Knowledge

Solid state ionics

Source 📝

498:(LiI) crystals could be increased 50 times by adding to it a fine powder of ‘’insulating’’ material (alumina). This effect was reproduced in the 1980s in Ag- and Tl-halides doped with alumina nanoparticles. Similarly, addition of insulating nanoparticles helped increase the conductivity of ionic polymers. These unexpected results were explained by charge separation at the matrix-nanoparticle interface that provided additional conductive channels to the matrix, and the small size of the filler particles was required to increase the area of this interface. Similar charge-separation effects were observed for grain boundaries in crystalline ionic conductors. 24: 329: 133: 444:
provided new ionic conduction mechanisms. A relatively wide range of conductivities was attained in glasses, wherein mobile ions were dynamically decoupled from the matrix. It was found that the conductivity could be increased by doping a glass with certain salts, or by using a glass mixture. The conductivity values could be as high as 0.03 S/cm at room temperature, with activation energies as low as 20 kJ/mol. Compared to crystals, glasses have
337:
AgI, AgCl and AgBr demonstrated that α-AgI, is thermally stable and highly conductive between 147 and 555 Â°C; the conductivity weakly increased with temperature in this range and then dropped upon melting. This behavior was fully reversible and excluded non-equilibrium effects. Tubandt and Lorenz described other materials with a similar behavior, such as α-CuI, α-CuBr, ÎČ-CuBr, and high-temperature phases of Ag
305:. Nernst was inspired by the dissociation theory of Arrhenius published in 1887, which relied on ions in solution. In 1889 he realized the similarity between electrochemical and chemical equilibria, and formulated his equation that correctly predicted the output voltage of various electrochemical cells based on liquid electrolytes from the thermodynamic properties of their components. 477:, was put forward, where ions moved through an electrically charged, rather than neutral, polymer matrix. Polymer electrolytes showed lower conductivities than glasses, but they were cheaper, much more flexible and could be easier machined and shaped into various forms. While ionic glasses are typically operated below, polymer conductors are typically heated above their 358: 308:
Besides his theoretical work, in 1897 Nernst patented the first lamp that used a solid electrolyte. Contrary to the existing carbon-filament lamps, Nernst lamp could operate in air and was twice more efficient as its emission spectrum was closer to that of daylight. AEG, a lighting company in Berlin,
455:
Historically, an evidence for ionic conductivity was provided back in the 1880s, when German scientists noticed that a well-calibrated thermometer made of Thuringian glass would show −0.5 Â°C instead of 0 Â°C when placed in ice shortly after immersion in boiling water, and recover only after
460:
develop the first accurate lithium-based thermometer. More systematic studies on ionic conductivity in glass appeared in 1884, but received broad attention only a century later. Several universal laws have been empirically formulated for ionic glasses and extended to other ionic conductors, such as
481:
temperatures. Consequently, both the electric field and mechanical deformation decay on a similar time scale in polymers, but not in glasses. Between 1983 and 2001 it was believed that the amorphous fraction is responsible for ionic conductivity, i.e., that (nearly) complete structural disorder is
97:
by Schottky and Wagner; this helped explain ionic and electronic transport in ionic crystals, ion-conducting glasses, polymer electrolytes and nanocomposites. In the late 20th and early 21st centuries, solid-state ionics focused on the synthesis and characterization of novel solid electrolytes and
336:
Among several solid electrolytes described in the 19th and early 20th century, α-AgI, the high-temperature crystalline form of silver iodide, is widely regarded as the most important one. Its electrical conduction was characterized by Carl Tubandt and E. Lorenz in 1914. Their comparative study of
557:
electrolyte sandwiched between molten-sodium anode and molten-sulfur cathode showed high energy densities and were considered for car batteries in the 1990s, but disregarded due to the brittleness of alumina, which resulted in cracks and critical failure due to reaction between molten sodium and
443:
The studies of crystalline ionic conductors where excess ions were provided by point defect continued through 1950s, and the specific mechanism of conduction was established for each compound depending on its ionic structure. The emergence of glassy and polymeric electrolytes in the late 1970s
1188:
Wagner C (1933). "Theorie der geordneten Mischphasen. III. Felordnungserscheinungen in polaren Verbindungen als Grundlage fĂŒr Ionen- und Elektronenleitung" [Theory of arranged mixed phases. III. Disarranged phenomena in polar compounds as basis for ionic and electronic conduction].
