Knowledge

Sharpless asymmetric dihydroxylation

Source 📝

491:
example, Sharpless provided evidence for the reaction proceeding via a step-wise mechanism. Additionally both Sharpless and Corey showed that the active catalyst possesses a U-shaped chiral binding pocket. Corey also showed that the catalyst obeys Michaelis-Menten kinetics and acts like an enzyme pocket with a pre-equilibrium. In the February 1997 issue of the Journal of the American Chemical Society Sharpless published the results of a study (a Hammett analysis) which he claimed supported a cyclization over a . In the October issue of the same year, however, Sharpless also published the results of another study conducted in collaboration with Ken Houk and Singleton which provided conclusive evidence for the mechanism. Thus Sharpless was forced to concede the decade-long debate.
483: 438: 426: 197: 500: 643: 626: 614: 434:
dihydroxylate another alkene. Dihydroxylations resulting from this secondary pathway generally suffer lower enantioselectivities than those resulting from the primary pathway. A schematic showing this secondary catalytic pathway is shown below. This secondary pathway may be suppressed by using a higher molar concentration of ligand.
621:
In this example SAD gives the diol of the alkene closest to the (electron-withdrawing) para-methoxybenzoyl group, albeit in low yield. This is likely due to the ability of the aryl ring to interact favorably with the active site of the catalyst via π-stacking. In this manner the aryl substituent can
594:
Citric acid: Osmium tetroxide is an electrophilic oxidant and as such reacts slowly with electron-deficient olefins. It has been found that the rate of oxidation of electron-deficient olefins can be accelerated by maintaining the pH of the reaction slightly acidic. On the other hand, a high pH can
490:
The next ten years saw numerous publications by both Corey and Sharpless, each supporting their own version of the mechanism. While these studies were not able to distinguish between the two proposed cyclization pathways, they were successful in shedding light on the mechanism in other ways. For
638:
The diastereoselectivity of SAD is set primarily by the choice of ligand (i.e. AD-mix-α versus AD-mix-β), however factors such as pre-existing chirality in the substrate or neighboring functional groups may also play a role. In the example shown below, the para-methoxybenzoyl substituent serves
1240:
Corey, E. J.; DaSilva Jardine, Paul; Virgil, Scott; Yuen, Po Wai; Connell, Richard D. (December 1989). "Enantioselective vicinal hydroxylation of terminal and E-1,2-disubstituted olefins by a chiral complex of osmium tetroxide. An effective controller system and a rational mechanistic model".
1396:
Sharpless, K. B.; Gypser, Andreas; Ho, Pui Tong; Kolb, Hartmuth C.; Kondo, Teruyuki; Kwong, Hoi-Lun; McGrath, Dominic V.; Rubin, A. Erik; Norrby, Per-Ola; Gable, Kevin P.; Sharpless, K. Barry (1997). "Toward an Understanding of the High Enantioselectivity in the Osmium-Catalyzed Asymmetric
433:
The mechanism of the Sharpless asymmetric dihydroxylation has been extensively studied and a potential secondary catalytic cycle has been identified (see below). If the osmylate ester intermediate is oxidized before it dissociates, then an osmium(VIII)-diol complex is formed which may then
478:
with the alkene to directly generate the osmylate ester. Corey's suggestion was based on a previous computational study done by Jorgensen and Hoffmann which determined the reaction pathway to be the lower energy pathway. In addition Corey reasoned that steric repulsions in the octahedral
1456:
Corey, E. J.; Guzman-Perez, Angel; Noe, Mark C. (November 1995). "The application of a mechanistic model leads to the extension of the Sharpless asymmetric dihydroxylation to allylic 4-methoxybenzoates and conformationally related amine and homoallylic alcohol derivatives".
1334:
Corey, E. J.; Noe, Mark C.; Sarshar, Sepehr (1994). "X-ray crystallographic studies provide additional evidence that an enzyme-like binding pocket is crucial to the enantioselective dihydroxylation of olefins by OsO4-bis-cinchona alkaloid complexes".
1367:
Corey, E. J.; Noe, M. C. (17 January 1996). "Kinetic Investigations Provide Additional Evidence That an Enzyme-like Binding Pocket Is Crucial for High Enantioselectivity in the Bis-Cinchona Alkaloid Catalyzed Asymmetric Dihydroxylation of Olefins".
