Knowledge

Self-assembled monolayer

Source 📝

269:
72 hours at room temperature, SAMs of alkanethiolates form within minutes. Special attention is essential in some cases, such as that of dithiol SAMs to avoid problems due to oxidation or photoinduced processes, which can affect terminal groups and lead to disorder and multilayer formation. In this case appropriate choice of solvents, their degassing by inert gasses and preparation in the absence of light is crucial and allows formation of "standing up" SAMs with free –SH groups. Self-assembled monolayers can also be adsorbed from the vapor phase. In some cases when obtaining an ordered assembly is difficult or when different density phases need to be obtained substitutional self-assembly is used. Here one first forms the SAM of a given type of molecules, which give rise to ordered assembly and then a second assembly phase is performed (e.g. by immersion into a different solution). This method has also been used to give information on relative binding strengths of SAMs with different head groups and more generally on self-assembly characteristics.
502:
across a large area the molecules support each other into forming their SAM shape seen in Figure 1. The orientation of the molecules can be described with two parameters: α and ÎČ. α is the angle of tilt of the backbone from the surface normal. In typical applications α varies from 0 to 60 degrees depending on the substrate and type of SAM molecule. ÎČ is the angle of rotation along the long axis of tee molecule. ÎČ is usually between 30 and 40 degrees. In some cases existence of kinetic traps hindering the final ordered orientation has been pointed out. Thus in case of dithiols formation of a "lying down" phase was considered an impediment to formation of "standing up" phase, however various recent studies indicate this is not the case.
724:(MEMS), and everyday household goods. SAMs can serve as models for studying membrane properties of cells and organelles and cell attachment on surfaces. SAMs can also be used to modify the surface properties of electrodes for electrochemistry, general electronics, and various NEMS and MEMS. For example, the properties of SAMs can be used to control electron transfer in electrochemistry. They can serve to protect metals from harsh chemicals and etchants. SAMs can also reduce sticking of NEMS and MEMS components in humid environments. In the same way, SAMs can alter the properties of glass. A common household product, 317:(STM). STM has been able to help understand the mechanisms of SAM formation as well as determine the important structural features that lend SAMs their integrity as surface-stable entities. In particular STM can image the shape, spatial distribution, terminal groups and their packing structure. AFM offers an equally powerful tool without the requirement of the SAM being conducting or semi-conducting. AFM has been used to determine chemical functionality, conductance, magnetic properties, surface charge, and frictional forces of SAMs. The 321:(SVET) is a further scanning probe microscopy which has been used to characterize SAMs, with defect free SAMs showing homogeneous activity in SVET. More recently, however, diffractive methods have also been used. The structure can be used to characterize the kinetics and defects found on the monolayer surface. These techniques have also shown physical differences between SAMs with planar substrates and nanoparticle substrates. An alternative characterisation instrument for measuring the self-assembly in real time is 35: 163: 68: 80: 243:(NEMS). Additionally, it can withstand harsh chemical cleaning treatments. Recently other chalcogenide SAMs: selenides and tellurides have attracted attention in a search for different bonding characteristics to substrates affecting the SAM characteristics and which could be of interest in some applications such as molecular electronics. Silanes are generally used on nonmetallic oxide surfaces; however monolayers formed from 562:
the SAMs. The transfer of the SAMs is a complex diffusion process that depends on the type of molecule, concentration, duration of contact, and pressure applied. Typical stamps use PDMS because its elastomeric properties, E = 1.8 MPa, allow it to fit the contour of micro surfaces and its low surface energy, Îł = 21.6 dyn/cmÂČ. This is a parallel process and can thus place nanoscale objects over a large area in a short time.
175:
at higher molecular coverage, over a period of minutes to hours, begin to form three-dimensional crystalline or semicrystalline structures on the substrate surface. The "head groups" assemble together on the substrate, while the tail groups assemble far from the substrate. Areas of close-packed molecules nucleate and grow until the surface of the substrate is covered in a single monolayer.