576:
is used as a solid electrolyte in oxygen sensors in cars, generating voltage that depends on the ratio of oxygen and exhaust gas and providing electronic feedback to the fuel injector. Such sensors are also installed at many metallurgical and glass-making factories. Similar sensors of
180:, but even the present-day terms for them. Faraday associated electric current in an electrolyte with the motion of ions, and discovered that ions can exchange their charges with an electrode while they were transformed into elements by electrolysis. He quantified those processes by 184:. The first law (1832) stated that the mass of a product at the electrode, Δm, increases linearly with the amount of charge passed through the electrolyte, Δq. The second law (1833) established the proportionality between Δm and the “electrochemical equivalent” and defined the 429:
Later in 1933, Wagner suggested that in metal oxides an excess of metal would result in extra electrons, while a deficit of metal would produce electron holes, i.e., that atomic non-stoichiometry would result in a mixed ionic-electronic conduction.
461:
the frequency dependence of electrical conductivity σ(Îœ) – σ(0) ~ Îœ, where the exponent p depends on the material, but not on temperature, at least below ~100 K. This behavior is a fingerprint of activated hopping conduction among nearby sites.
482:
essential for the fast ionic transport in polymers. However, a number of crystalline polymers have been described in 2001 and later with ionic conductivity as high as 0.01 S/cm 30 Â°C and activation energy of only 0.24 eV.
425:
Type-3 disorder does not occur in practice, and type 2 is observed only in rare cases when anions are smaller than cations, while both types 1 and 4 are common and show the same exp(-ΔG/2RT) temperature dependence.
369:
suggested that in an ionic crystal like AgI, in thermodynamic equilibrium, a small fraction of the cations, α, are displaced from their regular lattice sites into interstitial positions. He related α with the
148:, the first electrochemical battery, but failed to realize that ions are involved in the process. Meanwhile, in his work on decomposition of solutions by electric current, Faraday used not only the ideas of 42:) and their uses. Some materials that fall into this category include inorganic crystalline and polycrystalline solids, ceramics, glasses, polymers, and composites. Solid-state ionic devices, such as 140:
In the early 1830s, Michael Faraday laid the foundations of electrochemistry and solid-state ionics by discovering the motion of ions in liquid and solid electrolytes. Earlier, around 1800,
386:
10 at 400 Â°C. This idea naturally explained the presence of an appreciable fraction of mobile ions in otherwise defect-free ionic crystals, and thus the ionic conductivity in them.
203:, the conductivity increase upon heating was not sudden, but spread over a hundred degrees Celsius. Such behavior, called Faraday transition, is observed in the cation conductors Na 581:, chlorine and other gases based on solid silver halide electrolytes have been proposed in the 1980s–1990s. Since mid-1980s, a Li-based solid electrolyte is used to separate the 456:
several months. In 1883, they reduced this effect 10 times by replacing a mixture of sodium and potassium in the glass by either sodium or potassium. This finding helped
397:
in their 1929 theory, which described the equilibrium thermodynamics of point defects in ionic crystals. In particular, Wagner and Schottky related the deviations from
526:, they have never been commercialized due to a low overall energy content per unit weight (ca. 5 W·h/kg). On the contrary, LiI, which had a conductivity of only ca. 1 934:"Über ElektrizitĂ€tsleitung in festen kristallisierten Verbindungen. Zweite Mitteilung. ÜberfĂŒhrung und Wanderung der Ionen in einheitlichen festen Elektrolyten" 469:
In 1975, Peter V. Wright, a polymer chemist from Sheffield (UK), produced the first polymer electrolyte, which contained sodium and potassium salts in a
538:, Italy. Later models used as electrolyte a film of LiI, which was doped with alumina nanoparticles to increase its conductivity. LiI was formed in an 658:
Proceedings of the 9th Asian Conference on Solid State Ionics the science and technology of ions in motion: Jeju Island, South Korea, 6–11 June 2004
1662:
Owens, B. B. (2000). "Solid state electrolytes: Overview of materials and applications during the last third of the Twentieth Century".
518:) have been designed and tested in a wide range of temperatures and discharge currents. Despite the relatively high conductivity of RbAg 349:
Te. They associated the conductivity with cations in silver and cuprous halides and with ions and electrons in silver chalcogenides.
965:"Zeitschrift fĂŒr Elektrotechnik und Elektrochemie. Die Wissenschaftliche Elektrochemie der Gegenwart und die Technische der Zukunft" 46:, can be much more reliable and long-lasting, especially under harsh conditions, than comparable devices with fluid electrolytes. 570:
did not save this application because it did not solve the cracking problem, and because NASICON reacted with the molten sodium.
408:
Wagner and Schottky considered four extreme cases of point-defect disorder in a stoichiometric binary ionic crystal of type AB:
1824: 1720: 876: 109:
was coined in 1967 by Takehiko Takahashi, but did not become widely used until the 1980s, with the emergence of the journal
452:
and can be molded into any shape, but understanding their ionic transport was complicated by the lack of long-range order.
