Knowledge

Self-supervised learning

Source đź“ť

966:
meaningful training signals. SSL tasks are designed so that solving it requires capturing essential features or relationships in the data. The input data is typically augmented or transformed in a way that creates pairs of related samples. One sample serves as the input, and the other is used to formulate the supervisory signal. This augmentation can involve introducing noise, cropping, rotation, or other transformations. Self-supervised learning more closely imitates the way humans learn to classify objects.
977:. The model learns in two steps. First, the task is solved based on an auxiliary or pretext classification task using pseudo-labels which help to initialize the model parameters. Second, the actual task is performed with supervised or unsupervised learning. Other auxiliary tasks involve pattern completion from masked input patterns (silent pauses in speech or image portions masked in black). 1566: 1042:
Non-contrastive self-supervised learning (NCSSL) uses only positive examples. Counterintuitively, NCSSL converges on a useful local minimum rather than reaching a trivial solution, with zero loss. For the example of binary classification, it would trivially learn to classify each example as positive.
1016:
The training process involves presenting the model with input data and requiring it to reconstruct the same data as closely as possible. The loss function used during training typically penalizes the difference between the original input and the reconstructed output. By minimizing this reconstruction
1029:
can be divided into positive examples and negative examples. Positive examples are those that match the target. For example, if you're learning to identify birds, the positive training data are those pictures that contain birds. Negative examples are those that do not. Contrastive self-supervised
1083:
intrinsically constitutes a self-supervised process, because the output pattern needs to become an optimal reconstruction of the input pattern itself. However, in current jargon, the term 'self-supervised' has become associated with classification tasks that are based on a pretext-task training
1790:
Grill, Jean-Bastien; Strub, Florian; Altché, Florent; Tallec, Corentin; Richemond, Pierre H.; Buchatskaya, Elena; Doersch, Carl; Pires, Bernardo Avila; Guo, Zhaohan Daniel; Azar, Mohammad Gheshlaghi; Piot, Bilal (10 September 2020). "Bootstrap your own latent: A new approach to self-supervised
965:
where a model is trained on a task using the data itself to generate supervisory signals, rather than relying on external labels provided by humans. In the context of neural networks, self-supervised learning aims to leverage inherent structures or relationships within the input data to create
1005:
Autoassociative self-supervised learning is a specific category of self-supervised learning where a neural network is trained to reproduce or reconstruct its own input data. In other words, the model is tasked with learning a representation of the data that captures its essential features or
1875:
Balestriero, Randall; Ibrahim, Mark; Sobal, Vlad; Morcos, Ari; Shekhar, Shashank; Goldstein, Tom; Bordes, Florian; Bardes, Adrien; Mialon, Gregoire; Tian, Yuandong; Schwarzschild, Avi; Wilson, Andrew Gordon; Geiping, Jonas; Garrido, Quentin; Fernandez, Pierre (24 April 2023). "A Cookbook of
1013:, which are a type of neural network architecture used for representation learning. Autoencoders consist of an encoder network that maps the input data to a lower-dimensional representation (latent space), and a decoder network that reconstructs the input data from this representation. 1051:
SSL belongs to supervised learning methods insofar as the goal is to generate a classified output from the input. At the same time, however, it does not require the explicit use of labeled input-output pairs. Instead, correlations, metadata embedded in the data, or
1059:
SSL is similar to unsupervised learning in that it does not require labels in the sample data. Unlike unsupervised learning, however, learning is not done using inherent data structures.
1091:, self-supervising learning from a combination of losses can create abstract representations where only the most important information about the state are kept in a compressed way. 1195: 868: 906: 1056:
present in the input are implicitly and autonomously extracted from the data. These supervisory signals, generated from the data, can then be used for training.
863: 1812:
Gündüz, Hüseyin Anil; Binder, Martin; To, Xiao-Yin; Mreches, René; Bischl, Bernd; McHardy, Alice C.; Münch, Philipp C.; Rezaei, Mina (11 September 2023).