849:
There has been considerable interest in use of SAMs for new materials e.g. via formation of two- or three-dimensional metal organic superlattices by assembly of SAM capped nanoparticles or layer by layer SAM-nanoparticle arrays using dithiols. A detailed review on this subject using dithiols is given
674:
The final strategy focuses not on the deposition or removal of SAMS, but the modification of terminal groups. In the first case the terminal group can be modified to remove functionality so that SAM molecule will be inert. In the same regards the terminal group can be modified to add functionality so
501:
overcome the surrounding force. The forces between the molecules orient them so they are in their straight, optimal, configuration. Then as other molecules come close by they interact with these already organized molecules in the same fashion and become a part of the conformed group. When this occurs
480:
The phase transitions in which a SAM forms depends on the temperature of the environment relative to the triple point temperature, the temperature in which the tip of the low-density phase intersects with the intermediate-phase region. At temperatures below the triple point the growth goes from phase
268:
or electroless deposition. Thiol or selenium SAMs produced by adsorption from solution are typically made by immersing a substrate into a dilute solution of alkane thiol in ethanol, though many different solvents can be used besides use of pure liquids. While SAMs are often allowed to form over 12 to
618:
can remove SAM molecules in many different ways. The first is to remove them mechanically by dragging the tip across the substrate surface. This is not the most desired technique as these tips are expensive and dragging them causes a lot of wear and reduction of the tip quality. The second way is to
523:
The final structure of the SAM is also dependent on the chain length and the structure of both the adsorbate and the substrate. Steric hindrance and metal substrate properties, for example, can affect the packing density of the film, while chain length affects SAM thickness. Longer chain length also
505:
Many of the SAM properties, such as thickness, are determined in the first few minutes. However, it may take hours for defects to be eliminated via annealing and for final SAM properties to be determined. The exact kinetics of SAM formation depends on the adsorbate, solvent and substrate properties.
496:
with some hydrogen bonding. The small size of the SAM molecules are important here because Van der Waals forces arise from the dipoles of molecules and are thus much weaker than the surrounding surface forces at larger scales. The assembly process begins with a small group of molecules, usually two,
381:
There is evidence that SAM formation occurs in two steps: an initial fast step of adsorption and a second slower step of monolayer organization. Adsorption occurs at the liquid–liquid, liquid–vapor, and liquid-solid interfaces. The transport of molecules to the surface occurs due to a combination of
581:
to transfer molecules on the tip to a substrate. Initially the tip is dipped into a reservoir with an ink. The ink on the tip evaporates and leaves the desired molecules attached to the tip. When the tip is brought into contact with the surface a water meniscus forms between the tip and the surface
221:
and interfacial properties. An appropriate substrate is chosen to react with the head group. Substrates can be planar surfaces, such as silicon and metals, or curved surfaces, such as nanoparticles. Alkanethiols are the most commonly used molecules for SAMs. Alkanethiols are molecules with an alkyl
174:
of "head groups" onto a substrate from either the vapor or liquid phase followed by a slow organization of "tail groups". Initially, at small molecular density on the surface, adsorbate molecules form either a disordered mass of molecules or form an ordered two-dimensional "lying down phase", and
561:
is analogous to printing ink with a rubber stamp. The SAM molecules are inked onto a pre-shaped elastomeric stamp with a solvent and transferred to the substrate surface by stamping. The SAM solution is applied to the entire stamp but only areas that make contact with the surface allow transfer of
484:
At temperatures above the triple point the growth is more complex and can take two paths. In the first path the heads of the SAM organize to their near final locations with the tail groups loosely formed on top. Then as they transit to phase 3, the tail groups become ordered and straighten out. In
351:
Defects due to both external and intrinsic factors may appear. External factors include the cleanliness of the substrate, method of preparation, and purity of the adsorbates. SAMs intrinsically form defects due to the thermodynamics of formation, e.g. thiol SAMs on gold typically exhibit etch pits
238:
SH)). Interest in such dithiols stems from the possibility of linking the two sulfur ends to metallic contacts, which was first used in molecular conduction measurements. Thiols are frequently used on noble metal substrates because of the strong affinity of sulfur for these metals. The sulfur gold