27:
Power density vs. energy density for different classes of solid state ionics systems used for energy storage and conversion
1571:
Scrosati, B.; Croce, F.; Appetecchi, G. B.; Persi, L. (1998). "Nanocomposite polymer electrolytes for lithium batteries".
1544:
Wieczorek, W.; Such, K.; PrzyƂuski, J.; FloriaƄczyk, Z. (1991). "Blend-based and composite polymer solid electrolytes".
290:, was a founding father of electrochemistry and chemical ionic theory, and received a Nobel prize in chemistry in 1909. 605: 665: 278:. In 1894 Ostwald explained the energy conversion in a fuel cell and stressed that its efficiency was not limited by 181: 1482:
Maier, J.; Reichert, B. (1986). "Ionic Transport in Heterogeneously and Homogeneously Doped Thallium (I)-Chloride".
1169:
Wagner, C.; Schottky, W. (1930). "Theorie der geordneten Mischphasen" [Theory of arranged mixed phases].
283: 1256:
Magistris, A.; Chiodelli, G.; Schiraldi, A. (1979). "Formation of high conductivity glasses in the system AgI-Ag
1646: 1622: 1509:
Shahi, K.; Wagner, J. B. (1980). "Fast ion transport in silver halide solid solutions and multiphase systems".
490:
In the 1970s–80s, it was realized that nanosized systems may affect ionic conductivity, opening a new field of
246:
in electrochemical cells, and in the early 20th century those numbers were determined for solid electrolytes.
317: 374:
for the formation of one mol of Frenkel pairs, ΔG, as α = exp(-ΔG/2RT), where T is temperature and R is the
111: 17: 1062:
Tubandt, C.; Lorenz, E. (1914). "Molekularzustand und elektrisches Leitvermögen kristallisierter Salze".
843: 918: 573: 1853: 1447:
Maier, J. (1987). "Defect Chemistry and Conductivity Effects in Heterogeneous Solid Electrolytes".
405:
of the crystal components, and explained the phenomenon of mixed electronic and ionic conduction.
332:
Temperature-dependent ionic conductivity of silver halides, original graph by Tubandt and Lorenz.
313:, which was a fortune at the time, and used 800 of Nernst lamps to illuminate their booth at the 1776:
Svensson, J. S. E. M.; Granqvist, C. G. (1985). "Electrochromic coatings for "smart windows"".
1704: 1698: 507: 239: 1736:
Knauth, P.; Tuller, H. L. (2004). "Solid-State Ionics: Roots, Status, and Future Prospects".
905: 613: 448:
properties, continuously tunable composition and good workability; they lack the detrimental
43: 1816: 1343:
Wright, P. V. (1975). "Electrical conductivity in ionic complexes of poly(ethylene oxide)".
1671: 1580: 1518: 1456: 1416: 1317: 1119: 776: 719: 534:. The first such device, based on undoped LiI, was implanted into a human in March 1972 in 531: 243: 119:, Italy, under the name "Fast Ion Transport in Solids, Solid State Batteries and Devices". 23: 8: 637: 601: 49:
The field of solid-state ionics was first developed in Europe, starting with the work of
1675: 1584: 1522: 1460: 1420: 1321: 1123: 780: 731: 723: 1830: 1749: 1596: 1206: 1135: 1079: 1015: 797: 764: 740: 707: 546:) cathode, and therefore was self-healed from erosion and cracks during the operation. 470: 402: 328: 1683: 1834: 1820: 1789: 1716: 1642: 1618: 1557: 1386: 1281: 1242: 1210: 1139: 1019: 872: 802: 745: 661: 267: 39: 1405:"Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes" 1083: 1812: 1785: 1745: 1708: 1679: 1600: 1588: 1553: 1526: 1491: 1464: 1424: 1382: 1352: 1325: 1277: 1238: 1198: 1127: 1071: 1007: 976: 945: 864: 792: 784: 735: 727: 478: 449: 314: 310: 287: 185: 141: 788: 421:
Pairs of A and B-type lattice vacancies with no interstitials (Schottky disorder).
188:
F as F = (Δq/Δm)(M/z), where M is the molar mass and z is the charge of the ion.
1636: 1617:. vol 8. P. Delahay and C. W. Tobias (eds.). New York: Wiley-Interscience. p. 1. 708:"Solid State Ionics: From Michael Faraday to green energy—the European dimension" 628:
discovered in the late 1960s, is widely used as a polymer electrolyte in PEMFCs.
582: 543: 474: 394: 294: 271: 132: 86: 66: 50: 35: 868: 270:. Their operation was largely understood in the late 1800s from the theories by 609: 495: 279: 275: 94: 62: 1110:
Frenkel, J. (1926). "Über die WĂ€rmebewegung in festen und flĂŒssigen Körpern".