853: 694: 1009:
The term "autoassociative" comes from the fact that the model is essentially associating the input data with itself. This is often achieved using
1694:
Francois-Lavet, Vincent; Bengio, Yoshua; Precup, Doina; Pineau, Joelle (2019). "Combined Reinforcement Learning via Abstract Representations".
1614: 901: 858: 709: 2089: 440: 941: 744: 1537: 820: 1084:
setup. This involves the (human) design of such pretext task(s), unlike the case of fully self-contained autoencoder training.
369: 1978: 1929: 1670: 1510: 1400: 1345: 1287: 878: 641: 176: 896: 729: 704: 653: 777: 772: 425: 1135:
that can be used in language processing. It can be used to translate texts or answer questions, among other things.
435: 73: 1034:
minimizes the distance between positive sample pairs while maximizing the distance between negative sample pairs.
1043:
Effective NCSSL requires an extra predictor on the online side that does not back-propagate on the target side.
980:
Self-supervised learning has produced promising results in recent years and has found practical application in
934: 830: 594: 415: 1108: 805: 507: 283: 1719: 762: 699: 609: 587: 430: 420: 1747:"Structural Supervision Improves Few-Shot Learning and Syntactic Generalization in Neural Language Models" 1153: 913: 825: 810: 271: 93: 1479:
Gidaris, Spyros; Bursuc, Andrei; Komodakis, Nikos; Perez, Patrick Perez; Cord, Matthieu (October 2019).
1745:
Wilcox, Ethan; Qian, Peng; Futrell, Richard; Kohita, Ryosuke; Levy, Roger; Ballesteros, Miguel (2020).
873: 800: 550: 445: 233: 166: 126: 1065:
combines supervised and unsupervised learning, requiring only a small portion of the learning data be
2084: 1157: 970: 927: 533: 301: 171: 1062: 555: 475: 398: 316: 146: 108: 103: 58: 981: 502: 351: 251: 78: 1088: 682: 658: 560: 321: 296: 256: 68: 1751:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
1118: 636: 458: 410: 266: 181: 53: 1581: 1017:
error, the autoencoder learns a meaningful representation of the data in its latent space.
565: 515: 1167:
DirectPred is a NCSSL that directly sets the predictor weights instead of learning it via
8: 668: 604: 575: 480: 306: 239: 225: 211: 186: 136: 88: 48: 1848: 1813: 1585: 2051:
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics
2033: 1984: 1956: 1935: 1907: 1877: 1792: 1772: 1754: 1753:. Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 4640–4652. 1699: 1676: 1648: 1516: 1488: 1461: 1406: 1378: 1351: 1323: 1293: 1265: 1226:
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics
1149: 1099:
Self-supervised learning is particularly suitable for speech recognition. For example,
989: 646: 570: 356: 151: 1768: 1196:"What is Self-Supervised Learning? | Will machines ever be able to learn like humans?" 2025: 2017: 1998:"Fast and robust segmentation of white blood cell images by self-supervised learning" 1974: 1925: 1853: 1835: 1776: 1746: 1666: 1520: 1506: 1453: 1445: 1426:"Fast and robust segmentation of white blood cell images by self-supervised learning" 1396: 1355: 1341: 1283: 1073: 739: 582: 495: 291: 261: 206: 201: 156: 98: 2054: 2037: 2009: 1997: 1988: 1966: 1917: 1843: 1825: 1764: 1720:"Open Sourcing BERT: State-of-the-Art Pre-training for Natural Language Processing" 1680: 1658: 1589: 1498: 1465: 1437: 1410: 1388: 1333: 1314:
Beyer, Lucas; Zhai, Xiaohua; Oliver, Avital; Kolesnikov, Alexander (October 2019).
