Knowledge

Sliding criterion (geotechnical engineering)

Source πŸ“

595: 541: 794:
Gouge infill means a relatively thick and continuous layer of infill material, mainly consisting of clay but may contain rock fragments. The clay material surrounds the rock fragments in the clay completely or partly, so that these are not in contact with both discontinuity walls. A sub-division is
751:
infill material is material that does not change in shear characteristics under the influence of water nor under the influence of shear displacement. The material may break but no greasing effect will occur. The material particles can roll but this is considered to be of minor influence because,
803:
than the amplitude of the roughness of the discontinuity walls. If the thickness is less than the amplitude of the roughness, the shear strength will be influenced by the wall material and the discontinuity walls will be in contact after a certain displacement. If the infill is thicker than the
785:
for the size of the grains in the infill material or the size of the grains or minerals in the discontinuity wall. The larger of the two should be used for the description. The thickness of the infill can be very thin, sometimes not more than a dust coating.
764:
for the size of the grains in the infill material or the size of the grains or minerals in the discontinuity wall. The larger of the two should be used for the description. The thickness of the infill can be very thin, sometimes not more than a dust coating.
812:
Very weak and not compacted infill in discontinuities flows out of the discontinuities under its own weight or as a consequence of a very small trigger force (such as water pressure, vibrations due to traffic or the excavation process, etc.).
728:
discontinuity walls. Note that cement and cement bounds that are stronger than the surrounding intact rock ceases the discontinuity to be a mechanical plane of weakness, meaning the 'sliding-angle' has no validity.
707:
Infill material in a discontinuity has often a marked influence on the shear characteristics. The different options for infill material are listed in table 1, and below follows a short explanation for each option.
435: 496: 773:
Softening infill material will under the influence of water or displacements, attain in lower shear strength and will act as a lubricating agent. This is further sub-divided in
73:
has been developed for stresses that would occur in slopes between 2 and 25 metres (6.6 and 82.0 ft), hence, in the order of maximum 0.6 megapascals (87 psi). The
1176:. Faculty of Natural and Agricultural Sciences, School of Physical Sciences, Department of Geology, University of Pretoria, South Africa. urn: etd-09252008-170958. 1185:. Rock Engineering – Theory and Practice. EUROCK 2004 & 53rd Geomechanics Colloquium. Salzburg, Austria: Verlag GlΓΌckauf, Essen, Germany. pp. 449–452. 1209: 852: 848: 86: 645:
The second term is established visually. The trace (with a length of about 0.2 m) or surface (with an area of about 0.2 x 0.2 m of a
838: 646: 628: 562: 33: 25: 1096:
Andrade, P.S.; Saraiva, A.A. (2008). "Estimating the joint roughness coefficient of discontinuities found in metamorphic rocks".
583:
contributes only to the friction along the discontinuity when the walls on both sides of the discontinuity are fitting, i.e. the
1145:"Rock Slopes Failure Susceptibility Analysis: From Remote Sensing Measurements to Geographic Information System Raster Modules" 1050: 1016: 941: 899: 858: 64: 960:
Hack, R.; Price, D.; Rengers, N. (2003). "A new approach to rock slope stability – a probability classification (SSPC)".
672: 584: 561:) is based on visual comparison of the trace (with a length of about 1 m) or surface (with an area of about 1 x 1 m of a 752:
after small displacements, the material particles generally will still be very angular. This is further sub-divided in
59:
is based on the ease with which a block of rock material can move over a discontinuity and hence is comparable to the
1219: 1190: 439: 1008: 1038:
The Blue Book - The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006
843: 21: 878: 667:
contributes only to the friction along the discontinuity if the walls on both sides of the discontinuity are
661:. The two terms of visual and tactile give a combined term and the corresponding factor is listed in table 1. 1229: 724:
has higher shear strength than a non-cemented discontinuity if the cement or cemented infill is bonded to
1214: 1066:
Laubscher, D.H. (1990). "A geomechanics classification system for rating of rock mass in mine design".