191:
In 1834, Faraday discovered ionic conductivity in heated solid electrolytes Ag
1847: 1495: 1329: 980: 949: 621: 530:
10 S/cm at room temperature, found a wide-scale application in batteries for
398: 366: 82: 78: 1202: 1075: 1011: 806: 749: 418:
Pairs of interstitial cations A and interstitial anions B with no vacancies
415:
Pairs of interstitial anions B and lattice vacancies (anti-Frenkel defects)
375: 371: 259: 255: 177: 145: 1356: 1712: 594: 457: 390: 357: 302: 173: 90: 74: 1229:
Angell, C. (1983). "Fast ion motion in glassy and amorphous materials".
1131: 838: 491: 412:
Pairs of interstitial cations A and lattice vacancies (Frenkel defects)
115:. The first international conference on this topic was held in 1972 in 1468: 1429: 1404: 81:
in 1914. Around 1930, the concept of point defects was established by
1697:
Owens, B. B.; Oxley, J. E.; Sammels, A. F. (1977). Geller, S. (ed.).
625: 445: 263: 161: 116: 99: 1530: 1305: 1100:, part 1, W. Wien and F. Harms (eds.), Akadem. Verlagsges., Leipzig. 995: 964: 933: 298: 70: 1592: 1543: 597:, a window whose transparency is controlled by external voltage. 567: 535: 169: 1373:
Armand, M. (1983). "Polymer solid electrolytes – an overview".
617: 612:, a novel class of electrochemical energy storage devices, and 153: 165: 157: 1615:
Advances in Electrochemistry and Electrochemical Engineering
1570: 1255: 616:, devices that produces electricity from oxidizing a fuel. 473:(PEO) matrix. Later another type of polymer electrolytes, 293:
His work was continued by Walther Nernst, who derived the
600:
Solid-state ionic conductors are essential components of
149: 77:. Another major step forward was the characterization of 1484:
Berichte der Bunsengesellschaft fĂŒr physikalische Chemie
859:
O’Keeffe, M. (1976). Mahan, G. D.; Roth, W. L. (eds.).
542:
chemical reaction between the Li anode and iodine-poly(
323: 297:
and described ionic conduction in heterovalently doped
258:
stimulated a series of improved batteries, such as the
1641:. Cambridge: Cambridge University Press. p. 292. 1168: 494:. In 1973, it was reported that ionic conductivity of 69:
and detected ionic conduction in heterovalently doped
61:
in 1834. Fundamental contributions were later made by
1061: 996:"Über die Dissociation der in Wasser gelösten Stoffe" 849:
and other OED pages for the etymology of these terms
98:their applications in solid state battery systems, 938:Zeitschrift fĂŒr anorganische und allgemeine Chemie 506:By 1971, solid-state cells and batteries based on 352: 249: 1775: 1696: 1845: 969:Zeitschrift fĂŒr Elektrotechnik und Elektrochemie 378:; for a typical value of ΔG = 100 kJ/mol, α ~ 1 1152:Schottky, W.; Ulich, H. and Wagner, C. (1929) 660:. Singapore River Edge, NJ: World Scientific. 1481: 993: 891: 1735: 1294:Weber R. (1883) Berliner Akad. Wiss. II 1233 769:Science and Technology of Advanced Materials 712:Science and Technology of Advanced Materials 93:, including the development of point-defect 1508: 309:bought the Nernst’s patent for one million 1803:Granqvist, C. G. (2008). "Smart Windows". 549:Sodium-sulfur cells, based on ceramic ÎČ-Al 433: 1802: 1635:Yamamoto, O. (1995). Bruce, P. G. (ed.). 1428: 1306:"Ueber die Electrolyse des festen Glases" 796: 765:"Solid state ionics: A Japan perspective" 739: 1634: 1187: 858: 826:, Art. 1339, Taylor and Francis, London. 