1275: 1229: 1168: 1053: 962: 767: 520: 470: 380: 364: 334: 196: 191: 141: 131: 29: 1939: 1425: 1297: 2013: 1615:"Demystifying a key self-supervised learning technique: Non-contrastive learning" 1441: 795: 599: 465: 405: 1814:"A self-supervised deep learning method for data-efficient training in genomics" 1948: 1899: 1830: 1132: 815: 346: 83: 1567:"Nonlinear principal component analysis using autoassociative neural networks" 2078: 2021: 1839: 1480: 1449: 1315: 1031: 1026: 974: 734: 663: 545: 276: 161: 1502: 1337: 1107:, a self-supervised algorithm, to perform speech recognition using two deep 2029: 1857: 1640: 1457: 1370: 1257: 1066: 1010: 2059: 1970: 1921: 1662: 1593: 1392: 1279: 1234: 1030:
learning uses both positive and negative examples. Contrastive learning's
1121:(BERT) model is used to better understand the context of search queries. 1080: 540: 34: 1538:"Wav2vec: State-of-the-art speech recognition through self-supervision" 689: 385: 311: 1645:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
1174:
Self-GenomeNet is an example of self-supervised learning in genomics.
1156:. From a small number of labeled examples, it learns to predict which 2053:. Cambridge, MA: Association for Computational Linguistics: 189–196. 2046: 1228:. Cambridge, MA: Association for Computational Linguistics: 189–196. 1221: 848: 629: 2047:"Unsupervised Word Sense Disambiguation Rivaling Supervised Methods" 1222:"Unsupervised Word Sense Disambiguation Rivaling Supervised Methods" 1996:
Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo (1 April 2018).
1961: 1949:"Unsupervised Visual Representation Learning by Context Prediction" 1912: 1882: 1797: 1759: 1704: 1653: 1493: 1383: 1371:"Unsupervised Visual Representation Learning by Context Prediction" 1328: 1270: 1161: 1142: 1100: 985: 1046: 1947:
Doersch, Carl; Gupta, Abhinav; Efros, Alexei A. (December 2015).
1424:
Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo (April 2018).
1369:
Doersch, Carl; Gupta, Abhinav; Efros, Alexei A. (December 2015).
624: 1693: 1485:
2019 IEEE/CVF International Conference on Computer Vision (ICCV)
1320:
2019 IEEE/CVF International Conference on Computer Vision (ICCV)
1124: 1114: 375: 1874: 1696:
Proceedings of the AAAI Conference on Artificial Intelligence
1128: 1076:
a model designed for one task is reused on a different task.
619: 614: 341: 1953:
2015 IEEE International Conference on Computer Vision (ICCV)
1904:
2017 IEEE International Conference on Computer Vision (ICCV)
1375:
2015 IEEE International Conference on Computer Vision (ICCV)
1262:
2017 IEEE International Conference on Computer Vision (ICCV)
1478: 1037: 1000: 1481:"Boosting Few-Shot Visual Learning with Self-Supervision" 1313: 1006:
structure, allowing it to regenerate the original input.
907:
List of datasets in computer vision and image processing
1744: 1119:
Bidirectional Encoder Representations from Transformers