473:
to form an osmylate ester which after hydrolysis would give the corresponding diol. In 1989 E. J. Corey published a slightly different variant of this reaction and suggested that the reaction most likely proceeded via a cycloaddition of
1131:
Ogino, Y.; Chen, H.; Kwong, H.-L.; Sharpless, K. B. (1991). "On the timing of hydrolysis / reoxidation in the osmium-catalyzed asymmetric dihydroxylation of olefins using potassium ferricyanide as the reoxidant".
308:) are expensive and extremely toxic, it has become desirable to develop catalytic variants of this reaction. Some stoichiometric terminal oxidants that have been employed in these catalytic reactions include 1159:
Wai, J. S. M.; Marko, I.; Svendsen, J. N.; Finn, M. G.; Jacobsen, E. N.; Sharpless, K. Barry (1989). "A mechanistic insight leads to a greatly improved osmium-catalyzed asymmetric dihydroxylation process".
1103:; Singleton, D. A.; Strassner, T.; Thomas, A. A. (1997). "Experimental and Theoretical Kinetic Isotope Effects for Asymmetric Dihydroxylation. Evidence Supporting a Rate-Limiting "(3 + 2)" Cycloaddition". 414:) has been identified as a catalyst to accelerate this step of the catalytic cycle and if frequently used as an additive to allow non-terminal alkene substrates to react efficiently at 0 °C. Finally, the 1064:; Noe, M. C.; Grogan, M. J. (1996). "Experimental test of the - and -cycloaddition pathways for the bis-cinchona alkaloid-OsO4 catalyzed dihydroxylation of olefins by means of kinetic isotope effects". 1278:
Corey, E. J.; Noe, Mark C. (December 1993). "Rigid and highly enantioselective catalyst for the dihydroxylation of olefins using osmium tetraoxide clarifies the origin of enantiospecificity".
1306:
Kolb, H. C.; Anderson, P. G.; Sharpless, K. B. (February 1994). "Toward an Understanding of the High Enantioselectivity in the Osmium-Catalyzed Asymmetric Dihydroxylation (AD). 1. Kinetics".
1195:
Sundermeier, U., Dobler, C., Beller, M. Recent developments in the osmium-catalyzed dihydroxylation of olefins. Modern Oxidation Methods. 2004 WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim.
193:(DHQ) as the ligand. Asymmetric dihydroxylation reactions are also highly site selective, providing products derived from reaction of the most electron-rich double bond in the substrate. 482: 519:
Crystallographic evidence has shown that the active catalyst possesses a pentacoordinate osmium species held in a U-shaped binding pocket. The nitrogenous ligand holds OsO
437: 859:
Minato, M.; Yamamoto, K.; Tsuji, J. (1990). "Osmium tetraoxide catalyzed vicinal hydroxylation of higher olefins by using hexacyanoferrate(III) ion as a cooxidant".
531:
Numerous catalytic systems and modifications have been developed for the SAD. Given below is a brief overview of the various components of the catalytic system:
370:
are combined with a stoichiometric ferricyanide oxidant in the presence of chiral nitrogenous ligands to create an asymmetric environment around the oxidant.
1033:; Amberg, Willi; Bennani, Youssef L.; et al. (1992). "The osmium-catalyzed asymmetric dihydroxylation: A new ligand class and a process improvement". 425: 586:) is the most commonly used stoichiometric oxidant for the reaction, and is the oxidant that comes in the commercially available AD-mix preparations. 132: 218:
It is common practice to perform this reaction using a catalytic amount of osmium tetroxide, which after reaction is regenerated with
1212:
Hentges, Steven G.; Sharpless, K. Barry (June 1980). "Asymmetric induction in the reaction of osmium tetroxide with olefins".
378:
The reaction mechanism of the Sharpless dihydroxylation begins with the formation of the osmium tetroxide – ligand complex (
1200: 1495: 1425:
Xu, D.; Crispino, G. A.; Sharpless, K. B. (September 1992). "Selective asymmetric dihydroxylation (AD) of dienes".
117: 758: 736:
Noe, Mark C.; Letavic, Michael A.; Snow, Sheri L. (15 December 2005). "Asymmetric Dihydroxylation of Alkenes".