334:
measurements can be used to determine the surface free-energy which reflects the average composition of the surface of the SAM and can be used to probe the kinetics and thermodynamics of the formation of SAMs. The kinetics of adsorption and temperature induced desorption as well as information on
222:
chain, (C-C)ⁿ chain, as the back bone, a tail group, and a S-H head group. Other types of interesting molecules include aromatic thiols, of interest in molecular electronics, in which the alkane chain is (partly) replaced by aromatic rings. An example is the dithiol 1,4-Benzenedimethanethiol (SHCH
715:
SAMs are an inexpensive and versatile surface coating for applications including control of wetting and adhesion, chemical resistance, bio compatibility, sensitization, and molecular recognition for sensors and nano fabrication. Areas of application for SAMs include biology, electrochemistry and
352:(monatomic vacancy islands) likely due to extraction of adatoms from the substrate and formation of adatom-adsorbate moieties. Recently, a new type of fluorosurfactants have found that can form nearly perfect monolayer on gold substrate due to the increase of mobility of gold surface atoms. 664:
In this process, UV light is projected onto the surface with a SAM through a pattern of apertures in a chromium film. This leads to photo oxidation of the SAM molecules. These can then be washed away in a polar solvent. This process has 100 nm resolutions and requires exposure time of
251:
because they do not form reversibly. Self-assembled monolayers of thiolates on noble metals are a special case because the metal-metal bonds become reversible after the formation of the thiolate-metal complex. This reversibility is what gives rise to vacancy islands and it is why SAMs of
2298:
Laibinis, Paul E.; Whitesides, George M.; Allara, David L.; Tao, Yu Tai; Parikh, Atul N.; Nuzzo, Ralph G. (1 September 1991). "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold".
1777:
Hamoudi, H.; Guo Z., Prato M., Dablemont C., Zheng W.Q., Bourguignon B., Canepa M., Esaulov, V. A.; Prato, Mirko; Dablemont, CĂ©line; Zheng, Wan Quan; Bourguignon, Bernard; Canepa, Maurizio; Esaulov, Vladimir A. (2008). "On the self assembly of short chain alkanedithiols".
2113:
Tang, Yongan; Yan, Jiawei; Zhu, Feng; Sun, Chunfeng; Mao, Bingwei (2011). "Comparative electrochemical scanning tunneling microscopy study of nonionic fluorosurfactant zonyl FSN self-assembled monolayers on Au(111) and Au(100) a potential-induced structural transition".
688:
Exposure to electron beams and UV light changes the terminal group chemistry. Some of the changes that can occur include the cleavage of bonds, the forming of double carbon bonds, cross-linking of adjacent molecules, fragmentation of molecules, and confromational
771:
is coated with a SAM that binds to the fungus. As the contaminated blood is filtered through a MEMS device the magnetic nanoparticles are inserted into the blood where they bind to the fungus and are then magnetically driven out of the blood stream into a nearby
195:
group on a substrate, and forms very stable, covalent bond with an energy of 452 kJ/mol. Thiol-metal bonds are on the order of 100 kJ/mol, making them fairly stable in a variety of temperatures, solvents, and potentials. The monolayer packs tightly due to
147:(HOPG). In other cases the molecules possess a head group that has a strong affinity to the substrate and anchors the molecule to it. Such a SAM consisting of a head group, tail and functional end group is depicted in Figure 1. Common head groups include 788:, because each adsorbate molecule can be tailored to attract two different materials. Current techniques utilize the head to attract to a surface, like a plate of gold. The terminal group is then modified to attract a specific material like a particular 582:
resulting in the diffusion of molecules from the tip to the surface. These tips can have radii in the tens of nanometers, and thus SAM molecules can be very precisely deposited onto a specific location of the surface. This process was discovered by
481:
1 to phase 2 where many islands form with the final SAM structure, but are surrounded by random molecules. Similar to nucleation in metals, as these islands grow larger they intersect forming boundaries until they end up in phase 3, as seen below.
178:
Adsorbate molecules adsorb readily because they lower the surface free-energy of the substrate and are stable due to the strong chemisorption of the "head groups." These bonds create monolayers that are more stable than the physisorbed bonds of
239:
interaction is semi-covalent and has a strength of approximately 45 kcal/mol. In addition, gold is an inert and biocompatible material that is easy to acquire. It is also easy to pattern via lithography, a useful feature for applications in
134:
and are organized into more or less large ordered domains. In some cases molecules that form the monolayer do not interact strongly with the substrate. This is the case for instance of the two-dimensional supramolecular networks of e.g.
