680: 675: 673: 668: 667: 665: 664: 659: 656: 654: 651: 650: 647: 644: 642: 639: 637: 634: 633: 632: 631: 624: 621: 620: 618: 617: 608: 604: 601: 599: 596: 594: 591: 590: 589: 588: 584: 583: 578: 577:LFR Benchmark 575: 573: 570: 568: 565: 563: 562:Blockmodeling 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 527:Fitness model 525: 523: 520: 518: 515: 513: 510: 508: 505: 504: 503: 502: 498: 497: 494: 493: 489: 488: 483: 480: 478: 475: 473: 470: 468: 467:Assortativity 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 439: 438: 437: 431: 428: 426: 423: 422: 420: 419: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 371: 370: 369: 365: 364: 358: 354: 350: 347: 343: 339: 337: 334: 332: 329: 327: 324: 322: 319: 317: 314: 312: 309: 307: 304: 302: 299: 297: 294: 292: 289: 288: 287: 286: 282: 281: 278: 277: 274: 271: 270: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 215: 212: 210: 207: 205: 202: 201: 200: 199: 196:Network types 195: 194: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 144: 143:Link analysis 141: 139: 136: 134: 133:Graph drawing 131: 129: 126: 124: 121: 119: 116: 114: 111: 109: 106: 104: 101: 99: 96: 94: 91: 89: 86: 85: 84: 83: 77: 74: 73: 71: 70: 61: 52: 51: 48: 45: 44: 40: 36: 35: 28: 22: 1260:Graph theory 1218:the original 1213: 1191: 1177:the original 1154: 1150: 1127:. Retrieved 1113: 1105: 1100: 1091: 1082: 1039: 1035: 934: 918: 897:space syntax 894: 862: 849:Steiner tree 838: 822: 813: 801: 793: 785: 778: 719: 701: 697: 695: 552:Hierarchical 507:Random graph 355: / 344: / 326:Neighborhood 248: 168:Transitivity 148:Optimization 1188:Pach, János 937:mathematics 901:axial lines 756:power grids 598:agent based 512:ErdĹ‘s–RĂ©nyi 153:Reciprocity 118:Percolation 103:Small-world 1229:Categories 1129:2014-01-10 1018:References 945:Statistics 625:Categories 482:Efficiency 477:Modularity 457:Clustering 442:Centrality 430:Algorithms 254:Dependency 229:Biological 108:Scale-free 1157:: 49–86. 1049:1010.0302 724:geometric 374:Bipartite 296:Component 214:Transport 163:Homophily 123:Evolution 98:Contagion 1208:(2000). 1123:Archived 951:See also 925:software 851:and the 775:Examples 768:topology 748:Internet 712:vertices 641:Software 603:Epidemic 585:Dynamics 499:Topology 472:Distance 409:Weighted 384:Directed 379:Complete 283:Features 244:Semantic 39:a series 37:Part of 1074:4627021 1054:Bibcode 931:History 732:lattice 706:) is a 425:Metrics 394:Labeled 264:on-Chip 249:Spatial 158:Closure 1169:  1072:  841:degree 804:planar 728:metric 636:Topics 490:Models 447:Degree 404:Random 357:matrix 346:matrix 336:Vertex 291:Clique 273:Graphs 219:Social 76:Theory 1180:(PDF) 1147:(PDF) 1070:S2CID 1044:arXiv 734:or a 716:edges 708:graph 622:Lists 452:Motif 399:Multi 389:Hyper 366:Types 306:Cycle 88:Graph 1167:ISBN 903:and 872:The 864:the 762:and 718:are 331:Path 321:Loop 316:Edge 259:Flow 1159:doi 1155:453 1062:doi 1040:499 714:or 607:SIR 301:Cut 1231:: 1204:; 1165:. 1149:. 1121:. 1068:. 1060:. 1052:. 1038:. 1026:^ 855:. 783:. 758:, 754:, 750:, 746:, 696:A 41:on 1161:: 1132:. 1076:. 1064:: 1056:: 1046:: 685:e 678:t 671:v 605:/ 23:.

Index

Spatial neural network

a series
Network science
Internet_map_1024.jpg
Theory
Graph
Complex network
Contagion
Small-world
Scale-free
Community structure
Percolation
Evolution
Controllability
Graph drawing
Social capital
Link analysis
Optimization
Reciprocity
Closure
Homophily
Transitivity
Preferential attachment
Balance theory
Network effect
Social influence
Informational (computing)
Telecommunication
Transport

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