Knowledge

Evolving network

Source đź“ť

1340: 1314:. Many simple parameters exist to describe a static network (number of nodes, edges, path length, connected components), or to describe specific nodes in the graph such as the number of links or the clustering coefficient. These properties can then individually be studied as a time series using signal processing notions. For example, we can track the number of links established to a server per minute by looking at the successive snapshots of the network and counting these links in each snapshot. 53: 690: 1302:
display varying levels of rationality, improving the overall system rationality might be an evolutionary reason for the emergence of scale-free networks. They demonstrated this by applying evolutionary pressure on an initially random network which simulates a range of classic games, so that the network converges towards Nash equilibria while being allowed to re-wire. The networks become increasingly scale-free during this process.
769: 1326:
It may be important to look at properties which cannot be directly observed by treating evolving networks as a sequence of snapshots, such as the duration of contacts between nodes Other similar properties can be defined and then it is possible to instead track these properties through the evolution
1301:
In networked systems where competitive decision making takes place, game theory is often used to model system dynamics, and convergence towards equilibria can be considered as a driver of topological evolution. For example, Kasthurirathna and Piraveenan have shown that when individuals in a system
1347:
Almost all real world networks are evolving networks since they are constructed over time. By varying the respective probabilities described above, it is possible to use the expanded BA model to construct a network with nearly identical properties as many observed networks. Moreover, the concept of
1317:
Unfortunately, the analogy of snapshots to a motion picture also reveals the main difficulty with this approach: the time steps employed are very rarely suggested by the network and are instead arbitrary. Using extremely small time steps between each snapshot preserves resolution, but may actually
889:
and growth, where nodes are added to the network over time and are more likely to link to other nodes with high degree distributions. The BA model was first applied to degree distributions on the web, where both of these effects can be clearly seen. New web pages are added over time, and each new
1330:
Another issue with using successive snapshots is that only slight changes in network topology can have large effects on the outcome of algorithms designed to find communities. Therefore, it is necessary to use a non classical definition of communities which permits following the evolution of the
1272:
Further complications arise because nodes may be removed from the network with some probability. Additionally, existing links may be destroyed and new links between existing nodes may be created. The probability of these actions occurring may depend on time and may also be related to the node's
974:
The BA model was the first model to derive the network topology from the way the network was constructed with nodes and links being added over time. However, the model makes only the simplest assumptions necessary for a scale-free network to emerge, namely that there is linear growth and linear
997:
whereby the earliest nodes with high degree distributions continue to dominate the network indefinitely. However, this can be alleviated by introducing a fitness for each node, which modifies the probability of new links being created with that node or even of links to that node being removed.
1318:
obscure wider trends which only become visible over longer timescales. Conversely, using larger timescales loses the temporal order of events within each snapshot. Therefore, it may be difficult to find the appropriate timescale for dividing the evolution of a network into static snapshots.
1348:
scale free networks shows us that time evolution is a necessary part of understanding the network's properties, and that it is difficult to model an existing network as having been created instantaneously. Real evolving networks which are currently being studied include
1273:
fitness. Probabilities can be assigned to these events by studying the characteristics of the network in question in order to grow a model network with identical properties. This growth would take place with one of the following actions occurring at each time step:
716:
where people make and lose friends over time, thereby creating and destroying edges, and some people become part of new social networks or leave their networks, changing the nodes in the network. Evolving network concepts build on established
1107: 1001:
In order to preserve the preferential attachment from the BA model, this fitness is then multiplied by the preferential attachment based on degree distribution to give the true probability that a link is created which connects to node
1558: 964: 799:
Despite this achievement, both the ER and the Watts and Storgatz models fail to account for the formulation of hubs as observed in many real world networks. The degree distribution in the ER model follows a
1217: 1816: 1293:
In addition to growing network models as described above, there may be times when other methods are more useful or convenient for characterizing certain properties of evolving networks.