216:
Selecting the type of head group depends on the application of the SAM. Typically, head groups are connected to a molecular chain in which the terminal end can be functionalized (i.e. adding –OH, –NH2, –COOH, or –SH groups) to vary the
804:, SWNTs. Dip pen nanolithography was used to pattern a 16-mercaptohexadecanoic acid (MHA)SAM and the rest of the surface was passivated with 1-octadecanethiol (ODT) SAM. The polar solvent that is carrying the SWNTs is attracted to the 2262:
Lud, S.Q; Neppl, S; Xu, F; Feulner, P; Stutzmann, M; Jordan, Rainer; Feulner, Peter; Stutzmann, Martin; Garrido, Jose A. (2010). "Controlling Surface Functionality through Generation of Thiol Groups in a Self-Assembled Monolayer".
2077:
Yan, Jiawei; Tang, Yongan; Sun, Chunfeng; Su, Yuzhuan; Mao, Bingwei (2010). "STM Study on Nonionic Fluorosurfactant Zonyl FSN Self-Assembly on Au(100) (3/1/-1/1) Molecular Lattice, Corrugations, and Adsorbate-Enhanced Mobility".
506:
In general, however, the kinetics are dependent on both preparations conditions and material properties of the solvent, adsorbate and substrate. Specifically, kinetics for adsorption from a liquid solution are dependent on:
836:
so that binding of these molecules can be detected. The ability to pattern these SAMs allows them to be placed in configurations that increase sensitivity and do not damage or interfere with other components of the
103: 545:
will later be located. This strategy is advantageous because it involves high throughput methods that generally involve fewer steps than the other two strategies. The major techniques that use this strategy are:
364:
and nanocrystals, "stabilize the reactive surface of the particle and present organic functional groups at the particle-solvent interface". These organic functional groups are useful for applications, such as
1398:
Andres, R.P.; Bein T.; Dorogi M.; Feng S.; Henderson J.I.; Kubiak C.P.; Mahoney W.; Osifchin R.G.; Reifenberger R. (1996). "Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure".
446: 2041:
Tang, Yongan; Yan, Jiawei; Zhou, Xiaoshun; Fu, Yongchun; Mao, Bingwei (2008). "An STM study on nonionic fluorosurfactant zonyl FSN self-assembly on Au(111) large domains, few defects, and good stability".
816:, Schatz and their co-workers were able to make complex two-dimensional shapes, a representation of a shape created is shown to the right. Another application of patterned SAMs is the functionalization of 325:
where the refractive index, thickness, mass and birefringence of the self assembled layer are quantified at high resolution. Another method that can be used to measure the self-assembly in real-time is
2377:
Lud, S.Q; Steenackers, M; Bruno, P; Gruen, D.M; Feulner, P; Garrido, J.A; Stutzmann, M; Stutzmann, M (2006). "Chemical Grafting of Biphenyl Self-Assembled Monolayers on Ultrananocrystalline Diamond".
1998:
Laffineur, F.; Auguste, D.; Plumier, F.; Pirlot, C.; Hevesi, L.; Delhalle, J.; Mekhalif, Z. (2004). "Comparison between CH3(CH2)15SH and CF3(CF2)3(CH2)11SH Monolayers on Electrodeposited Silver".
1838:
Alarcon, L.S.; Chen L., Esaulov, V. A., Gayone J.E., Sanchez E., Grizzi O. (2010). "Thiol Terminated 1,4-Benzenedimethanethiol Self-Assembled Monolayers on Au(111) and InP(110) from Vapor Phase".
2631:
Vijaya Sarathy, K.; John Thomas P., Kulkarni G.U., Rao C.N.R. (1999). "Superlattices of Metal and Metal−Semiconductor Quantum Dots Obtained by Layer-by-Layer Deposition of Nanoparticle Arrays".
1879:
Chaudhari, V.; Harish N.M.K.; Sampath S.; Esaulov V.A. (2011). "Substitutional Self-Assembly of Alkanethiol and Selenol SAMs from a Lying-Down Doubly Tethered Butanedithiol SAM on Gold".