925: 372: 45: 41: 675:
on both discontinuity walls match. If the discontinuity is non-fitting, the visual part of the
1171: 1173:
The shear strength of rock joints with special reference to dam foundations; PhD Dissertation
916: 1105: 969: 8: 891: 1109: 973: 1131: 985: 1186: 1135: 1075: 1046: 1012: 989: 937: 929: 895: 1156: 1121: 1113: 977: 587:
on both discontinuity walls match. If the discontinuity is non-fitting, the factor
49: 1161: 1144: 1224: 29: 1117: 981: 804:
amplitude, the friction of the discontinuity is fully governed by the infill.
1203: 1079: 1181:
Huisman, M.; Hack, H.R.G.K.; Nieuwenhuis, J.D. (2004). Schubert, W. (ed.).
1036: 933: 32:
mass based on visual and tactile (i.e. by feeling) characterization of the
740:
describes a discontinuity that may have coated walls but no other infill.
537:(The values for the parameters are listed in table 1 and explained below) 565:
with the example graphs in figure 1. This results in a descriptive term:
635:
hurts when fingers are moved over the surface with some (little) force,
1126: 877:
Hack, H.R.G.K.; Price, D.G. (September 25–29, 1995). Fujii, T. (ed.).
531:= karst; presence of karst (solution) features along the discontinuity 36:. The shear strength of a discontinuity is important in, for example, 594: 540: 615:) is established visually and tactile (by feeling). The first term 932:- International Institute for Aerospace Survey and Earth Sciences ( 880:
Determination of discontinuity friction by rock mass classification
77:
is based on back analyses of slope instability and earlier work of
52:
is often governed by the shear strength along discontinuities.
37: 1183:
Observed rock mass degradation and resulting slope instability
255:
non-softening & sheared material, e.g. free of clay, talc
826: 886:. Proceedings 8th International Society for Rock Mechanics ( 711: 649:
is compared with the example graphs in figure 2; this gives
1042: 1032: 890:) congress. Vol. 3. Tokyo, Japan: Balkema, Rotterdam, 887: 78: 1142: 1068:
Journal South African Institute of Mining and Metallurgy
282:
softening & soft-sheared material, e.g. clay, talc
93:
Table 1. Discontinuity characterization & factors.
1180: 643:
gives a feeling about similar to the surface of glass.
639:
feels that there is resistance to the fingers, while
442: 375: 1098:
Bulletin of Engineering Geology and the Environment
962:
Bulletin of Engineering Geology and the Environment
1143:Filipello, A.; Giuliani, A.; Mandrone, G. (2010). 955: 953: 490: 429: 918:Slope Stability Probability Classification (SSPC) 20:(discontinuity) is a tool to estimate easily the 1201: 1045:& ISRM Turkish National Group. p. 628. 959: 950: 698: 693:rough planar, smooth planar, or polished planar 598:Figure 2. Small scale example roughness graphs. 544:Figure 1. Large scale example roughness graphs. 1095: 491:{\displaystyle ={\frac {Rl*Rs*Im*Ka}{0.0113}}} 1210:Landslide analysis, prevention and mitigation 627:is established by feeling the surface of the 602: 548: 1005:Engineering Geology: Principles and Practice 1003:Price, D.G. (2008). De Freitas, M.H. (ed.). 