762: 701: 699: 697: 655: 356: 327: 131: 22: 1738:Journal of the American Ceramic Society 1442: 1440: 1398: 1396: 1368: 1366: 1303: 1224: 1222: 1220: 1109: 962: 931: 863:. New York: Plenum Press. p. 101. 756: 695: 693: 691: 689: 687: 685: 683: 681: 679: 677: 589:) and ion-storing film (typically LiCoO 464: 1846: 1449:Journal of the Electrochemical Society 1409:Journal of the Electrochemical Society 1372: 1342: 1228: 1164: 1162: 1057: 1055: 824:Experimental Researches in Electricity 1817:10.4028/www.scientific.net/AST.55.205 1661: 1446: 1402: 1045:Nernst, W. (1899) pp. 192 and 367 in 705: 1796: 1769: 1756: 1729: 1690: 1655: 1628: 1607: 1564: 1537: 1502: 1475: 1437: 1393: 1363: 1336: 1297: 1288: 1249: 1217: 818: 816: 674: 324:Ionic conductivity in silver halides 1181: 1159: 1146: 1103: 1098:Handbuch der Experimentalphysik XII 1090: 1052: 1039: 987: 606:proton exchange membrane fuel cells 13: 1805:Advances in Science and Technology 1762:Fischer W. A. and Janke D. (1975) 1750:10.1111/j.1151-2916.2002.tb00334.x 1026: 956: 925: 885: 836: 14: 1865: 852: 813: 649: 485: 144:used a liquid electrolyte in his 34:is the study of ionic-electronic 438: 16:For the scientific journal, see 501: 389:Frenkel’s idea was expanded by 353:Point defects in ionic crystals 250:First theories and applications 829: 127: 1: 1684:10.1016/S0378-7753(00)00436-5 789:10.1080/14686996.2017.1328955 732:10.1088/1468-6996/14/4/043502 643: 318:Exposition Universelle (1900) 1790:10.1016/0165-1633(85)90033-4 1764:Metallurgische Elektrochemie 1703:. Berlin: Springer. p.  1638:Solid State Electrochemistry 1558:10.1016/0379-6779(91)91792-9 1387:10.1016/0167-2738(83)90083-8 1282:10.1016/0013-4686(79)80025-0 1243:10.1016/0167-2738(83)90206-0 284:Jacobus Henricus van 't Hoff 38:and fully ionic conductors ( 18:Solid State Ionics (journal) 7: 869:10.1007/978-1-4615-8789-7_9 844:Online Etymology Dictionary 656:Chowdari, B. V. R. (2004). 631: 558:sulfur. Replacement of ÎČ-Al 401:in those crystals with the 10: 1870: 1049:, Spemann, Berlin, vol. 2. 574:Yttria-stabilized zirconia 122: 73:, which he applied in his 15: 282:. Ostwald, together with 1664:Journal of Power Sources 1496:10.1002/bbpc.19860900809 1330:10.1002/andp.18832570406 981:10.1002/bbpc.18940010403 950:10.1002/zaac.19211150106 763:Yamamoto, Osamu (2017). 382:10 at 100 Â°C and ~6 215:and anion conductors PbF 182:two laws of electrolysis 53:on solid electrolytes Ag 1511:Applied Physics Letters 1345:British Polymer Journal 1096:Tubandt, C. (1932) in: 434:Other types of disorder 301:, which he used in his 136:Michael Faraday in 1842 1778:Solar Energy Materials 1203:10.1515/zpch-1933-2213 1112:Zeitschrift fĂŒr Physik 1076:10.1515/zpch-1914-8737 1012:10.1515/zpch-1887-0164 994:Arrhenius, S. (1887). 892:Hittorf, J.W. (1892). 614:solid oxide fuel cells 508:rubidium silver iodide 362: 361:Frenkel defect in AgCl 333: 240:Johann Wilhelm Hittorf 137: 44:solid oxide fuel cells 28: 1403:Liang, C. C. (1973). 1357:10.1002/pi.4980070505 861:Superionic Conductors 602:lithium-ion batteries 532:artificial pacemakers 360: 331: 244:ion transport numbers 135: 26: 1713:10.1007/3540083383_4 1304:Warburg, E. (1884). 932:Tubandt, C. (1921). 465:Polymer electrolytes 1766:. Berlin: Springer. 1676:2000JPS....90....2O 1613:Owens B. B. (1971) 1585:1998Natur.394..456C 1523:1980ApPhL..37..757S 1461:1987JElS..134.1524M 1421:1973JElS..120.1289L 1322:1884AnP...257..622W 1270:Electrochimica Acta 1156:, Springer, Berlin. 