1020: 1789: 1811: 1141:(BYOL) is a NCSSL that produced excellent results on 1641:"The Multiverse Loss for Robust Transfer Learning" 1946: 1898:Doersch, Carl; Zisserman, Andrew (October 2017). 1368: 1256:Doersch, Carl; Zisserman, Andrew (October 2017). 2076: 1995: 1897: 1423: 1255: 1145:and on transfer and semi-supervised benchmarks. 1316:"S4L: Self-Supervised Semi-Supervised Learning" 1047:Comparison with other forms of machine learning 902:List of datasets for machine-learning research 1164:word is being used at a given point in text. 1152:is an example of self-supervised learning in 935: 1900:"Multi-task Self-Supervised Visual Learning" 1258:"Multi-task Self-Supervised Visual Learning" 1638: 942: 928: 2058: 1960: 1911: 1881: 1847: 1829: 1796: 1758: 1703: 1652: 1492: 1382: 1327: 1269: 1233: 2044: 1219: 1193: 1038:Non-contrastive self-supervised learning 1001:Autoassociative self-supervised learning 1639:Littwin, Etai; Wolf, Lior (June 2016). 1309: 1307: 1189: 1187: 2077: 1564: 1532: 1530: 969:The typical SSL method is based on an 1609: 1607: 1605: 1603: 1560: 1558: 1304: 1194:Bouchard, Louis (25 November 2020). 1184: 1021:Contrastive self-supervised learning 1527: 897:Glossary of artificial intelligence 13: 2090:Generative artificial intelligence 1868: 1600: 1555: 1025:For a binary classification task, 14: 2101: 1891: 1805: 1783: 1769:10.18653/v1/2020.emnlp-main.375 1738: 1712: 1687: 1632: 1472: 1417: 1362: 1249: 1213: 317:Relevance vector machine (RVM) 16:A paradigm in machine learning 1: 1177: 1109:convolutional neural networks 806:Computational learning theory 370:Expectation–maximization (EM) 2014:10.1016/j.micron.2018.01.010 1647:. IEEE. pp. 3957–3966. 1487:. IEEE. pp. 8058–8067. 1442:10.1016/j.micron.2018.01.010 1377:. IEEE. pp. 1422–1430. 1322:. IEEE. pp. 1476–1485. 1264:. IEEE. pp. 2070–2079. 763:Coefficient of determination 610:Convolutional neural network 322:Support vector machine (SVM) 7: 1876:Self-Supervised Learning". 1154:natural language processing 1094: 914:Outline of machine learning 811:Empirical risk minimization 10: 2106: 1831:10.1038/s42003-023-05310-2 1111:that build on each other. 551:Feedforward neural network 302:Artificial neural networks 1139:Bootstrap Your Own Latent 973:or other model such as a 971:artificial neural network 534:Artificial neural network 2045:Yarowsky, David (1995). 1565:Kramer, Mark A. (1991). 1220:Yarowsky, David (1995). 1063:Semi-supervised learning 995: 955:Self-supervised learning 843:Journals and conferences 790:Mathematical foundations 700:Temporal difference (TD) 556:Recurrent neural network 476:Conditional random field 399:Dimensionality reduction 147:Dimensionality reduction 109:Quantum machine learning 104:Neuromorphic engineering 64:Self-supervised learning 59:Semi-supervised learning 1503:10.1109/iccv.2019.00815 1338:10.1109/iccv.2019.00156 252:Apprenticeship learning 1955:. pp. 1422–1430. 1906:. pp. 2070–2079. 