1488:
Subramanian, S.; Sampath S. (2007). "Enhanced stability of short- and long-chain diselenide self-assembled monolayers on gold probed by electrochemistry, spectroscopy, and microscopy".
2334:
Noyhouzer, Tomer; Mandler, Daniel (17 January 2011). "Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode".
2752:
Faucheux, N.; Schweiss, R.; LĂŒtzow, K.; Werner, C.; Groth, T. (2004). "Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies".
2781:
Wasserman, S. R.; Tao, Y. T.; Whitesides, G. M. (1989). "Structure and Reactivity of Alkylsiloxane Monolayers Formed by Reaction of Alkyltrichlorosilanes on Silicon Substrates".
382:
diffusion and convective transport. According to the Langmuir or Avrami kinetic model the rate of deposition onto the surface is proportional to the free space of the surface.
1531:
Bucher, Jean-Pierre; Santesson, Lars, Kern, Klaus (31 March 1994). "Thermal Healing of Self-Assembled Organic Monolayers: Hexane- and Octadecanethiol on Au(111) and Ag(111)".
603:
is not desired. The result is the same as in the locally attract strategy, the difference being in the way this is achieved. The major techniques that use this strategy are:
485:
the second path the molecules start in a lying down position along the surface. These then form into islands of ordered SAMs, where they grow into phase 3, as seen below.
110: 1906:
Prato, M.; Moroni R.; Bisio F.; Rolandi R.; Mattera L.; Cavalleri O.; Canepa M. (2008). "Optical Characterization of Thiolate Self-Assembled Monolayers on Au(111)".
1721:
Hamoudi, H.; Prato M., Dablemont C., Cavalleri O., Canepa M., Esaulov, V. A. (2010). "Self-Assembly of 1,4-Benzenedimethanethiol Self-Assembled Monolayers on Gold".
2834: 599:
The locally remove strategy begins with covering the entire surface with a SAM. Then individual SAM molecules are removed from locations where the deposition of
327: 1617: 981:
Elemans, J.A.A.W.; Lei S., De Feyter S. (2009). "Molecular and Supramolecular Networks on Surfaces: From Two-Dimensional Crystal Engineering to Reactivity".
1450:
Shaporenko, A.; Muller J.; Weidner T.; Terfort A.; Zharnikov M. (2007). "Balance of Structure-Building Forces in Selenium-Based Self-Assembled Monolayers".
1167:
Schwartz, D.K., Mechanisms and Kinetics of Self-Assembled Monolayer Formation (2001). "Mechanisms and kinetics of self-assembled monolayer formation".
675:
it can accept different materials or have different properties than the original SAM terminal group. The major techniques that use this strategy are:
459:
is the rate constant. Although this model is robust it is only used for approximations because it fails to take into account intermediate processes.
728:, utilizes SAMs to create a hydrophobic monolayer on car windshields to keep them clear of rain. Another application is an anti-adhesion coating on 2658: 2617: 1865: 1821: 1756: 1602: 1558: 1331: 1283: 1210: 488:
The nature in which the tail groups organize themselves into a straight ordered monolayer is dependent on the inter-molecular attraction, or
2806:; Behm, R.J. (2007). "Structure Formation in Bis(terpyridine)Derivative Adlayers – Molecule-Substrate vs. Molecule-Molecule Interactions". 2574:
Kiely, C.J.; Fink J., Brust M., Bethell D? Schiffrin D.J. (1999). "Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters".
513:
Concentration of adsorbate in the solution – low concentrations require longer immersion times and often create highly crystalline domains.
1776: 492:, between the tail groups. To minimize the free energy of the organic layer the molecules adopt conformations that allow high degree of 96: 388: 1061:
De Feyter, S.; De Schreyer F.C. (2003). "Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy".
318: 1700: 1676:
Bain, Colin D.; Troughton, E. Barry; Tao, Yu Tai; Evall, Joseph; Whitesides, George M.; Nuzzo, Ralph G. (31 December 1988).
285:, which also give information on interfacial properties. The order in the SAM and orientation of molecules can be probed by 759:
or other MEMS devices that need to separate one type of molecule from its environment. One example is the use of magnetic
293:
in Reflection Absorption Infrared Spectroscopy (RAIRS) studies. Numerous other spectroscopic techniques are used such as
136: 1026:
Witte, G.; Wöll Ch. (2004). "Growth of aromatic molecules on solid substrates for applications in organic electronics".