1124:1926ZPhy...35..652F 1034:Theoretische Chemie 822:Faraday, M. (1839) 781:2017STAdM..18..504Y 724:2013STAdM..14d3502F 638:Solid-state battery 403:chemical potentials 1700:Solid Electrolytes 1375:Solid State Ionics 1310:Annalen der Physik 1231:Solid State Ionics 1132:10.1007/BF01379812 1032:Nernst, W. (1926) 706:Funke, K. (2013). 585:film (typically WO 471:polyethylene oxide 363: 334: 138: 112:Solid State Ionics 107:solid state ionics 65:, who derived the 40:solid electrolytes 32:Solid-state ionics 29: 1826:978-3-03813-226-4 1722:978-3-540-08338-2 1469:10.1149/1.2100703 1430:10.1149/1.2403248 1036:, Enke, Stuttgart 913:Missing or empty 878:978-1-4615-8791-0 837:Harper, Douglas. 311:German gold marks 268:lead acid battery 1861: 1854:Electrochemistry 1839: 1838: 1807:. Smart Optics. 1800: 1794: 1793: 1773: 1767: 1760: 1754: 1753: 1733: 1727: 1726: 1694: 1688: 1687: 1659: 1653: 1652: 1632: 1626: 1611: 1605: 1604: 1568: 1562: 1561: 1546:Synthetic Metals 1541: 1535: 1534: 1506: 1500: 1499: 1479: 1473: 1472: 1455:(6): 1524–1535. 1444: 1435: 1434: 1432: 1400: 1391: 1390: 1370: 1361: 1360: 1340: 1334: 1333: 1301: 1295: 1292: 1286: 1285: 1253: 1247: 1246: 1226: 1215: 1214: 1191:Z. Phys. Chem. B 1185: 1179: 1178: 1171:Z. Phys. Chem. B 1166: 1157: 1150: 1144: 1143: 1118:(8–9): 652–669. 1107: 1101: 1094: 1088: 1087: 1064:Z. Phys. Chem. B 1059: 1050: 1043: 1037: 1030: 1024: 1023: 991: 985: 984: 963:Ostwald (1894). 960: 954: 953: 929: 923: 922: 916: 911: 909: 901: 889: 883: 882: 856: 850: 848: 833: 827: 820: 811: 810: 800: 760: 754: 753: 743: 703: 672: 671: 653: 529: 479:glass transition 450:grain boundaries 385: 381: 288:Svante Arrhenius 242:reported on the 186:Faraday constant 142:Alessandro Volta 1869: 1868: 1864: 1863: 1862: 1860: 1859: 1858: 1844: 1843: 1842: 1827: 1801: 1797: 1774: 1770: 1761: 1757: 1734: 1730: 1723: 1695: 1691: 1660: 1656: 1649: 1633: 1629: 1612: 1608: 1569: 1565: 1542: 1538: 1531:10.1063/1.92023 1507: 1503: 1480: 1476: 1445: 1438: 1401: 1394: 1371: 1364: 1341: 1337: 1302: 1298: 1293: 1289: 1267: 1263: 1259: 1254: 1250: 1227: 1218: 1186: 1182: 1167: 1160: 1151: 1147: 1108: 1104: 1095: 1091: 1060: 1053: 1044: 1040: 1031: 1027: 992: 988: 961: 957: 930: 926: 914: 912: 903: 902: 890: 886: 879: 857: 853: 834: 830: 821: 814: 761: 757: 704: 675: 668: 654: 650: 646: 634: 610:supercapacitors 592: 588: 580: 565: 561: 556: 552: 544:2-vinylpyridine 527: 525: 521: 517: 513: 504: 488: 475:polyelectrolyte 467: 441: 436: 395:Walter Schottky 383: 379: 355: 348: 344: 340: 326: 295:Nernst equation 272:Wilhelm Ostwald 252: 238:Later in 1891, 234: 230: 226: 222: 218: 214: 210: 206: 202: 198: 194: 130: 125: 87:Walter Schottky 67:Nernst equation 60: 56: 51:Michael Faraday 36:mixed conductor 21: 12: 11: 5: 1867: 1857: 1856: 1841: 1840: 1825: 1795: 1768: 1755: 1728: 1721: 1689: 1654: 1647: 1627: 1606: 1563: 1536: 1501: 1474: 1436: 1392: 1362: 1351:(5): 319–327. 1335: 1316:(4): 622–646. 1296: 1287: 1265: 1261: 1257: 1248: 1216: 1180: 1158: 1145: 1102: 1089: 1051: 1038: 1025: 986: 975:(4): 122–125. 955: 924: 884: 877: 851: 828: 812: 775:(1): 504–527. 