870: 567:wavy, slightly wavy, curved, slightly curved 89:(SSPC) system for slope stability analyses. 1025: 1149:American Journal of Environmental Sciences 849:Slope stability probability classification 807: 91: 87:Slope Stability Probability Classification 1160: 1125: 1065: 1035:(2007). Ulusay, R.; Hudson, J.A. (eds.). 876: 712:Cemented discontinuity or cemented infill 1059: 996: 839:Discontinuity (Geotechnical engineering) 593: 539: 100: 908: 743: 1202: 525:= infill material in the discontinuity 1002: 1169: 1031: 914: 859:Tilt test (Geotechnical engineering) 829:) features along the discontinuity. 768: 48:engineering, but also stability of 13: 1089: 722:discontinuity with cemented infill 247:no infill - surface staining only 14: 1241: 430:{\displaystyle ''sliding-angle''} 573:. The corresponding factor for 357: 789: 369:      844:Shear strength (Discontinuity) 1: 936:), Netherlands. p. 258. 864: 816: 69:, but on a larger scale. The 732: 350: 342: 327: 319: 311: 303: 295: 287: 276: 268: 260: 249: 241: 226: 218: 210: 202: 194: 186: 178: 170: 162: 147: 139: 131: 123: 115: 7: 1162:10.3844/ajessp.2010.489.494 832: 683:for the calculation of the 611:The roughness small scale ( 557:The roughness large scale ( 10: 1246: 926:Technical University Delft 825:The presence of solution ( 689:roughness small scale (Rs) 677:roughness small scale (Rs) 665:roughness small scale (Rs) 581:roughness large scale (Rl) 366:is calculated as follows: 317:gouge > irregularities 309:gouge < irregularities 231: 1118:10.1007/s10064-008-0151-4 982:10.1007/s10064-002-0155-4 699:Infill in discontinuity ( 347: 339: 332: 324: 316: 308: 281: 254: 246: 239:cemented/cemented infill 238: 223: 215: 207: 199: 191: 183: 175: 167: 159: 152: 144: 136: 128: 120: 112: 105: 97: 1220:Rock mass classification 1170:A.J., Geertsema (2003). 160:rough stepped/irregular 808:Flowing material infill 663:The visual part of the 603:Roughness small scale ( 549:Roughness large scale ( 519:= roughness small scale 513:= roughness large scale 153:Roughness small scale ( 106:Roughness large scale ( 63:as determined with the 924:. ITC publication 43. 718:cemented discontinuity 599: 545: 492: 431: 597: 577:is listed in table 1. 543: 493: 432: 892:Taylor & Francis 744:Non-softening infill 440: 373: 200:polished undulating 1230:Tunnel construction 1110:2008BuEGE..67..425A 974:2003BuEGE..62..167H 679:should be taken as 94: 81:and Laubscher. The 1215:Mining engineering 915:Hack, R. (1998) . 894:. pp. 23–27. 600: 546: 507:is in degrees, and 488: 427: 192:smooth undulating 92: 1052:978-975-93675-4-1 1018:978-3-540-29249-4 943:978-90-6164-154-4 930:Twente University 901:978-90-5410-576-3 687:, and hence, the 486: 355: 354: 325:flowing material 232:Infill material ( 184:rough undulating 176:polished stepped 98:characterization 83:sliding criterion 75:sliding criterion 71:sliding criterion 18:sliding criterion 1237: 1196: 1177: 1166: 1164: 1139: 1129: 1084: 1083: 1063: 1057: 1056: 1029: 1023: 1022: 1000: 994: 993: 957: 948: 947: 923: 912: 906: 905: 885: 874: 769:Softening infill 497: 495: 494: 489: 487: 482: 447: 436: 434: 433: 428: 426: 382: 224:polished planar 137:slightly curved 95: 24:properties of a 1245: 1244: 1240: 1239: 1238: 1236: 1235: 1234: 1200: 1199: 1193: 1092: 1090:Further reading 1087: 1074:(10): 257–273. 