1575:
Schlenoff, Joseph B.; Li, Ming, Ly, Hiep (30 November 1995). "Stability and Self-Exchange in Alkanethiol Monolayers".
463:
being a real time technique with ~10 Hz resolution can measure the kinetics of monolayer self-assembly directly.
2859: 302: 2447:
Yung; Fiering, J; Mueller, AJ; Ingber, DE; et al. (2009). "Micromagnetic–microfluidic blood cleansing device".
946:
Barlow, S.M.; Raval R.. (2003). "Complex organic molecules at metal surfaces: bonding, organisation and chirality".
1933:
Kato, H.; Noh J.; Hara M.; Kawai M. (2002). "An HREELS Study of Alkanethiol Self-Assembled Monolayers on Au(111)".
1646:
Nuzzo, Ralph G.; Allara, David L. (31 May 1983). "Adsorption of bifunctional organic disulfides on gold surfaces".
1624: 460: 322: 282: 2724:
Sagiv, J.; Polymeropoulos, E.E. (1978). "Adsorbed monolayers - molecular-organization and electrical-properties".
648: 473:
2. An intermediate-density phase with conformational disordered molecules or molecules lying flat on the surface.
721: 204:
if lateral interactions are neglected. If they cannot be neglected, the adsorption is better described by the
1166: 717: 620: 615: 607: 314: 240: 639:
The most common use of this technique is to remove the SAM molecules in a process called shaving, where the
360:
The structure of SAMs is also dependent on the curvature of the substrate. SAMs on nanoparticles, including
737: 201: 911:
Love; et al. (2005). "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology".
476:
3. A high-density phase with close-packed order and molecules standing normal to the substrate's surface.
2864: 2412:
Cech J; Taboryski R (2012). "Stability of FDTS monolayer coating on aluminum injection molding tools".
294: 265: 197: 180: 2529:
Garcia, R.; Martinez, R.V; Martinez, J (2005). "Nano Chemistry and Scanning Probe Nanolithographies".
1720: 538: 340: 336: 309:. The structures of SAMs are commonly determined using scanning probe microscopy techniques such as 261: 2543: 1678:"Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold" 1075: 298: 1837: 2849: 808:
MHA; as the solvent evaporates, the SWNTs are close enough to the MHA SAM to attach to it due to
729: 694: 644: 640: 632: 587: 578: 574: 567: 310: 49: 26: 2538: 1107: 1070: 701:
A conductive AFM tip can create an electrochemical reaction that can change the terminal group.
2744:
I. Rubinstein, E. Sabatani, R. Maoz and J. Sagiv, Organized Monolayers on Gold Electrodes, in
2482:
Carroll, Gregory T.; Wang, Denong; Turro, Nicholas J.; Koberstein, Jeffrey T. (1 March 2006).
800:
attached to the tail groups. One example is the use of two types of SAMs to align single wall
2652: 2611: 1859: 1815: 1750: 1596: 1552: 1204: 784:
Photolithographic methods are useful in patterning SAMs. SAMs are also useful in depositing
2803: 2685: 2583: 2421: 2343: 2175: 1972: 1787: 1497: 1408: 1242: 1176: 1035: 955: 809: 498: 493: 489: 370: 2802:
Hoster, H.E.; Roos, M.; Breitruck, A.; Meier, C.; Tonigold, K.; Waldmann, T.; Ziener, U.;
1106:
Carroll, Gregory T.; Pollard, Michael M.; van Delden, Richard A.; Feringa, Ben L. (2010).
755:
can now selectively attach itself to other molecules or SAMs. This technique is useful in
8: 2854: 2689: 2587: 2425: 2347: 2179: 1976: 1791: 1501: 1412: 1246: 1180: 1039: 959: 516:
Purity of the adsorbate – impurities can affect the final physical properties of the SAM
2765: 2703: 2630: 2599: 2244: 2196: 2163: 1432: 1325: 1277: 1233:
Schreiber, F (30 November 2000). "Structure and growth of self-assembling monolayers".