1818:Communications Biology 1089:reinforcement learning 801:Bias–variance tradeoff 683:Reinforcement learning 659:Spiking neural network 69:Reinforcement learning 2060:10.3115/981658.981684 1971:10.1109/ICCV.2015.167 1922:10.1109/ICCV.2017.226 1663:10.1109/cvpr.2016.429 1594:10.1002/aic.690370209 1393:10.1109/iccv.2015.167 1280:10.1109/iccv.2017.226 1235:10.3115/981658.981684 1131:is an autoregressive 984:and is being used by 637:Neural radiance field 459:Structured prediction 182:Structured prediction 54:Unsupervised learning 826:Statistical learning 724:Learning with humans 516:Local outlier factor 1586:1991AIChE..37..233K 961:) is a paradigm in 669:Electrochemical RAM 576:reservoir computing 307:Logistic regression 226:Supervised learning 212:Multimodal learning 187:Feature engineering 132:Generative modeling 94:Rule-based learning 89:Curriculum learning 49:Supervised learning 24:Part of a series on 1150:Yarowsky algorithm 990:speech recognition 237: • 152:Density estimation 1980:978-1-4673-8391-2 1931:978-1-5386-1032-9 1726:. 2 November 2018 1672:978-1-4673-8851-1 1512:978-1-7281-4803-8 1402:978-1-4673-8391-2 1347:978-1-7281-4803-8 1289:978-1-5386-1032-9 1074:transfer learning 952: 951: 757:Model diagnostics 740:Human-in-the-loop 583:Boltzmann machine 496:Anomaly detection 292:Linear regression 207:Ontology learning 202:Grammar induction 177:Semantic analysis 172:Association rules 157:Anomaly detection 99:Neuro-symbolic AI 2097: 2085:Machine learning 2071: 2069: 2067: 2062: 2041: 1992: 1964: 1943: 1915: 1887: 1885: 1862: 1861: 1851: 1833: 1809: 1803: 1802: 1800: 1787: 1781: 1780: 1762: 1742: 1736: 1735: 1733: 1731: 1716: 1710: 1709: 1707: 1691: 1685: 1684: 1656: 1636: 1630: 1629: 1627: 1625: 1611: 1598: 1597: 1571: 1562: 1553: 1552: 1550: 1548: 1534: 1525: 1524: 1496: 1476: 1470: 1469: 1421: 1415: 1414: 1386: 1366: 1360: 1359: 1331: 1311: 1302: 1301: 1273: 1253: 1247: 1246: 1244: 1242: 1237: 1217: 1211: 1210: 1208: 1206: 1191: 1054:domain knowledge 982:audio processing 963:machine learning 944: 937: 930: 891:Related articles 768:Confusion matrix 521:Isolation forest 466:Graphical models 245: 244: 197:Learning to rank 192:Feature learning 30:Machine learning 21: 20: 2105: 2104: 2100: 2099: 2098: 2096: 2095: 2094: 2075: 2074: 2065: 2063: 1981: 1932: 1894: 1871: 1869:Further reading 1866: 1865: 1810: 1806: 1788: 1784: 1743: 1739: 1729: 1727: 1718: 1717: 1713: 1692: 1688: 1673: 1637: 1633: 1623: 1621: 1619:ai.facebook.com 1613: 1612: 1601: 1569: 1563: 1556: 1546: 1544: 1542:ai.facebook.com 1536: 1535: 1528: 1513: 1477: 1473: 1422: 1418: 1403: 1367: 1363: 1348: 1312: 1305: 1290: 1254: 1250: 1240: 1238: 1218: 1214: 1204: 1202: 1192: 1185: 1180: 1169:gradient update 1097: 1049: 1040: 1023: 1003: 998: 988:and others for 948: 919: 918: 892: 884: 883: 844: 836: 835: 796:Kernel machines 791: 783: 782: 758: 750: 749: 730:Active learning 725: 717: 716: 685: 675: 674: 600:Diffusion model 536: 526: 525: 498: 488: 487: 461: 451: 450: 406:Factor analysis 401: 391: 390: 374: 337: 327: 326: 247: 246: 230: 229: 228: 217: 216: 122: 114: 113: 79:Online learning 44: 32: 17: 12: 11: 5: 2103: 2093: 2092: 2087: 2073: 2072: 2042: 1993: 1979: 1944: 1930: 1893: 1892:External links 1890: 1889: 1888: 1870: 1867: 1864: 1863: 1804: 1782: 1737: 1724:Google AI Blog 1711: 1686: 1671: 1631: 1599: 1580:(2): 233–243. 