1064: 1060: 1053: 1030: 1026: 1019: 1011:. p. 450. 1001: 997: 958: 951: 944: 921: 913: 909: 902: 883: 875: 871: 867: 835: 823: 810: 792: 771: 746: 735: 714: 705: 662: 644: 609: 578: 555: 448: 446: 441: 438: 437: 419: 376: 374: 371: 370: 360: 168:smooth stepped 85:is part of the 12: 11: 5: 1243: 1233: 1232: 1227: 1222: 1217: 1212: 1198: 1197: 1191: 1178: 1167: 1155:(6): 489–494. 1140: 1104:(3): 425–434. 1091: 1088: 1086: 1085: 1058: 1051: 1024: 1017: 995: 968:(2): 167–184. 949: 942: 907: 900: 868: 866: 863: 862: 861: 856: 846: 841: 834: 831: 822: 815: 809: 806: 791: 788: 770: 767: 745: 742: 734: 731: 713: 710: 704: 697: 608: 601: 554: 547: 535: 534: 533: 532: 526: 520: 514: 508: 485: 481: 478: 475: 472: 469: 466: 463: 460: 457: 454: 451: 445: 425: 422: 418: 415: 412: 409: 406: 403: 400: 397: 394: 391: 388: 385: 381: 378: 359: 356: 353: 352: 349: 345: 344: 341: 338: 330: 329: 326: 322: 321: 318: 314: 313: 310: 306: 305: 302: 298: 297: 294: 290: 289: 286: 283: 279: 278: 275: 271: 270: 267: 263: 262: 259: 256: 252: 251: 248: 244: 243: 240: 237: 229: 228: 225: 221: 220: 217: 216:smooth planar 213: 212: 209: 205: 204: 201: 197: 196: 193: 189: 188: 185: 181: 180: 177: 173: 172: 169: 165: 164: 161: 158: 150: 149: 146: 142: 141: 138: 134: 133: 130: 126: 125: 122: 121:slightly wavy 118: 117: 114: 111: 103: 102: 99: 50:natural slopes 22:shear strength 9: 6: 4: 3: 2: 1242: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1207: 1205: 1194: 1192:3-7739-5995-8 1188: 1184: 1179: 1175: 1174: 1168: 1163: 1158: 1154: 1150: 1146: 1141: 1137: 1133: 1128: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1094: 1093: 1081: 1077: 1073: 1069: 1062: 1054: 1048: 1044: 1040: 1039: 1034: 1028: 1020: 1014: 1010: 1006: 999: 991: 987: 983: 979: 975: 971: 967: 963: 956: 954: 945: 939: 935: 931: 927: 920: 919: 911: 903: 897: 893: 889: 882: 881: 873: 869: 860: 857: 854: 850: 847: 845: 842: 840: 837: 836: 830: 828: 820: 814: 805: 802: 798: 795:made between 787: 784: 780: 776: 766: 763: 759: 755: 750: 749:Non-softening 741: 739: 730: 727: 723: 719: 709: 702: 696: 694: 690: 686: 685:sliding-angle 682: 678: 674: 670: 666: 660: 656: 652: 648: 647:discontinuity 642: 638: 634: 630: 629:discontinuity 626: 622: 618: 614: 606: 596: 592: 590: 586: 582: 576: 572: 568: 564: 563:discontinuity 560: 552: 542: 538: 530: 527: 524: 521: 518: 515: 512: 509: 506: 505:sliding-angle 502: 501: 500: 499: 498: 483: 479: 476: 473: 470: 467: 464: 461: 458: 455: 452: 449: 443: 423: 420: 416: 413: 410: 407: 404: 401: 398: 395: 392: 389: 386: 383: 379: 377: 367: 365: 364:sliding-angle 358:Sliding-angle 346: 336: 331: 323: 315: 307: 300: 299: 292: 291: 284: 280: 273: 272: 265: 264: 257: 253: 245: 235: 230: 222: 214: 208:rough planar 206: 198: 190: 182: 174: 166: 156: 151: 143: 135: 127: 119: 109: 104: 96: 90: 88: 84: 80: 76: 72: 68: 67: 62: 58: 57:sliding-angle 53: 51: 47: 43: 39: 