696: 610:
In general Sharpless asymmetric dihydroxylation favors oxidation of the more electron-rich alkene (scheme 1).
523:
in a chiral environment making approach of one side of the olefin sterically hindered while the other is not.
716: 711: 1490: 639:
primarily as a source of steric bulk to allow the catalyst to differentiate the two faces of the alkene.
539:, however certain additives can coordinate to the osmium(VIII) and modify its electronic properties. OsO 469:
onto the alkene to give an osmaoxetane intermediate (see below). This intermediate would then undergo a
366:
alkene dihydroxylation, referred to as the Sharpless asymmetric dihydroxylation (SAD). Low levels of OsO
296:
is an old and extremely useful method for the functionalization of olefins. However, since osmium(VIII)
321: 227: 125: 241:
and very expensive osmium tetroxide needed. These four reagents are commercially available premixed ("
564:
Peroxides were among the first stoichiometric oxidants to be used in this catalytic cycle; see the
336: 281: 1500: 706: 572: 347: 332: 277: 223: 165: 359: 30: 8: 1337: 701: 596: 565: 470: 317: 175: 1100: 1030: 976: 888: 775: 665: 309: 273: 181:. The reaction has been applied to alkenes of virtually every substitution, often high 1350: 961: 654:-disubstituted alkenes when both ends of the olefin have similar steric environments. 1459: 1427: 1399: 1370: 1308: 1280: 1243: 1214: 1196: 1145: 1105: 1078: 1066: 1061: 993: 949: 905: 832: 754: 670: 313: 269: 257: 153: 40: 642: 625: 613: 1467: 1435: 1407: 1378: 1346: 1316: 1288: 1251: 1222: 1169: 1141: 1113: 1074: 1043: 1002: 957: 914: 869: 841: 788: 746: 678: 508: 504: 499: 363: 301: 293: 196: 186: 182: 161: 980: 892: 807: 750: 415: 190: 1484: 1035: 1006: 918: 861: 845: 462: 1096: 939:
VanRheenen, V.; Kelly, R. C.; Cha, D. Y. (1976). "An improved catalytic OsO
1397:
Dihydroxylation. 4. Electronic Effects in Amine-Accelerated Osmylations".
595:
increase the rate of oxidation of internal olefins, and also increase the
738: 1471: 1439: 1320: 1292: 1255: 1226: 1173: 1047: 873: 792: 682: 461:
In his original report Sharpless suggested the reaction proceeded via a
780: 668:(1988). "Asymmetric dihydroxylation via ligand-accelerated catalysis". 391: 1411: 1382: 1117: 719:- olefin to diol, followed by oxidative cleavage to form two aldehydes 503:
Allyl benzoate bound within the U-shaped binding pocket of the active
219: 828:-2-Phenylcyclohexanol Via Sharpless Asymmetric Dihydroxylation (AD)" 265: 261: 185:
are realized, with the chiral outcome controlled by the choice of
806:
Gonzalez, Javier; Aurigemma, Christine; Truesdale, Larry (2004).
558:
Chiral Auxiliary: This is usually some kind of cinchona alkaloid.