755: 673: 666: 647: 645: 642: 641: 640: 633: 630: 590: 586: 583:electrochromic 578: 563: 559: 554: 550: 523: 519: 515: 511: 503: 500: 496:lithium iodide 487: 486:Nanostructures 484: 466: 463: 440: 437: 435: 432: 423: 422: 419: 416: 413: 354: 351: 346: 342: 338: 325: 322: 280:thermodynamics 276:Walther Nernst 251: 248: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 192: 129: 126: 124: 121: 95:thermodynamics 63:Walther Nernst 58: 54: 9: 6: 4: 3: 2: 1866: 1855: 1852: 1851: 1849: 1836: 1832: 1828: 1822: 1818: 1814: 1810: 1806: 1799: 1791: 1787: 1783: 1779: 1772: 1765: 1759: 1751: 1747: 1743: 1739: 1732: 1724: 1718: 1714: 1710: 1706: 1702: 1701: 1693: 1685: 1681: 1677: 1673: 1669: 1665: 1658: 1650: 1644: 1640: 1639: 1631: 1624: 1620: 1616: 1610: 1602: 1598: 1594: 1593:10.1038/28818 1590: 1586: 1582: 1579:(6692): 456. 1578: 1574: 1567: 1559: 1555: 1551: 1547: 1540: 1532: 1528: 1524: 1520: 1516: 1512: 1505: 1497: 1493: 1489: 1485: 1478: 1470: 1466: 1462: 1458: 1454: 1450: 1443: 1441: 1431: 1426: 1422: 1418: 1414: 1410: 1406: 1399: 1397: 1388: 1384: 1380: 1376: 1369: 1367: 1358: 1354: 1350: 1346: 1339: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1300: 1291: 1283: 1279: 1275: 1271: 1252: 1244: 1240: 1236: 1232: 1225: 1223: 1221: 1212: 1208: 1204: 1200: 1196: 1192: 1184: 1176: 1172: 1165: 1163: 1155: 1154:Thermodynamik 1149: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1113: 1106: 1099: 1093: 1085: 1081: 1077: 1073: 1069: 1065: 1058: 1056: 1048: 1042: 1035: 1029: 1021: 1017: 1013: 1009: 1005: 1001: 1000:Z. Phys. Chem 997: 990: 982: 978: 974: 970: 966: 959: 951: 947: 943: 939: 935: 928: 920: 907: 899: 895: 894:Z. Phys. Chem 888: 880: 874: 870: 866: 862: 855: 846: 845: 840: 832: 825: 819: 817: 808: 804: 799: 794: 790: 786: 782: 778: 774: 770: 766: 759: 751: 747: 742: 737: 733: 729: 725: 721: 718:(4): 043502. 717: 713: 709: 702: 700: 698: 696: 694: 692: 690: 688: 686: 684: 682: 680: 678: 669: 667:9789812702586 663: 659: 652: 648: 639: 636: 635: 629: 627: 623: 622:fluoropolymer 620:, a flexible 619: 615: 611: 607: 603: 598: 596: 584: 575: 571: 569: 547: 545: 541: 537: 533: 509: 499: 497: 493: 483: 480: 476: 472: 462: 459: 453: 451: 447: 439:Ionic glasses 431: 427: 420: 417: 414: 411: 410: 409: 406: 404: 400: 399:stoichiometry 396: 392: 387: 377: 373: 368: 367:Yakov Frenkel 359: 350: 330: 321: 319: 316: 312: 306: 304: 300: 296: 291: 289: 285: 281: 277: 273: 269: 265: 261: 257: 247: 245: 241: 236: 189: 187: 183: 179: 175: 171: 167: 163: 159: 155: 151: 147: 143: 134: 120: 118: 114: 113: 108: 103: 102:and sensors. 101: 96: 92: 88: 84: 83:Yakov Frenkel 80: 79:silver iodide 76: 72: 68: 64: 52: 47: 45: 41: 37: 33: 25: 19: 1808: 1804: 1798: 1781: 1777: 1771: 1763: 1758: 1741: 1737: 1731: 1699: 1692: 1667: 1663: 1657: 1637: 1630: 1614: 1609: 1576: 1572: 1566: 1549: 1545: 1539: 1514: 1510: 1504: 1487: 1483: 1477: 1452: 1448: 1415:(10): 1289. 1412: 1408: 1378: 1374: 1348: 1344: 1338: 1313: 1309: 1299: 1290: 1273: 1269: 1251: 1234: 1230: 1194: 1190: 1183: 1174: 1170: 1153: 1148: 1115: 1111: 1105: 1097: 1092: 1067: 1063: 1046: 1041: 1033: 1028: 1003: 999: 989: 972: 968: 958: 941: 937: 927: 915:|title= 906:cite journal 897: 893: 887: 860: 854: 842: 831: 823: 772: 768: 758: 715: 711: 657: 651: 599: 572: 548: 539: 505: 502:Applications 489: 468: 454: 442: 428: 424: 407: 388: 376:gas constant 372:Gibbs energy 364: 335: 315:world’s fair 307: 292: 260:Daniell cell 256:voltaic pile 253: 237: 190: 178:electrolysis 146:voltaic pile 139: 110: 106: 104: 48: 31: 30: 1811:: 205–212. 1744:(7): 1654. 1381:: 745–754. 1197:: 181–194. 1070:: 513–543. 1047:Mutter Erde 1006:: 631–648. 944:: 105–126. 