1130: 54: 1254: 1188: 967: 2823: 2769: 2707: 2556: 2511: 2503: 2464: 2394: 2359: 2316: 2280: 2236: 2201: 2131: 2095: 2059: 2023: 2015: 1803: 1738: 1513: 1467: 1424: 1192: 1088: 1008: 928: 733: 205: 84: 2248: 1436: 1134: 1108:"Controlled rotary motion of light-driven molecular motors assembled on a gold film" 466:
Once the molecules are at the surface the self-organization occurs in three phases:
130:) of organic molecules are molecular assemblies formed spontaneously on surfaces by 2815: 2790: 2761: 2733: 2693: 2640: 2603: 2591: 2548: 2495: 2456: 2429: 2386: 2351: 2308: 2272: 2228: 2219:
Piner, R.D; Zhu, J; Xu, F; Hong, S; Mirkin, C.A (1999). "Dip-Pen Nanolithography".
2191: 2183: 2123: 2087: 2051: 2007: 1984: 1980: 1942: 1915: 1888: 1847: 1795: 1730: 1692: 1655: 1584: 1540: 1505: 1459: 1416: 1250: 1184: 1122: 1080: 1043: 998: 990: 963: 920: 801: 624: 558: 550: 519:
Dirt or contamination on the substrate – imperfections can cause defects in the SAM
1420: 1385:
Self-assembled monolayers (SAMs). Fundamentals of BioMEMS and Medical Microdevices
2573: 2433: 2232: 1315: 510:
Temperature – room-temperature preparation improves kinetics and reduces defects.
335:
structure can also be obtained in real time by ion scattering techniques such as
252:
alkanethiolates can be thermally desorbed and undergo exchange with free thiols.
184: 619:
degrade or desorb the SAM molecules by shooting them with an electron beam. The
1677: 1675: 1509: 821: 797: 744: 600: 244: 200:, thereby reducing its own free energy. The adsorption can be described by the 72: 34: 2674:"Selfassembly of α, ω-dithiols on surfaces and metal dithiol heterostructures" 2355: 2187: 2843: 2737: 2507: 2483: 2320: 2019: 812:. The nanotubes thus line up with the MHA-ODT boundary. Using this technique 793: 785: 760: 752: 748: 542: 331: 248: 171: 1878: 2827: 2773: 2698: 2673: 2560: 2515: 2468: 2398: 2363: 2284: 2205: 2135: 2099: 2063: 2027: 1807: 1742: 1618:"Self-Assembled Monolayers (SAMs) as Collision Surfaces for Ion Activation" 1517: 1471: 1196: 1092: 1012: 994: 932: 789: 773: 768: 278: 162: 156: 2240: 1428: 1047: 470:
1. A low-density phase with random dispersion of molecules on the surface.
330:
where the mass and viscoelastic properties of the adlayer are quantified.
813: 805: 680: 656: 643:
tip is dragged along the surface mechanically removing the molecules. An
583: 366: 2794: 2376: 2312: 2011: 1696: 1659: 1588: 1544: 796:. In this way, wherever the SAM is patterned to a surface there will be 1449: 1126: 817: 756: 140: 131: 2819: 2644: 2499: 2390: 2276: 2127: 2091: 2055: 1946: 1919: 1892: 1851: 1734: 1463: 1003: 924: 67: 2552: 2460: 1799: 1084: 838: 833: 829: 1963:
Smith; et al. (2004). "Patterning Self-Assembled Monolayers".
825: 361: 192: 2595: 2528: 2164:"Strategies for Controlled Placement of Nanoscale Building Blocks" 1530: 328:
Quartz Crystal Microbalance with Dissipation monitoring technology
79: 218: 152: 1905: 1350:
Fundamentals of Microfabrication: The Science of Miniaturization
2261: 1105: 820:. The tail groups can be modified so they have an affinity for 764: 725: 441:{\displaystyle \mathbf {k(1-\theta )} ={\frac {d\theta }{dt}}.} 306: 286: 148: 2484:"Photochemical Micropatterning of Carbohydrates on a Surface" 1997: 1397: 373:, that are dependent on chemical composition of the surface. 2751: 2218: 2297: 1574: 980: 290: 188: 144: 2481: 1316:
Vos, Johannes G., Robert J. Forster, Tia E. Keyes (2003).