297: 168: 486:
Osmium tetroxide dihydroxylation proposed and correct mechanism
242: 171: 157: 1239: 1029: 663: 650:
It is often difficult to obtain high diastereoselectivity on
238: 1094: 773: 664:
Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.;
441:
Catalytic cycle of the Sharpless asymmetric dihydroxylation
418:
oxidant regenerates the osmium tetroxide – ligand complex (
249:-PHAL is called AD-mix-α, and the mixture containing (DHQD) 178: 95: 947:-1,2-glycols using tertiary amine oxides as the oxidant". 805: 568:. Drawbacks of peroxides include chemoselectivity issues. 1130: 429:
The reaction mechanism of the Sharpless dihydroxylation
1362: 1360: 974: 1395: 1305: 237:. This dramatically reduces the amount of the highly 1455: 1158: 1424: 1357: 858: 938: 1268:Thomas, G.; Sharpless, K. B. ACIEE 1993, 32, 1329 571:Trialkylammonium N-oxides, such as NMO—as in the 1482: 1211: 778:(1994). "Catalytic Asymmetric Dihydroxylation". 1333: 280:, for which he was awarded a share of the 2001 260:. The introduction of chirality into nonchiral 1060: 989:)-1,2-Diphenyl-1,2-ethanediol (Stilbene diol)" 735: 272:. This reaction was developed principally by 1191: 1189: 1187: 1185: 1183: 1090: 1088: 599:(e.e.) for the oxidation of terminal olefins. 362:was the first to develop a general, reliable 886: 555:(an Os(VI) species) due to safety concerns. 1180: 1085: 479:intermediate would disfavor the pathway. 1366: 1277: 498: 195: 51: 897:)-1,2-Dihydroxyethyl]-1,5-Dihydro-3 1483: 382:). A -cycloaddition with the alkene ( 276:building on the already known racemic 1451: 1449: 799: 535:Catalytic Oxidant: This is always OsO 494: 373: 22:Sharpless asymmetric dihydroxylation 1025: 1023: 774:Kolb, H. C.; Van Nieuwenhze, M. S.; 633: 526: 146:Sharpless asymmetric dihydroxylation 767: 605: 256:Such chiral diols are important in 13: 1446: 657: 641: 624: 612: 481: 436: 424: 14: 1512: 1020: 729: 543:is often generated in situ from K 386:) gives the cyclic intermediate 245:"). The mixture containing (DHQ) 1418: 1389: 1327: 1299: 1271: 1262: 1233: 1205: 1152: 1124: 975:McKee, B. H.; Gilheany, D. G.; 1054: 968: 932: 880: 852: 697:Asymmetric catalytic oxidation 445: 200:The Sharpless dihydroxylation. 1: 1351:10.1016/s0040-4039(00)76644-5 1095:DelMonte, A. J.; Haller, J.; 962:10.1016/s0040-4039(00)78093-2 723: 287: 210:= Medium-sized substituent; R 1146:10.1016/0040-4039(91)80601-2 1079:10.1016/0040-4039(96)01005-2 712:Sharpless aminohydroxylation 575:—and trimethylamine N-oxide. 7: 751:10.1002/0471264180.or066.02 690: 268:is an important concept in 10: 1517: 1015:, vol. 9, p. 383 927:, vol. 9, p. 251 622:act as a directing group. 