Knowledge

Snapshot hyperspectral imaging

Source đź“ť

20: 121: 90:, a modernized version of Bowen's image slicer. More recently, a number of research groups have attempted to advance the technology in order to create devices capable of commercial use. These newer devices include the HyperPixel Array imager a derivative of the integral field spectrograph, a multiaperture spectral filter approach, a 69:
Although the first known reference to a snapshot hyperspectral imaging device—the Bowen "image slicer"—dates from 1938, the concept was not successful until a larger amount of spatial resolution was available. With the arrival of large-format detector arrays in the late 1980s and early 1990s, a
143:. One of the main reasons for the popularity of snapshot devices in the astronomical community is that they offer large increases in the light collection capacity of a telescope when performing hyperspectral imaging. Recent applications have been in soil spectroscopy and vegetation sciences. 112:
can be considered a basic snapshot hyperspectral imaging technique. Spaced point-like sources, such as a sparse field of stars, is a requirement to avoid spectrum overlap on the detector.
135:
While snapshot instruments are featured prominently in the research literature, none of these instruments have seen wide adoption in commercial use (i.e. outside the professional
61:
scanning techniques. The lack of moving parts means that motion artifacts should be avoided. This instrument typically features detector arrays with a high number of pixels.
203: 229: 355:
Bodkin, A., Sheinis, A., Daly, J., Beaven, S., Weinheimer, J. “Snapshot Hyperspectral Imaging – the Hyperpixel Array Camera”, Proc. SPIE, 7334-17, (2009)
540:
Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance.
70:
series of new snapshot hyperspectral imaging techniques were developed to take advantage of the new technology: a method which uses a
74:
bundle at the image plane and reformatting the fibers in the opposite end of the bundle to a long line, viewing a scene through a 2D
177: 499:
Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems
317:
3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER
31:
to which it is coupled. The bundle of fibers is reformatted and lined up at the entrance slit of a conventional
580: 565: 53:
during a single integration time of a detector array. No scanning is involved with this method, in contrast to
488:
eds. E. Mediavilla, S. Arribas, M. Roth, J. Cepa-Nogue, and F. Sanchez, Cambridge University Press (2009).
87: 79: 262:
I. S. Bowen, "The image slicer, a device for reducing loss of light at slit of stellar spectrograph",
575: 539: 139:
community) due to manufacturing limitations. Thus, their primary venue continues to be astronomical
405: 570: 385: 316: 296: 425: 365: 335:
L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L.E. Tacconi-Garman, M. Cameron and R. Genzel, "
243: 109: 50: 167: 157: 152: 128: 35: 8: 75: 58: 39: 32: 23:
Example of a snapshot hyperspectral imaging spectrometer. The scene is viewed through a
19: 182: 91: 54: 120: 223: 278:
S. C. Barden and R. A. Wade, "DensePak and spectral imaging with fiber optics", in
172: 162: 426:
Generalization of the Lyot filter and its application to snapshot spectral imaging
519:
Use of a Portable Camera for Proximal Soil Sensing with Hyperspectral Image Data
498: 486:
3D Spectroscopy in Astronomy, XVII Canary Island Winter School of Astrophysics,
95: 406:
Compact Image Slicing Spectrometer (ISS) hyperspectral fluorescence microscopy
559: 103: 518: 336: 99: 71: 28: 465: 445: 83: 210:. Optical Engineering. Archived from the original on 20 September 2015 140: 136: 124: 386:
Single disperser design for coded aperture snapshot spectral imaging
315:
R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, "
366:
Design and fabrication of a low-cost, multispectral imaging system
484:
M. A. Bershady, "3D spectroscopic instrumentation", to appear in
24: 98:, a microfaceted-mirror-based approach, a generalization of the 466:
Focal plane filter array engineering I: rectangular lattices
27:
array. Each lenslet transmits the light it receives to the
337:
3D: The next generation near-infrared imaging spectrometer
297:
Simultaneous acquisition of spectral image information
282:, Astronomical Society of the Pacific Conference Series 424:
A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, "
42:
the light across the entrance slit onto its detector.
538:
Aasen, H., Burkart, A., Bolten, A. and Bareth, G., "
497:
N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, "
384:
A. Wagadarikar, R. John, R. Willett, and D. Brady, "