862: 776:
While the ER model's simplicity has helped it find many applications, it does not accurately describe many real world networks. The ER model fails to generate local clustering and
1491: 1310:
The most common way to view evolving networks is by considering them as successive static networks. This could be conceptualized as the individual still images which compose a
975:
preferential attachment. This minimal model does not capture variations in the shape of the degree distribution, variations in the degree exponent, or the size independent
867:
This exponent turns out to be approximately 3 for many real world networks, however, it is not a universal constant and depends continuously on the network's parameters
1240: 1263: 1130: 1012: 1867: 1595:
Kasthurirathna, Dharshana; Piraveenan, Mahendra. (2015). "Emergence of scale-free characteristics in socioecological systems with bounded rationality".
979:. Therefore, the original model has since been modified to more fully capture the properties of evolving networks by introducing a few new properties. 569: 1748: 1762:
Y. Chi, S. Zhu; X. Song; J. Tatemura; B.L. Tseng (2007). "Structural and temporal analysis of the blogosphere through community factorization".
1343:
Route map of the world's scheduled commercial airline traffic, 2009. This network evolves continuously as new routes are scheduled or cancelled.
900: 1687:
G. Palla; A. Barabasi; T. Vicsek; Y. Chi, S. Zhu, X. Song, J. Tatemura, and B.L. Tseng (2007). "Quantifying social group evolution".
1382: 676: 784:
was proposed, whereby a network is constructed as a regular ring lattice, and then nodes are rewired according to some probability
1138: 1620: 1132:
is the fitness, which may also depend on time. A decay of fitness with respect to time may occur and can be formalized by
559: 288: 1791: 17: 894:
which have high degree distributions than to nodes with only a few links. Formally this preferential attachment is:
633: 216: 1755: 529: 1686: 988: 519: 738: 514: 669: 628: 145: 1658: 1597: 822: 474: 318: 265: 80: 876: 509: 1361: 1353: 754: 638: 544: 539: 504: 303: 201: 140: 226: 1651: 1774: 781: 662: 564: 524: 31: 1765:
Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining
1383:
https://web.archive.org/web/20110718151116/http://www.zangani.com/blog/2007-1030-networkingscience
422: 1901: 1499: 886: 741:
paper. Probabilistic network theory then developed with the help of eight famous papers studying
645: 464: 231: 165: 120: 1769: 1763: 993:
One concern with the BA model is that the degree distributions of each nodes experience strong
976: 549: 534: 449: 1331:
community through a set of rules such as birth, death, merge, split, growth, and contraction.
1742: 1638: 1455:
Travers Jeffrey; Milgram Stanley (1969). "An Experimental Study of the Small World Problem".
1225: 709: 650: 469: 439: 328: 283: 1666: 1102:{\displaystyle \Pi (k_{i})={\frac {\eta _{i}k_{i}}{\displaystyle \sum _{j}\eta _{j}k_{j}}},} 1843: 1808: 1706: 1518: 1413: 1245: 1115: 801: 793: 417: 298: 8: 812:. Many networks are instead scale free, meaning that their degree distribution follows a 809: 789: 454: 323: 313: 308: 160: 105: 95: 1847: 1710: 1522: 1417: 1859: 1833: 1797: 1730: 1696: 1550: 1508: 1472: 1437: 882: 293: 246: 221: 110: 100: 1855: 1305: 1896: 1787: 1722: 1542: 1429: 1404:
Watts, D.J.; Strogatz, S.H. (1998). "Collective dynamics of 'small-world' networks".
1369: 994: 750: 590: 256: 206: 115: 90: 1801: 1387:"Linked: The New Science of Networks", A.-L. Barabási Perseus Publishing, Cambridge. 708:
since almost all real world networks evolve over time, either by adding or removing
1863: 1851: 1779: 1734: 1714: 1534: 1526: 1464: 1441: 1421: 701: 349: 338: 236: 196: 180: 712:
or links over time. Often all of these processes occur simultaneously, such as in
1554: 1349: 777: 713: 705: 585: 366: 241: 150: 85: 39: 1613: 1530: 1667:"Impact of human mobility on the design of opportunistic forwarding algorithms" 1365: 734: 718: 693:
Animation of an evolving network according to the initial Barabasi–Albert model
595: 401: 376: 371: 345: 334: 211: 175: 170: 130: 68: 1339: 881:
The Barabási–Albert (BA) model was the first widely accepted model to produce
1890: 742: 554: 459: 444: 386: 135: 125: 1783: 761:
labeled nodes where each pair of nodes is connected by a preset probability
746: 721:
and are now being introduced into studying networks in many diverse fields.