1554: 1526: 1511: 1471: 1416: 1401: 1361: 1346: 1303: 1288: 1248: 1212: 1182: 1181: 1179: 1176: 1133:language model 1096: 1093: 1048: 1045: 1039: 1036: 1022: 1019: 1002: 999: 997: 994: 950: 949: 947: 946: 939: 932: 924: 921: 920: 917: 916: 911: 910: 909: 899: 893: 890: 889: 886: 885: 882: 881: 876: 871: 866: 861: 856: 851: 845: 842: 841: 838: 837: 834: 833: 828: 823: 818: 816:Occam learning 813: 808: 803: 798: 792: 789: 788: 785: 784: 781: 780: 775: 773:Learning curve 770: 765: 759: 756: 755: 752: 751: 748: 747: 742: 737: 732: 726: 723: 722: 719: 718: 715: 714: 713: 712: 702: 697: 692: 686: 681: 680: 677: 676: 673: 672: 666: 661: 656: 651: 650: 649: 639: 634: 633: 632: 627: 622: 617: 607: 602: 597: 592: 591: 590: 580: 579: 578: 573: 568: 563: 553: 548: 543: 537: 532: 531: 528: 527: 524: 523: 518: 513: 505: 499: 494: 493: 490: 489: 486: 485: 484: 483: 478: 473: 462: 457: 456: 453: 452: 449: 448: 443: 438: 433: 428: 423: 418: 413: 408: 402: 397: 396: 393: 392: 389: 388: 383: 378: 372: 367: 362: 354: 349: 344: 338: 333: 332: 329: 328: 325: 324: 319: 314: 309: 304: 299: 294: 289: 281: 280: 279: 274: 269: 259: 257:Decision trees 254: 248: 234:classification 224: 223: 222: 219: 218: 215: 214: 209: 204: 199: 194: 189: 184: 179: 174: 169: 164: 159: 154: 149: 144: 139: 134: 129: 127:Classification 123: 120: 119: 116: 115: 112: 111: 106: 101: 96: 91: 86: 84:Batch learning 81: 76: 71: 66: 61: 56: 51: 45: 42: 41: 38: 37: 26: 25: 15: 9: 6: 4: 3: 2: 2102: 2091: 2088: 2086: 2083: 2082: 2080: 2061: 2056: 2052: 2048: 2043: 2039: 2035: 2031: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1994: 1990: 1986: 1982: 1976: 1972: 1968: 1963: 1958: 1954: 1950: 1945: 1941: 1937: 1933: 1927: 1923: 1919: 1914: 1909: 1905: 1901: 1896: 1895: 1884: 1879: 1873: 1872: 1859: 1855: 1850: 1845: 1841: 1837: 1832: 1827: 1823: 1819: 1815: 1808: 1799: 1794: 1786: 1778: 1774: 1770: 1766: 1761: 1756: 1752: 1748: 1741: 1725: 1721: 1715: 1706: 1701: 1697: 1690: 1682: 1678: 1674: 1668: 1664: 1660: 1655: 1650: 1646: 1642: 1635: 1620: 1616: 1610: 1608: 1606: 1604: 1595: 1591: 1587: 1583: 1579: 1575: 1574:AIChE Journal 1568: 1561: 1559: 1543: 1539: 1533: 1531: 1522: 1518: 1514: 1508: 1504: 1500: 1495: 1490: 1486: 1482: 1475: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1420: 1412: 1408: 1404: 1398: 1394: 1390: 1385: 1380: 1376: 1372: 1365: 1357: 1353: 1349: 1343: 1339: 1335: 1330: 1325: 1321: 1317: 1310: 1308: 1299: 1295: 1291: 1285: 1281: 1277: 1272: 1267: 1263: 1259: 1252: 1236: 1231: 1227: 1223: 1216: 1201: 1197: 1190: 1188: 1183: 1175: 1172: 1170: 1165: 1163: 1159: 1155: 1151: 1146: 1144: 1140: 1136: 1134: 1130: 1126: 1122: 1120: 1116: 1112: 1110: 1106: 1102: 1092: 1090: 1085: 1082: 1077: 1075: 1070: 1068: 1064: 1060: 1057: 1055: 1044: 1035: 1033: 1032:loss function 1028: 1027:training data 1018: 1014: 1012: 1007: 993: 991: 987: 983: 978: 976: 975:decision list 972: 967: 964: 960: 956: 945: 940: 938: 