35: 34:discontinuity 31: 27: 26:discontinuity 23: 19: 1182: 1172: 1152: 1148: 1101: 1097: 1071: 1067: 1061: 1037: 1027: 1004: 998: 965: 961: 934:ITC Enschede 917: 910: 879: 872: 824: 818: 811: 800: 796: 793: 790:Gouge infill 782: 778: 774: 772: 761: 757: 753: 748: 747: 737: 736: 725: 721: 717: 715: 706: 700: 692: 691:can be only 688: 684: 680: 676: 668: 664: 658: 654: 650: 640: 636: 632: 624: 620: 616: 612: 610: 604: 588: 580: 574: 570: 566: 558: 556: 550: 536: 528: 522: 516: 510: 504: 368: 363: 361: 334: 233: 154: 107: 82: 74: 70: 65: 60: 56: 54: 17: 15: 671:, i.e. the 1204:Categories 1127:10316/7611 1041:. Ankara: 865:References 797:less thick 673:asperities 655:undulating 585:asperities 61:tilt-angle 42:foundation 1136:129119508 1080:0038-223X 990:140693335 738:No infill 733:No infill 474:∗ 465:∗ 456:∗ 405:− 145:straight 66:tilt test 1009:Springer 833:See also 641:polished 625:polished 591:= 0.75. 571:straight 424:″ 380:″ 1106:Bibcode 970:Bibcode 817:Karst ( 801:thicker 669:fitting 651:stepped 333:Karst ( 293:medium 285:coarse 266:medium 258:coarse 129:curved 101:factor 1189:  1134:  1078:  1049:  1015:  988:  940:  928:& 898:  781:, and 779:medium 775:coarse 760:, and 758:medium 754:coarse 681:planar 659:planar 637:smooth 621:smooth 503:where 484:0.0113 348:karst 38:tunnel 1225:Rocks 1132:S2CID 986:S2CID 922:(PDF) 884:(PDF) 827:karst 720:or a 657:, or 633:rough 623:, or 617:rough 569:, or 351:0.92 343:1.00 340:none 328:0.05 320:0.17 312:0.42 304:0.55 301:fine 296:0.65 288:0.75 277:0.85 274:fine 269:0.90 261:0.95 250:1.00 242:1.07 227:0.55 219:0.60 211:0.65 203:0.70 195:0.75 187:0.80 179:0.85 171:0.90 163:0.95 148:0.75 140:0.80 132:0.85 124:0.95 116:1.00 113:wavy 46:slope 44:, or 28:in a 1187:ISBN 1076:ISSN 1047:ISBN 1043:ISRM 1033:ISRM 1013:ISBN 938:ISBN 896:ISBN 888:ISRM 853:SSPC 799:and 783:fine 762:fine 726:both 579:The 362:The 79:ISRM 55:The 30:rock 16:The 1157:doi 1122:hdl 1114:doi 978:doi 1206:: 1151:. 1147:. 1130:. 1120:. 1112:. 1102:67 1100:. 1072:90 1070:. 1007:. 984:. 976:. 966:62 964:. 952:^ 819:Ka 777:, 756:, 716:A 701:Im 695:. 653:, 631:; 619:, 613:Rs 605:Rs 589:Rl 575:Rl 559:Rl 551:Rl 529:Ka 523:Im 517:Rs 511:Rl 337:) 335:Ka 236:) 234:Im 157:) 155:Rs 110:) 108:Rl 40:, 1195:. 1165:. 1159:: 1153:6 1138:. 1124:: 1116:: 1108:: 1082:. 1055:. 1021:. 992:. 980:: 972:: 946:. 904:. 855:) 851:( 821:) 703:) 607:) 553:) 480:a 477:K 471:m 468:I 462:s 459:R 453:l 450:R 444:= 421:e 417:l 414:g 411:n 408:a 402:g 399:n 396:i 393:d 390:i 387:l 384:s

Index

shear strength
discontinuity
rock
discontinuity
tunnel
foundation
slope
natural slopes
tilt test
ISRM
Slope Stability Probability Classification

discontinuity
asperities

discontinuity
discontinuity
asperities
karst
Discontinuity (Geotechnical engineering)
Shear strength (Discontinuity)
Slope stability probability classification
SSPC
Tilt test (Geotechnical engineering)
Determination of discontinuity friction by rock mass classification
ISRM
Taylor & Francis
ISBN
978-90-5410-576-3
Slope Stability Probability Classification (SSPC)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