1726: 1581:
Albert R. and Barabási A.-L., "Statistical mechanics of complex networks",
1546: 730: 499: 396: 251: 1761: 1538: 1433: 1838: 1513: 805: 788:. This produces a locally clustered network and dramatically reduces the 1718: 1665:
A. Chaintreau; P. Hui; J. Crowcroft; C. Diot; R. Gass; J. Scott (2006).
689: 1476: 434: 391: 381: 1664: 1824: 870: 813: 599: 155: 1468: 959:{\displaystyle p_{i}={\frac {k_{i}}{\displaystyle \sum _{j}k_{j}}},} 52: 1357: 1306:
Treat evolving networks as successive snapshots of a static network
780:
as often as they are found in real world networks. Therefore, the
729:
The study of networks traces its foundations to the development of
704:
that change as a function of time. They are a natural extension of
1701: 1425: 1680: 1288: 768: 891: 1492:"Topology of Evolving Networks: Local Events and Universality" 1454: 804:, while the Watts and Strogatz model produces graphs that are 1817:"Networks in life: scaling properties and eigenvalue spectra" 1311: 1814: 1212:{\displaystyle \Pi (k_{i})\propto k_{i}(t-t_{i})^{-\nu },} 1403: 1594: 890:
page is more likely to link to highly visible hubs like
1489: 1815:
I. Farkas; I. Derenyi; H. Heong; et al. (2002).
1611: 1248: 1228: 1141: 1118: 1062: 1015: 929: 903: 825: 1267: 1605: 1257: 1234: 1211: 1124: 1101: 958: 871:First evolving network model – scale-free networks 856: 1296: 1888: 1289:Other ways of characterizing evolving networks 670: 1747:: CS1 maint: multiple names: authors list ( 1321: 724: 1483: 1327:of a network and visualize them directly. 757:(ER) supposes that a graph is composed of 677: 663: 1837: 1773: 1700: 1612:Pierre Borgnat; Eric Fleury; et al. 1512: 885:. This was accomplished by incorporating 1338: 969: 792:, creating networks which represent the 767: 688: 14: 1889: 796:observed in many real world networks. 857:{\displaystyle P(k)\sim k^{-\gamma }} 1448: 24: 1490:R. Albert; A.-L. Barabási (2000). 1375: 1142: 1016: 25: 1913: 1397: 1381:"Understanding Network Science," 1268:Removing nodes and rewiring links 737:in 1736 when he wrote the famous 51: 1626:from the original on 2011-08-12 1564:from the original on 2010-12-24 1334: 1588: 1575: 1297:Convergence towards equilibria 1276:Prob p: add an internal link. 1194: 1174: 1158: 1145: 1032: 1019: 989:Fitness model (network theory) 835: 829: 733:, which was first analyzed by 13: 1: 1856:10.1016/S0378-4371(02)01181-0 1391: 7: 1531:10.1103/PhysRevLett.85.5234 739:Seven Bridges of Königsberg 10: 1918: 1285:Prob 1-p-q-r: add a node. 986: 982: 874: 1583:Reviews of Modern Physics 1322:Define dynamic properties 725:Network theory background 530:Exponential random (ERGM) 197:Informational (computing) 782:Watts and Strogatz model 217:Scientific collaboration 1784:10.1145/1281192.1281213 1500:Physical Review Letters 1370:transportation networks 1354:communications networks 1282:Prob r: delete a node. 1279:Prob q: delete a link. 1235:{\displaystyle \gamma } 887:preferential attachment 646:Category:Network theory 166:Preferential attachment 1646:Cite journal requires 1344: 1259: 1236: 1213: 1126: 1103: 977:clustering coefficient 960: 858: 794:small world phenomenon 773: 694: 535:Random geometric (RGG) 1342: 1260: 1258:{\displaystyle \nu .