544:ISPRS Journal of Photogrammetry and Remote Sensing 204:"Review of snapshot spectral imaging technologies" 557: 228:: CS1 maint: bot: original URL status unknown ( 464:I. J. Vaughn, A. S. Alenin, and J. S. Tyo, " 517:Jung, A., Vohland, M. and Thiele-Bruhn, S. " 295:Takayuki Okamoto and Ichirou Yamaguchi, " 16:Method for capturing hyperspectral images 201: 178:Computed tomography imaging spectrometer 119: 18: 446:Miniature snapshot multispectral imager 558: 404:L. Gao, R. T. Kester, T. S. Tkaczyk, " 341:Astronomy and Astrophysics Supplement 321:Astronomy and Astrophysics Supplement 106:approach to multispectral filtering. 444:N. Gupta, P. R. Ashe, and S. Tan, " 202:Hagen, Nathan; Kudenov, Michael W. 82:the multiplexed data with computed 13: 14: 592: 244:16 Handbook of Optical Components 242:Snapshot Techniques, Michels R. " 86:mathematics, the (lenslet-based) 532: 511: 491: 478: 458: 438: 418: 398: 378: 115: 358: 349: 329: 309: 289: 272: 256: 236: 195: 102:, and a generalization of the 64: 47:Snapshot hyperspectral imaging 1: 188: 7: 146: 88:integral field spectrograph 10: 597: 253:: 978-3-446-44115-6(2014). 49:is a method for capturing 280:Fiber Optics in Astronomy 529:(9): 11434-11448 (2015). 94:–based approach using a 132: 43: 581:Infrared spectroscopy 566:Satellite meteorology 415:: 12293-12308 (2009). 264:Astrophysical Journal 208:Spie. Digital Library 123: 110:Slitless spectroscopy 22: 168:Imaging spectrometer 158:Multi-spectral image 153:Imaging spectroscopy 129:Very Large Telescope 51:hyperspectral images 503:Optical Engineering 450:Optical Engineering 306:: 1277-1279 (1991). 92:compressive-sensing 435:: 5602-5608 (2010) 183:Video spectroscopy 133: 44: 549:, 245-259 (2015). 395:: B44-B51 (2008). 375:: F71-F76 (2008). 346:: 531-546 (1995). 326:: 347-357 (1995). 286:: 113-124 (1988). 269:: 113-124 (1938). 588: 576:Infrared imaging 550: 536: 530: 515: 509: 508:: 111702 (2012). 495: 489: 482: 476: 462: 456: 455:: 033203 (2011). 442: 436: 422: 416: 402: 396: 382: 376: 364:S. A. Mathews, " 362: 356: 353: 347: 333: 327: 313: 307: 293: 287: 276: 270: 260: 254: 240: 234: 233: 227: 219: 217: 215: 199: 173:Spectral imaging 163:Chemical imaging 127:acquired by the 596: 595: 591: 590: 589: 587: 586: 585: 556: 555: 554: 553: 537: 533: 516: 512: 496: 492: 483: 479: 463: 459: 443: 439: 423: 419: 403: 399: 383: 379: 363: 359: 354: 350: 334: 330: 314: 310: 294: 290: 277: 273: 261: 257: 241: 237: 221: 220: 213: 211: 200: 196: 191: 149: 118: 67: 17: 12: 11: 5: 594: 584: 583: 578: 573: 571:Remote sensing 568: 552: 551: 531: 523:Remote Sensing 510: 490: 477: 470:Optics Express 457: 437: 430:Optics Express 417: 410:Optics Express 397: 390:Applied Optics 377: 370:Applied Optics 357: 348: 328: 308: 301:Optics Letters 288: 271: 255: 235: 193: 192: 190: 187: 186: 185: 180: 175: 170: 165: 160: 155: 148: 145: 117: 114: 96:coded aperture 80:reconstructing 66: 63: 15: 9: 6: 4: 3: 2: 593: 582: 579: 577: 574: 572: 569: 567: 564: 563: 561: 548: 545: 541: 535: 528: 524: 520: 514: 507: 504: 500: 494: 487: 481: 474: 471: 467: 461: 454: 451: 447: 441: 434: 431: 427: 421: 414: 411: 407: 401: 394: 391: 387: 381: 374: 371: 367: 361: 352: 345: 342: 338: 332: 325: 322: 318: 312: 305: 302: 298: 292: 285: 281: 275: 268: 265: 259: 252: 249: 248:Hanser Verlag 245: 239: 231: 225: 209: 205: 198: 194: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 150: 144: 142: 138: 130: 126: 122: 113: 111: 107: 105: 101: 97: 93: 89: 85: 81: 77: 73: 62: 60: 56: 52: 48: 41: 37: 34: 30: 26: 21: 546: 543: 534: 526: 522: 513: 505: 502: 493: 485: 480: 475:: 10 (2017). 472: 469: 460: 452: 449: 440: 432: 429: 420: 412: 409: 400: 392: 389: 380: 372: 369: 360: 351: 343: 340: 331: 323: 320: 311: 303: 300: 291: 283: 279: 274: 266: 263: 258: 250: 247: 238: 212:. Retrieved 207: 197: 137:astronomical 134: 116:Applications 108: 104:Bayer filter 68: 46: 45: 36:spectrometer 100:Lyot filter 65:Development 59:whisk broom 560:Categories 214:2 February 189:References 141:telescopes 84:tomography 55:push broom 125:Data cube 40:disperses 224:cite web 147:See also 38:, which 251:445-464 76:grating 33:grating 25:lenslet 72:fiber 29:fiber 547:108: 230:link 216:2017 78:and 57:and 521:," 501:", 468:", 448:", 428:," 408:", 388:," 368:," 344:119 339:," 324:113 319:," 299:", 246:", 562:: 542:" 525:, 506:51 473:25 453:50 433:18 413:17 393:47 373:47 304:16 267:88 226:}} 222:{{ 206:. 527:7 284:3 232:) 218:. 131:.

Index

Example of a snapshot hyperspectral imaging spectrometer.
lenslet
fiber
grating
spectrometer
disperses
hyperspectral images
push broom
whisk broom
fiber
grating
reconstructing
tomography
integral field spectrograph
compressive-sensing
coded aperture
Lyot filter
Bayer filter
Slitless spectroscopy
Data cube acquired by the Very Large Telescope.
Data cube
Very Large Telescope
astronomical
telescopes
Imaging spectroscopy
Multi-spectral image
Chemical imaging
Imaging spectrometer
Spectral imaging
Computed tomography imaging spectrometer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