402:). Methanesulfonamide (CH 398:) and the reduced osmate ( 292:Alkene dihydroxylation by 253:-PHAL is called AD-mix-β. 150:Sharpless bishydroxylation 717:Lemieux–Johnson oxidation 578:Potassium ferricyanide (K 139: 118:sharpless-dihydroxylation 113:Organic Chemistry Portal 107: 92: 83: 74: 62: 55: 46: 21: 1007:10.15227/orgsyn.070.0047 943:oxidation of olefins to 919:10.15227/orgsyn.073.0001 846:10.15227/orgsyn.079.0093 561:Stoichiometric Oxidant: 471:1,1- migratory insertion 282:Nobel Prize in Chemistry 264:through usage of chiral 206:= Largest substituent; R 1496:Organic redox reactions 707:Upjohn dihydroxylation 647: 630: 618: 516: 487: 442: 430: 348:potassium ferricyanide 333:Upjohn dihydroxylation 278:Upjohn dihydroxylation 224:potassium ferricyanide 215: 214:= Smallest substituent 645: 628: 616: 511:interacting with the 502: 485: 440: 428: 199: 164:in the presence of a 78:Chiral quinine ligand 901:-2,4-Benzodioxepine" 808:"Synthesis of (+)-(1 394:liberates the diol ( 340:-butyl hydroperoxide 183:enantioselectivities 31:Karl Barry Sharpless 1472:10.1021/ja00149a003 1466:(44): 10805–10816. 1440:10.1021/ja00045a043 1338:Tetrahedron Letters 1321:10.1021/ja00083a014 1293:10.1021/ja00079a045 1256:10.1021/ja00208a025 1227:10.1021/ja00532a050 1174:10.1021/ja00185a050 1048:10.1021/jo00036a003 874:10.1021/jo00289a066 793:10.1021/cr00032a009 702:Milas hydroxylation 683:10.1021/ja00214a053 597:enantiomeric excess 566:Milas hydroxylation 318:Milas hydroxylation 1491:Addition reactions 648: 631: 619: 517: 495:Catalyst structure 488: 443: 431: 374:Reaction mechanism 360:K. Barry Sharpless 325:-Methylmorpholine 310:potassium chlorate 274:K. Barry Sharpless 231:-methylmorpholine 216: 1460:J. Am. Chem. Soc. 1434:(19): 7570–7571. 1428:J. Am. Chem. Soc. 1412:10.1021/ja961464t 1400:J. Am. Chem. Soc. 1383:10.1021/ja952567z 1371:J. Am. Chem. Soc. 1309:J. Am. Chem. Soc. 1281:J. Am. Chem. Soc. 1244:J. Am. Chem. Soc. 1215:J. Am. Chem. Soc. 1118:10.1021/ja971650e 1112:(41): 9907–9908. 1106:J. Am. Chem. Soc. 1073:(28): 4899–4902. 1067:Tetrahedron Lett. 1042:(10): 2768–2771. 1013:Collected Volumes 994:Organic Syntheses 956:(23): 1973–1976. 950:Tetrahedron Lett. 925:Collected Volumes 906:Organic Syntheses 833:Organic Syntheses 671:J. Am. Chem. Soc. 634:Stereoselectivity 527:Catalytic systems 314:hydrogen peroxide 270:organic synthesis 258:organic synthesis 154:chemical reaction 148:(also called the 143: 142: 103: 102: 41:Addition reaction 16:Chemical reaction 1508: 1476: 1475: 1453: 1444: 1443: 1422: 1416: 1415: 1393: 1387: 1386: 1364: 1355: 1354: 1331: 1325: 1324: 1303: 1297: 1296: 1275: 1269: 1266: 1260: 1259: 1237: 1231: 1230: 1209: 1203: 1193: 1178: 1177: 1162:J. Am. Chem. Soc 1156: 1150: 1149: 1140:(2): 3965–3968. 1134:Tetrahedron Lett 1128: 1122: 1121: 1101:Sharpless, K. B. 1092: 1083: 1082: 1058: 1052: 1051: 1031:Sharpless, K. B. 1027: 1018: 1016: 1009: 977:Sharpless, K. B. 972: 966: 965: 936: 930: 928: 921: 889:Sharpless, K. B. 884: 878: 877: 856: 850: 848: 803: 797: 796: 787:(8): 2483–2547. 776:Sharpless, K. B. 771: 765: 764: 745:(109): 109–625. 733: 686: 677:(6): 1968–1970. 