} 1237: 1214: 1127: 1125:{\displaystyle \eta } 1104: 970:Additions to BA model 961: 877:Barabási–Albert model 859: 771: 692: 651:Category:Graph theory 1768:. pp. 163–172. 1246: 1226: 1139: 1116: 1013: 901: 823: 802:Poisson distribution 772:Watts–Strogatz graph 1848:2002PhyA..314...25F 1719:10.1038/nature05670 1711:2007Natur.446..664P 1614:"Evolving Networks" 1523:2000PhRvL..85.5234A 1418:1998Natur.393..440W 1362:movie actor network 883:scale-free networks 790:average path length 455:Degree distribution 106:Community structure 1598:Scientific Reports 1345: 1255: 1232: 1209: 1122: 1099: 1093: 1072: 956: 950: 939: 854: 774: 695: 639:Network scientists 565:Soft configuration 1695:(7136): 664–667. 1507:(24): 5234–5237. 1094: 1063: 995:positive feedback 951: 930: 755:ErdĹ‘s–RĂ©nyi model 698:Evolving networks 687: 686: 607: 606: 515:Bianconi–Barabási 409: 408: 227:Artificial neural 202:Telecommunication 18:Evolving networks 16:(Redirected from 1909: 1882: 1881: 1879: 1878: 1872: 1866:. Archived from 1841: 1839:cond-mat/0303106 1821: 1812: 1806: 1805: 1777: 1759: 1753: 1752: 1746: 1738: 1704: 1684: 1678: 1677: 1671: 1662: 1656: 1655: 1649: 1644: 1642: 1634: 1632: 1631: 1625: 1618: 1609: 1603: 1602: 1592: 1586: 1579: 1573: 1572: 1570: 1569: 1563: 1516: 1514:cond-mat/0005085 1496: 1487: 1481: 1480: 1452: 1446: 1445: 1412:(6684): 409–10. 1401: 1264: 1262: 1261: 1256: 1241: 1239: 1238: 1233: 1218: 1216: 1215: 1210: 1205: 1204: 1192: 1191: 1173: 1172: 1157: 1156: 1131: 1129: 1128: 1123: 1108: 1106: 1105: 1100: 1095: 1092: 1091: 1082: 1081: 1071: 1061: 1060: 1059: 1050: 1049: 1039: 1031: 1030: 965: 963: 962: 957: 952: 949: 948: 938: 928: 927: 918: 913: 912: 863: 861: 860: 855: 853: 852: 778:triadic closures 679: 672: 665: 550:Stochastic block 540:Hyperbolic (HGN) 489: 488: 352: 341: 273: 272: 181:Social influence 55: 27: 26: 21: 1917: 1916: 1912: 1911: 1910: 1908: 1907: 1906: 1887: 1886: 1885: 1876: 1874: 1870: 1819: 1813: 1809: 1794: 1760: 1756: 1740: 1739: 1685: 1681: 1669: 1663: 1659: 1647: 1645: 1636: 1635: 1629: 1627: 1623: 1616: 1610: 1606: 1593: 1589: 1580: 1576: 1567: 1565: 1561: 1494: 1488: 1484: 1469:10.2307/2786545 1453: 1449: 1402: 1398: 1394: 1378: 1376:Further reading 1350:social networks 1337: 1324: 1308: 1299: 1291: 1270: 1247: 1244: 1243: 1242:increases with 1227: 1224: 1223: 1197: 1193: 1187: 1183: 1168: 1164: 1152: 1148: 1140: 1137: 1136: 1117: 1114: 1113: 1087: 1083: 1077: 1073: 1067: 1055: 1051: 1045: 1041: 1040: 1038: 1026: 1022: 1014: 1011: 1010: 991: 985: 972: 944: 940: 934: 923: 919: 917: 908: 904: 902: 899: 898: 879: 873: 845: 841: 824: 821: 820: 727: 714:social networks 706:network science 683: 621: 586:Boolean network 560:Maximum entropy 510:Barabási–Albert 427: 344: 333: 121:Controllability 86:Complex network 73: 60: 59: 58: 57: 56: 40:Network science 23: 22: 15: 12: 11: 5: 1915: 1905: 1904: 1902:Network theory 1899: 1884: 1883: 1832:(1–4): 25–34. 