933: 931: 926: 925: 923: 922: 915: 912: 908: 905: 904: 903: 900: 898: 895: 894: 888: 887: 880: 877: 875: 872: 870: 867: 865: 862: 860: 857: 855: 852: 850: 847: 846: 840: 839: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 793: 787: 786: 779: 776: 774: 771: 769: 766: 764: 761: 760: 754: 753: 746: 743: 741: 738: 736: 735:Crowdsourcing 733: 731: 728: 727: 721: 720: 711: 708: 707: 706: 703: 701: 698: 696: 693: 691: 688: 687: 684: 679: 678: 670: 667: 665: 664:Memtransistor 662: 660: 657: 655: 652: 648: 645: 644: 643: 640: 638: 635: 631: 628: 626: 623: 621: 618: 616: 613: 612: 611: 608: 606: 603: 601: 598: 596: 593: 589: 586: 585: 584: 581: 577: 574: 572: 569: 567: 564: 562: 559: 558: 557: 554: 552: 549: 547: 546:Deep learning 544: 542: 539: 538: 535: 530: 529: 522: 519: 517: 514: 512: 510: 506: 504: 501: 500: 497: 492: 491: 482: 481:Hidden Markov 479: 477: 474: 472: 469: 468: 467: 464: 463: 460: 455: 454: 447: 444: 442: 439: 437: 434: 432: 429: 427: 424: 422: 419: 417: 414: 412: 409: 407: 404: 403: 400: 395: 394: 387: 384: 382: 379: 377: 373: 371: 368: 366: 363: 361: 359: 355: 353: 350: 348: 345: 343: 340: 339: 336: 331: 330: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 288: 286: 282: 278: 277:Random forest 275: 273: 270: 268: 265: 264: 263: 260: 258: 255: 253: 250: 249: 242: 241: 236: 235: 227: 221: 220: 213: 210: 208: 205: 203: 200: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 162:Data cleaning 160: 158: 155: 153: 150: 148: 145: 143: 140: 138: 135: 133: 130: 128: 125: 124: 118: 117: 110: 107: 105: 102: 100: 97: 95: 92: 90: 87: 85: 82: 80: 77: 75: 74:Meta-learning 72: 70: 67: 65: 62: 60: 57: 55: 52: 50: 47: 46: 40: 39: 36: 31: 28: 27: 23: 22: 19: 2064:. Retrieved 2050: 2005: 2001: 1952: 1903: 1821: 1817: 1807: 1785: 1750: 1740: 1728:. Retrieved 1723: 1714: 1695: 1689: 1644: 1634: 1622:. Retrieved 1618: 1577: 1573: 1545:. Retrieved 1541: 1484: 1474: 1433: 1429: 1419: 1374: 1364: 1319: 1261: 1251: 1239:. Retrieved 1225: 1215: 1203:. Retrieved 1199: 1173: 1166: 1147: 1138: 1137: 1123: 1113: 1104: 1098: 1086: 1079:Training an 1078: 1071: 1061: 1058: 1050: 1041: 1024: 1015: 1011:autoencoders 1008: 1004: 979: 968: 958: 954: 953: 821:PAC learning 508: 357: 352:Hierarchical 284: 238: 232: 63: 18: 1791:Learning". 1081:autoencoder 705:Multi-agent 642:Transformer 541:Autoencoder 297:Naive Bayes 35:data mining 2079:Categories 2066:1 November 1962:1505.05192 1913:1708.07860 1883:2304.12210 1824:(1): 928. 1798:2006.07733 1760:2010.05725 1705:1809.04506 1654:1511.09033 1494:1906.05186 1384:1505.05192 1329:1905.03670 1271:1708.07860 1241:1 November 1178:References 1162:polysemous 1158:word sense 1103:developed 690:Q-learning 588:Restricted 386:Mean shift 335:Clustering 312:Perceptron 240:regression 142:Clustering 137:Regression 2022:0968-4328 2008:: 55–71. 1840:2399-3642 1777:222291675 1624:5 October 1521:186206588 1450:0968-4328 1436:: 55–71. 