666:Sharpless, K. B. 606:Regioselectivity 509:osmium tetroxide 505:dihydroquinidine 458: 457: 453: 450:vs debate": --> 364:enantioselective 302:osmium tetroxide 294:osmium tetroxide 187:dihydroquinidine 162:osmium tetroxide 135: 120: 87: 53: 52: 19: 18: 1516: 1515: 1511: 1510: 1509: 1507: 1506: 1505: 1481: 1480: 1479: 1454: 1447: 1423: 1419: 1394: 1390: 1365: 1358: 1332: 1328: 1304: 1300: 1276: 1272: 1267: 1263: 1238: 1234: 1210: 1206: 1194: 1181: 1157: 1153: 1129: 1125: 1093: 1086: 1059: 1055: 1028: 1021: 1011: 973: 969: 942: 937: 933: 923: 885: 881: 857: 853: 804: 800: 772: 768: 761: 734: 730: 726: 693: 660: 658:Further reading 636: 608: 585: 581: 573:Upjohn Reaction 554: 550: 546: 542: 538: 529: 522: 497: 477: 468: 459: 455: 451: 449: 448: 413: 409: 405: 376: 369: 357: 353: 307: 290: 252: 248: 213: 209: 205: 201: 131: 116: 85: 76: 69: 64: 17: 12: 11: 5: 1514: 1504: 1503: 1501:Name reactions 1498: 1493: 1478: 1477: 1445: 1417: 1388: 1356: 1326: 1315:(1278): 1278. 1298: 1287:(115): 12579. 1270: 1261: 1232: 1204: 1179: 1151: 1123: 1084: 1053: 1019: 967: 940: 931: 879: 868:(2): 766–768. 851: 798: 766: 759: 727: 725: 722: 721: 720: 714: 709: 704: 699: 692: 689: 688: 687: 659: 656: 635: 632: 607: 604: 603: 602: 601: 600: 589: 588: 587: 583: 579: 576: 569: 559: 556: 552: 548: 544: 540: 536: 528: 525: 520: 496: 493: 475: 466: 447: 444: 416:stoichiometric 411: 407: 403: 375: 372: 367: 355: 351: 305: 289: 286: 250: 246: 211: 207: 203: 191:dihydroquinine 141: 140: 137: 136: 129: 122: 121: 114: 110: 109: 105: 104: 101: 100: 98:(main product) 90: 89: 81: 80: 72: 71: 67: 60: 59: 49: 48: 44: 43: 38: 37:Reaction type 34: 33: 28: 24: 23: 15: 9: 6: 4: 3: 2: 1513: 1502: 1499: 1497: 1494: 1492: 1489: 1488: 1486: 1473: 1469: 1465: 1462: 1461: 1452: 1450: 1441: 1437: 1433: 1430: 1429: 1421: 1413: 1409: 1405: 1402: 1401: 1392: 1384: 1380: 1376: 1373: 1372: 1363: 1361: 1352: 1348: 1344: 1340: 1339: 1330: 1322: 1318: 1314: 1311: 1310: 1302: 1294: 1290: 1286: 1283: 1282: 1274: 1265: 1257: 1253: 1249: 1246: 1245: 1236: 1228: 1224: 1220: 1217: 1216: 1208: 1202: 1201:3-527-30642-0 1198: 1192: 1190: 1188: 1186: 1184: 1175: 1171: 1167: 1163: 1155: 1147: 1143: 1139: 1135: 1127: 1119: 1115: 1111: 1108: 1107: 1102: 1098: 1091: 1089: 1080: 1076: 1072: 1069: 1068: 1063: 1057: 1049: 1045: 1041: 1038: 1037: 1036:J. Org. Chem. 1032: 1026: 1024: 1014: 1008: 1004: 1000: 996: 995: 990: 988: 984: 978: 971: 963: 959: 955: 952: 951: 946: 935: 926: 920: 916: 912: 908: 907: 902: 900: 896: 890: 883: 875: 871: 867: 864: 863: 862:J. Org. Chem. 855: 847: 843: 839: 835: 834: 829: 827: 823: 819: 816:)- and (−)-(1 815: 811: 802: 794: 790: 786: 783: 782: 777: 770: 762: 756: 752: 748: 744: 741: 740: 732: 728: 718: 715: 713: 710: 708: 705: 703: 700: 698: 695: 694: 684: 680: 676: 673: 672: 667: 662: 661: 655: 653: 644: 640: 627: 623: 615: 611: 598: 593: 592: 590: 577: 574: 570: 567: 563: 562: 560: 557: 534: 533: 532: 524: 514: 510: 506: 501: 492: 484: 480: 472: 464: 463:cycloaddition 454: 439: 435: 427: 423: 421: 417: 401: 397: 393: 389: 385: 381: 371: 365: 361: 349: 345: 341: 339: 334: 330: 328: 324: 319: 315: 311: 303: 299: 295: 285: 283: 279: 275: 271: 267: 263: 259: 254: 244: 240: 236: 234: 230: 225: 221: 198: 194: 192: 188: 184: 180: 177: 173: 170: 167: 163: 159: 155: 151: 147: 138: 134: 130: 127: 124: 123: 119: 115: 112: 111: 106: 99: 97: 91: 88: 82: 79: 73: 70: 61: 58: 54: 50: 45: 42: 39: 36: 35: 32: 29: 26: 25: 20: 1463: 1458: 1431: 1426: 1420: 1403: 1398: 1391: 1374: 1369: 1345:(18): 2861. 1342: 1336: 1329: 1312: 1307: 1301: 1284: 1279: 1273: 1264: 1250:(26): 9243. 