1807: 1792: 1775:10.1.1.69.6959 1754: 1679: 1657: 1648:|journal= 1604: 1587: 1574: 1539:2047/d20000695 1482: 1463:(4): 425–443. 1447: 1395: 1393: 1390: 1389: 1388: 1385: 1377: 1374: 1366:World Wide Web 1336: 1333: 1323: 1320: 1312:motion picture 1307: 1304: 1298: 1295: 1290: 1287: 1269: 1266: 1254: 1251: 1231: 1220: 1219: 1208: 1203: 1200: 1196: 1190: 1186: 1182: 1179: 1176: 1171: 1167: 1163: 1160: 1155: 1151: 1147: 1144: 1121: 1110: 1109: 1098: 1090: 1086: 1080: 1076: 1070: 1066: 1058: 1054: 1048: 1044: 1037: 1034: 1029: 1025: 1021: 1018: 987:Main article: 984: 981: 971: 968: 967: 966: 955: 947: 943: 937: 933: 926: 922: 916: 911: 907: 875:Main article: 872: 869: 865: 864: 851: 848: 844: 840: 837: 834: 831: 828: 735:Leonhard Euler 726: 723: 719:network theory 685: 684: 682: 681: 674: 667: 659: 656: 655: 654: 653: 648: 642: 641: 636: 631: 623: 622: 620: 619: 616: 612: 609: 608: 605: 604: 603: 602: 593: 588: 580: 579: 575: 574: 573: 572: 567: 562: 557: 552: 547: 542: 537: 532: 527: 525:Watts–Strogatz 522: 517: 512: 507: 502: 494: 493: 485: 484: 480: 479: 478: 477: 472: 467: 462: 457: 452: 447: 442: 437: 429: 428: 426: 425: 420: 414: 411: 410: 407: 406: 405: 404: 399: 394: 389: 384: 379: 374: 369: 361: 360: 356: 355: 354: 353: 346:Incidence list 342: 335:Adjacency list 331: 326: 321: 316: 311: 306: 304:Data structure 301: 296: 291: 286: 278: 277: 269: 268: 262: 261: 260: 259: 254: 249: 244: 239: 234: 232:Interdependent 229: 224: 219: 214: 209: 204: 199: 191: 190: 186: 185: 184: 183: 178: 176:Network effect 173: 171:Balance theory 168: 163: 158: 153: 148: 143: 138: 133: 131:Social capital 128: 123: 118: 113: 108: 103: 98: 93: 88: 83: 75: 74: 72: 71: 65: 62: 61: 50: 49: 48: 47: 46: 43: 42: 36: 35: 9: 6: 4: 3: 2: 1914: 1903: 1900: 1898: 1895: 1894: 1892: 1873:on 2011-10-04 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1840: 1835: 1831: 1827: 1826: 1818: 1811: 1803: 1799: 1795: 1793:9781595936097 1789: 1785: 1781: 1776: 1771: 1767: 1766: 1758: 1750: 1744: 1736: 1732: 1728: 1724: 1720: 1716: 1712: 1708: 1703: 1698: 1694: 1690: 1683: 1675: 1668: 1661: 1653: 1640: 1622: 1615: 1608: 1600: 1599: 1591: 1585:74, 47 (2002) 1584: 1578: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1515: 1510: 1506: 1502: 1501: 1493: 1486: 1478: 1474: 1470: 1466: 1462: 1458: 1451: 1443: 1439: 1435: 1431: 1427: 1426:10.1038/30918 1423: 1419: 1415: 1411: 1407: 1400: 1396: 1386: 1384: 1380: 1379: 1373: 1371: 