595:smart glass 458:Otto Schott 391:Carl Wagner 303:Nernst lamp 174:electrolyte 128:Foundations 91:Carl Wagner 75:Nernst lamp 1784:(6): 391. 1670:(1): 2–8. 1648:0521599490 1623:0471875260 1552:(3): 373. 1517:(8): 757. 1490:(8): 666. 1276:(2): 203. 644:References 608:(PEMFCs), 492:nanoionics 100:fuel cells 1835:212748428 1211:202044725 1140:121391169 1020:102373219 626:copolymer 593:) in the 446:isotropic 365:In 1926, 345:Se and Ag 264:fuel cell 195:S and PbF 162:electrode 117:Belgirate 105:The term 57:S and PbF 1848:Category 1237:: 3–16. 1084:99214772 807:28804526 750:27877585 632:See also 299:zirconia 207:S and Li 199:. In PbF 71:zirconia 1672:Bibcode 1601:4368681 1581:Bibcode 1519:Bibcode 1457:Bibcode 1417:Bibcode 1318:Bibcode 1120:Bibcode 798:5532972 777:Bibcode 741:5090311 720:Bibcode 568:NASICON 540:in situ 536:Ferrara 231:and LaF 170:cathode 123:History 1833:  1823:  1719:  1645:  1621:  1599:  1573:Nature 1209:  1177:: 163. 1138:  1082:  1018:  900:: 593. 875:  805:  795:  748:  738:  664:  618:Nafion 286:, and 227:, SrCl 154:cation 1831:S2CID 1597:S2CID 1207:S2CID 1136:S2CID 1080:S2CID 1016:S2CID 839:"ion" 566:with 510:(RbAg 341:S, Ag 223:, SrF 219:, CaF 166:anode 158:anion 1821:ISBN 1717:ISBN 1643:ISBN 1619:ISBN 1379:9–10 1235:9–10 919:help 873:ISBN 835:See 803:PMID 746:PMID 662:ISBN 393:and 274:and 266:and 254:The 176:and 89:and 1813:doi 1786:doi 1746:doi 1709:doi 1680:doi 1589:doi 1577:394 1554:doi 1527:doi 1492:doi 1465:doi 1453:134 1425:doi 1413:120 1383:doi 1353:doi 1326:doi 1314:257 1278:doi 1268:". 1260:O-B 1239:doi 1199:doi 1128:doi 1072:doi 1008:doi 977:doi 946:doi 942:115 865:doi 793:PMC 785:doi 736:PMC 728:doi 211:SiO 150:ion 1850:: 1829:. 1819:. 1809:55 1782:12 1780:. 1742:85 1740:. 1715:. 1707:. 1705:67 1678:. 1668:90 1666:. 1595:. 1587:. 1575:. 1550:45 1548:. 1525:. 1515:37 1513:. 1488:90 1486:. 1463:. 1451:. 1439:^ 1423:. 1411:. 1407:. 1395:^ 1377:. 1365:^ 1347:. 1324:. 1312:. 1308:. 1274:24 1272:. 1233:. 1219:^ 1205:. 1195:22 1193:. 1175:11 1173:. 1161:^ 1134:. 1126:. 1116:35 1114:. 1078:. 1068:24 1066:. 1054:^ 1014:. 1002:. 998:. 971:. 967:. 940:. 936:. 910:: 908:}} 904:{{ 898:10 896:. 871:. 841:. 815:^ 801:. 791:. 783:. 773:18 771:. 767:. 744:. 734:. 726:. 716:14 714:. 710:. 676:^ 604:, 577:CO 320:. 262:, 235:. 172:, 168:, 164:, 160:, 156:, 152:, 85:, 1837:. 1815:: 1792:. 1788:: 1752:. 1748:: 1725:. 1711:: 1686:. 1682:: 1674:: 1651:. 1625:. 1603:. 1591:: 1583:: 1560:. 1556:: 1533:. 1529:: 1521:: 1498:. 1494:: 1471:. 1467:: 1459:: 1433:. 1427:: 1419:: 1389:. 1385:: 1359:. 1355:: 1349:7 1332:. 1328:: 1320:: 1284:. 1280:: 1266:3 1264:O 1262:2 1258:2 1245:. 1241:: 1213:. 1201:: 1142:. 1130:: 1122:: 1086:. 1074:: 1022:. 1010:: 1004:1 983:. 979:: 973:1 952:. 948:: 921:) 917:( 881:. 867:: 847:. 809:. 787:: 779:: 752:. 730:: 722:: 670:. 624:- 591:2 587:3 579:2 564:3 562:O 560:2 555:3 553:O 551:2 528:× 524:5 522:I 520:4 516:5 514:I 512:4 384:× 380:× 347:2 343:2 339:2 233:3 229:2 225:2 221:2 217:2 213:4 209:4 205:2 201:2 197:2 193:2 59:2 55:2 20:.

Index

Solid State Ionics (journal)

mixed conductor
solid electrolytes
solid oxide fuel cells
Michael Faraday
Walther Nernst
Nernst equation
zirconia
Nernst lamp
silver iodide
Yakov Frenkel
Walter Schottky
Carl Wagner
thermodynamics
fuel cells
Solid State Ionics
Belgirate

Alessandro Volta
voltaic pile
ion
cation
anion
electrode
anode
cathode
electrolyte
electrolysis
two laws of electrolysis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