1247: 1242: 1235: 1221:(12): 4263. 1218: 1213: 1207: 1165: 1161: 1154: 1137: 1133: 1126: 1109: 1104: 1070: 1065: 1056: 1039: 1034: 1012: 998: 992: 986: 982: 970: 953: 948: 944: 934: 924: 910: 904: 898: 894: 882: 865: 860: 854: 837: 831: 825: 821: 817: 813: 809: 801: 784: 779: 769: 742: 737: 731: 674: 669: 651: 649: 646:SAD scheme 3 637: 629:SAD scheme 2 620: 617:SAD scheme 1 609: 530: 518: 512: 489: 460: 432: 419: 399: 395: 387: 383: 379: 377: 343: 337: 326: 322: 291: 255: 232: 228: 217: 149: 145: 144: 133:RXNO:0000142 128:ontology ID 108:Identifiers 93: 84: 77: 65: 56: 27:Named after 1406:(8): 1840. 1168:(3): 1123. 1097:Houk, K. N. 1062:Corey, E.J. 739:Org. React. 1485:Categories 1377:(2): 319. 893:"3-[(1 781:Chem. Rev. 760:0471264180 724:References 591:Additive: 507:catalyst, 446:vs debate 392:hydrolysis 346:BHP), and 288:Background 220:reoxidants 189:(DHQD) vs 174:to form a 390:. Basic 266:catalysts 262:reactants 152:) is the 47:Reaction 979:(1992). 891:(1996). 887:Oi, R.; 691:See also 298:reagents 222:such as 176:vicinal 169:quinine 1199:  1001:: 47. 840:: 93. 757:  582:Fe(CN) 465:of OsO 354:Fe(CN) 331:(NMO, 329:-oxide 243:AD-mix 235:-oxide 172:ligand 166:chiral 158:alkene 156:of an 57:Alkene 913:: 1. 826:trans 515:face. 300:like 239:toxic 160:with 1197:ISBN 755:ISBN 551:(OH) 452:edit 338:tert 304:(OsO 179:diol 96:diol 94:1,2- 1468:doi 1464:117 1436:doi 1432:114 1408:doi 1404:119 1379:doi 1375:118 1347:doi 1317:doi 1313:116 1289:doi 1252:doi 1248:111 1223:doi 1219:102 1170:doi 1166:111 1142:doi 1114:doi 1110:119 1075:doi 1044:doi 1003:doi 958:doi 945:cis 915:doi 870:doi 842:doi 789:doi 747:doi 679:doi 675:110 652:cis 547:OsO 474:OsO 422:). 358:). 335:), 320:), 226:or 126:RSC 66:OsO 1487:: 1448:^ 1359:^ 1343:35 1341:. 1285:26 1182:^ 1164:. 1136:. 1099:; 1087:^ 1071:37 1040:57 1022:^ 1010:; 999:70 997:. 991:. 981:"( 954:17 922:; 911:73 909:. 903:. 866:55 838:79 836:. 830:. 824:)- 820:,2 812:,2 785:94 753:. 743:66 513:Re 410:NH 406:SO 350:(K 312:, 284:. 1474:. 1470:: 1442:. 1438:: 1414:. 1410:: 1385:. 1381:: 1353:. 1349:: 1323:. 1319:: 1295:. 1291:: 1258:. 1254:: 1229:. 1225:: 1176:. 1172:: 1148:. 1144:: 1138:3 1120:. 1116:: 1081:. 1077:: 1050:. 1046:: 1017:. 1005:: 987:R 985:, 983:R 964:. 960:: 941:4 929:. 917:: 899:H 895:S 876:. 872:: 849:. 844:: 822:S 818:R 814:R 810:S 795:. 791:: 763:. 749:: 685:. 681:: 584:6 580:3 553:4 549:2 545:2 541:4 537:4 521:4 476:4 467:4 456:] 420:2 412:2 408:2 404:3 400:6 396:5 388:4 384:3 380:2 368:4 356:6 352:3 344:t 342:( 327:N 323:N 316:( 306:4 251:2 247:2 233:N 229:N 212:S 208:M 204:L 202:R 86:↓ 75:+ 68:4 63:+

Index

Karl Barry Sharpless
Addition reaction
diol
sharpless-dihydroxylation
RSC
RXNO:0000142
chemical reaction
alkene
osmium tetroxide
chiral
quinine
ligand
vicinal
diol
enantioselectivities
dihydroquinidine
dihydroquinine

reoxidants
potassium ferricyanide
N-methylmorpholine N-oxide
toxic
AD-mix
organic synthesis
reactants
catalysts
organic synthesis
K. Barry Sharpless
Upjohn dihydroxylation
Nobel Prize in Chemistry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.