1367: 1363: 1359: 1355: 1351: 1341: 1332: 1328: 1319: 1315: 1313: 1303: 1294: 1286: 1283: 1280: 1277: 1274: 1265: 1252: 1249: 1229: 1206: 1201: 1198: 1188: 1184: 1180: 1177: 1169: 1165: 1161: 1153: 1149: 1135: 1134: 1133: 1119: 1096: 1088: 1084: 1078: 1074: 1068: 1064: 1056: 1052: 1046: 1042: 1035: 1027: 1023: 1009: 1008: 1007: 1005: 999: 996: 990: 980: 978: 953: 945: 941: 935: 931: 924: 920: 914: 909: 905: 897: 896: 895: 893: 888: 884: 878: 868: 849: 846: 842: 838: 832: 826: 819: 818: 817: 816:of the form: 815: 811: 807: 803: 797: 795: 791: 787: 783: 779: 770: 766: 764: 760: 756: 752: 748: 744: 743:random graphs 740: 736: 732: 722: 720: 715: 711: 707: 703: 699: 691: 680: 675: 673: 668: 666: 661: 660: 658: 657: 652: 649: 647: 644: 643: 640: 637: 635: 632: 630: 627: 626: 625: 624: 617: 614: 613: 611: 610: 601: 597: 594: 592: 589: 587: 584: 583: 582: 581: 577: 576: 571: 570:LFR Benchmark 568: 566: 563: 561: 558: 556: 555:Blockmodeling 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 520:Fitness model 518: 516: 513: 511: 508: 506: 503: 501: 498: 497: 496: 495: 491: 490: 487: 486: 482: 481: 476: 473: 471: 468: 466: 463: 461: 460:Assortativity 458: 456: 453: 451: 448: 446: 443: 441: 438: 436: 433: 432: 431: 430: 424: 421: 419: 416: 415: 413: 412: 403: 400: 398: 395: 393: 390: 388: 385: 383: 380: 378: 375: 373: 370: 368: 365: 364: 363: 362: 358: 357: 351: 347: 343: 340: 336: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 285: 282: 281: 280: 279: 275: 274: 271: 270: 267: 264: 263: 258: 255: 253: 250: 248: 245: 243: 240: 238: 235: 233: 230: 228: 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 200: 198: 195: 194: 193: 192: 189:Network types 188: 187: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 147: 144: 142: 139: 137: 136:Link analysis 134: 132: 129: 127: 126:Graph drawing 124: 122: 119: 117: 114: 112: 109: 107: 104: 102: 99: 97: 94: 92: 89: 87: 84: 82: 79: 78: 77: 76: 70: 67: 66: 64: 63: 54: 45: 44: 41: 38: 37: 33: 29: 28: 19: 1875:. Retrieved 1868:the original 1829: 1823: 1810: 1764: 1757: 1743:cite journal 1692: 1688: 1682: 1673: 1660: 1639:cite journal 1628:. Retrieved 1607: 1596: 1590: 1582: 1577: 1566:. Retrieved 1504: 1498: 1485: 1460: 1456: 1450: 1409: 1405: 1399: 1346: 1335:Applications 1329: 1325: 1316: 1309: 1300: 1292: 1284: 1281: 1278: 1275: 1271: 1221: 1111: 1003: 1000: 992: 973: 880: 866: 798: 785: 775: 762: 758: 751:AlfrĂ©d RĂ©nyi 731:graph theory 728: 697: 696: 545:Hierarchical 500:Random graph 348: / 337: / 319:Neighborhood 161:Transitivity 141:Optimization 1601:. In Press. 