1356:167209887 849:ECML PKDD 831:VC theory 778:ROC curve 710:Self-play 630:DeepDream 471:Bayes net 262:Ensembles 43:Paradigms 2030:29425969 1858:37696966 1849:10495322 1458:29425969 1143:ImageNet 1101:Facebook 1095:Examples 986:Facebook 272:Boosting 121:Problems 2038:3796689 1989:9062671 1681:6517610 1582:Bibcode 1466:3796689 1411:9062671 1105:wav2vec 1067:labeled 854:NeurIPS 671:(ECRAM) 625:AlexNet 267:Bagging 2036:  2028:  2020:  2002:Micron 1987:  1977:  1940:473729 1938:  1928:  1856:  1846:  1838:  1775:  1730:9 June 1679:  1669:  1547:9 June 1519:  1509:  1464:  1456:  1448:  1430:Micron 1409:  1399:  1354:  1344:  1298:473729 1296:  1286:  1205:9 June 1200:Medium 1125:OpenAI 1115:Google 647:Vision 503:RANSAC 381:OPTICS 376:DBSCAN 360:-means 167:AutoML 2034:S2CID 1985:S2CID 1957:arXiv 1936:S2CID 1908:arXiv 1878:arXiv 1793:arXiv 1773:S2CID 1755:arXiv 1700:arXiv 1677:S2CID 1649:arXiv 1570:(PDF) 1517:S2CID 1489:arXiv 1462:S2CID 1407:S2CID 1379:arXiv 1352:S2CID 1324:arXiv 1294:S2CID 1266:arXiv 1160:of a 1129:GPT-3 996:Types 869:IJCAI 695:SARSA 654:Mamba 620:LeNet 615:U-Net 441:t-SNE 365:Fuzzy 342:BIRCH 2068:2022 2026:PMID 2018:ISSN 1975:ISBN 1926:ISBN 1854:PMID 1836:ISSN 1732:2021 1667:ISBN 1626:2021 1549:2021 1507:ISBN 1454:PMID 1446:ISSN 1397:ISBN 1342:ISBN 1284:ISBN 1243:2022 1207:2021 1148:The 879:JMLR 864:ICLR 859:ICML 745:RLHF 561:LSTM 347:CURE 33:and 2055:doi 2010:doi 2006:107 1967:doi 1918:doi 1844:PMC 1826:doi 1765:doi 1659:doi 1590:doi 1499:doi 1438:doi 1434:107 1389:doi 1334:doi 1276:doi 1230:doi 1127:'s 1117:'s 1087:In 1072:In 992:. 959:SSL 605:SOM 595:GAN 571:ESN 566:GRU 511:-NN 446:SDL 436:PGD 431:PCA 426:NMF 421:LDA 416:ICA 411:CCA 287:-NN 2081:: 2049:. 2032:. 2024:. 2016:. 2004:. 2000:. 1983:. 1973:. 1965:. 1951:. 1934:. 1924:. 1916:. 1902:. 1852:. 1842:. 1834:. 1820:. 1816:. 1771:. 1763:. 1749:. 1722:. 1698:. 1675:. 1665:. 1657:. 1643:. 1617:. 1602:^ 1588:. 1578:37 1576:. 1572:. 1557:^ 1540:. 1529:^ 1515:. 1505:. 1497:. 1483:. 1460:. 1452:. 1444:. 1432:. 1428:. 1405:. 1395:. 1387:. 1373:. 1350:. 1340:. 1332:. 1318:. 1306:^ 1292:. 1282:. 1274:. 1260:. 1224:. 1198:. 1186:^ 1171:. 1069:. 874:ML 2070:. 2057:: 2040:. 2012:: 1991:. 1969:: 1959:: 1942:. 1920:: 1910:: 1886:. 1880:: 1860:. 1828:: 1822:6 1801:. 1795:: 1779:. 1767:: 1757:: 1734:. 1708:. 1702:: 1683:. 1661:: 1651:: 1628:. 1596:. 1592:: 1584:: 1551:. 1523:. 1501:: 1491:: 1468:. 1440:: 1413:. 1391:: 1381:: 1358:. 1336:: 1326:: 1300:. 1278:: 1268:: 1245:. 1232:: 1209:. 957:( 943:e 936:t 929:v 509:k 358:k 285:k 243:) 231:(

Index

Machine learning
data mining
Supervised learning
Unsupervised learning
Semi-supervised learning
Self-supervised learning
Reinforcement learning
Meta-learning
Online learning
Batch learning
Curriculum learning
Rule-based learning
Neuro-symbolic AI
Neuromorphic engineering
Quantum machine learning
Classification
Generative modeling
Regression
Clustering
Dimensionality reduction
Density estimation
Anomaly detection
Data cleaning
AutoML
Association rules
Semantic analysis
Structured prediction
Feature engineering
Feature learning
Learning to rank

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