806:homogeneous 745:written by 591:agent based 505:ErdĹ‘s–RĂ©nyi 146:Reciprocity 111:Percolation 96:Small-world 1891:Categories 1877:2011-04-21 1630:2011-10-26 1568:2011-10-26 1457:Sociometry 1392:References 747:Paul ErdĹ‘s 618:Categories 475:Efficiency 470:Modularity 450:Clustering 435:Centrality 423:Algorithms 247:Dependency 222:Biological 101:Scale-free 1770:CiteSeerX 1702:0704.0744 1250:ν 1230:γ 1202:ν 1199:− 1181:− 1162:∝ 1143:Π 1120:η 1075:η 1065:∑ 1043:η 1017:Π 932:∑ 850:γ 847:− 839:∼ 814:power law 367:Bipartite 289:Component 207:Transport 156:Homophily 116:Evolution 91:Contagion 1897:Networks 1802:15435799 1727:17410175 1621:Archived 1559:Archived 1547:11102229 1358:internet 702:networks 634:Software 596:Epidemic 578:Dynamics 492:Topology 465:Distance 402:Weighted 377:Directed 372:Complete 276:Features 237:Semantic 32:a series 30:Part of 1864:1803706 1844:Bibcode 1825:Physica 1735:4420074 1707:Bibcode 1674:Infocom 1519:Bibcode 1477:2786545 1442:4429113 1434:9623998 1414:Bibcode 983:Fitness 418:Metrics 387:Labeled 257:on-Chip 242:Spatial 151:Closure 1862:  1800:  1790:  1772:  1733:  1725:  1689:Nature 1553:  1545:  1475:  1440:  1432:  1406:Nature 1368:, and 1364:, the 1360:, the 1356:, the 1222:where 1112:Where 892:Google 810:degree 753:. The 629:Topics 483:Models 440:Degree 397:Random 350:matrix 339:matrix 329:Vertex 284:Clique 266:Graphs 212:Social 69:Theory 1871:(PDF) 1860:S2CID 1834:arXiv 1820:(PDF) 1798:S2CID 1731:S2CID 1697:arXiv 1670:(PDF) 1624:(PDF) 1617:(PDF) 1562:(PDF) 1555:81784 1551:S2CID 1509:arXiv 1495:(PDF) 1473:JSTOR 1438:S2CID 710:nodes 615:Lists 445:Motif 392:Multi 382:Hyper 359:Types 299:Cycle 81:Graph 1788:ISBN 1749:link 1723:PMID 1652:help 1543:PMID 1430:PMID 749:and 700:are 324:Path 314:Loop 309:Edge 252:Flow 1852:doi 1830:314 1780:doi 1715:doi 1693:446 1535:hdl 1527:doi 1465:doi 1422:doi 1410:393 808:in 600:SIR 294:Cut 1893:: 1858:. 1850:. 1842:. 1828:. 1822:. 1796:. 1786:. 1778:. 1745:}} 1741:{{ 1729:. 1721:. 1713:. 1705:. 1691:. 1672:. 1643:: 1641:}} 1637:{{ 1619:. 1557:. 1549:. 1541:. 1533:. 1525:. 1517:. 1505:85 1503:. 1497:. 1471:. 1461:32 1459:. 1436:. 1428:. 1420:. 1408:. 1372:. 1352:, 1006:. 765:. 34:on 1880:. 1854:: 1846:: 1836:: 1804:. 1782:: 1751:) 1737:. 1717:: 1709:: 1699:: 1676:. 1654:) 1650:( 1633:. 1571:. 1537:: 1529:: 1521:: 1511:: 1479:. 1467:: 1444:. 1424:: 1416:: 1253:. 1207:, 1195:) 1189:i 1185:t 1178:t 1175:( 1170:i 1166:k 1159:) 1154:i 1150:k 1146:( 1097:, 1089:j 1085:k 1079:j 1069:j 1057:i 1053:k 1047:i 1036:= 1033:) 1028:i 1024:k 1020:( 1004:i 954:, 946:j 942:k 936:j 925:i 921:k 915:= 910:i 906:p 843:k 836:) 833:k 830:( 827:P 786:β 763:p 759:N 678:e 671:t 664:v 598:/ 20:)

Index

Evolving networks
a series
Network science
Internet_map_1024.jpg
Theory
Graph
Complex network
Contagion
Small-world
Scale-free
Community structure
Percolation
Evolution
Controllability
Graph drawing
Social capital
Link analysis
Optimization
Reciprocity
Closure
Homophily
Transitivity
Preferential attachment
Balance theory
Network effect
Social influence
Informational (computing)
Telecommunication
Transport
Social

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