1267: 307:
High-resolution electron energy loss spectroscopy (HREELS)
247:
between silicon and carbon or oxygen cannot be considered
2835:
Sigma-Aldrich "Material Matters", Molecular Self-Assembly
2748:, C.K.N. Li (Ed.), The Electrochemical Society 1986: 175. 1932: 1060: 260:
Metal substrates for use in SAMs can be produced through
2801: 2726:
Berichte der Bunsengesellschaft fĂŒr Physikalische Chemie
2446: 1270:
Encyclopedia of Biomaterials and Biomedical Engineering
910: 2780: 1645: 1487: 391: 2746:
Electrochemical Sensors for Biomedical Applications
2723: 1483: 1481: 1382: 440: 341:time of flight direct recoil spectroscopy (TOFDRS) 2411: 455:is the proportional amount of area deposited and 408: 396: 287:Near Edge Xray Absorption Fine Structure (NEXAFS) 2841: 2333: 537:This first strategy involves locally depositing 1962: 1478: 945: 2672:Hamoudi, Hicham; Esaulov, Vladimir A. (2016). 2671: 2161: 1833: 1831: 1772: 1770: 1768: 1766: 1716: 1714: 1712: 1710: 1443: 844: 277:The thicknesses of SAMs can be measured using 2112: 2040: 1872: 1370:Supramolecular Electrochemistry. Coral Gables 1367: 1025: 104: 2657:: CS1 maint: multiple names: authors list ( 2616:: CS1 maint: multiple names: authors list ( 2076: 1864:: CS1 maint: multiple names: authors list ( 1820:: CS1 maint: multiple names: authors list ( 1755:: CS1 maint: multiple names: authors list ( 1601:: CS1 maint: multiple names: authors list ( 1570: 1568: 1557:: CS1 maint: multiple names: authors list ( 1330:: CS1 maint: multiple names: authors list ( 1282:: CS1 maint: multiple names: authors list ( 1209:: CS1 maint: multiple names: authors list ( 2665: 2624: 1828: 1763: 1707: 1347: 1228: 1226: 1224: 1222: 1220: 166:Figure 1. Representation of a SAM structure 1391: 1162: 1160: 1158: 1156: 1154: 1152: 1150: 1148: 1146: 1144: 732:(NIL) tools and stamps. One can also coat 355: 111: 97: 2697: 2567: 2542: 2195: 1899: 1565: 1363: 1361: 1359: 1272:. Informa Healthcare. pp. 1331–1333. 1232: 1074: 1054: 1002: 974: 2405: 2379:Journal of the American Chemical Society 2301:Journal of the American Chemical Society 2157: 2155: 2153: 2151: 2149: 2147: 2145: 1958: 1956: 1926: 1685:Journal of the American Chemical Society 1648:Journal of the American Chemical Society 1641: 1639: 1637: 1577:Journal of the American Chemical Society 1490:Journal of Colloid and Interface Science 1452:Journal of the American Chemical Society 1343: 1341: 1217: 1019: 939: 669: 161: 1703:from the original on 23 September 2017. 1671: 1669: 1609: 1141: 906: 904: 902: 900: 898: 896: 894: 892: 890: 888: 886: 884: 882: 524:increases the thermodynamic stability. 291:Fourier Transform Infrared Spectroscopy 2842: 1356: 1311: 1309: 1307: 1305: 1303: 1301: 1299: 1297: 1295: 1293: 1099: 880: 878: 876: 874: 872: 870: 868: 866: 864: 862: 319:scanning vibrating electrode technique 283:X-ray photoelectron spectroscopy (XPS) 2142: 1953: 1634: 1338: 1318:Interfacial Supramolecular Assemblies 747:. In this way they functionalize the 743:Thin film SAMs can also be placed on 736:tools for polymer replication with a 627:and field enhanced surface diffusion. 532: 187:based "head group", for example in a 1666: 832:. The SAM can then be placed onto a 594: 1780:Physical Chemistry Chemical Physics 1615: 1290: 1268:Wnek, Gary, Gary L. Bowlin (2004). 1261: 859: 751:. This is advantageous because the 272: 137:perylenetetracarboxylic dianhydride 13: 2766:10.1016/j.biomaterials.2003.09.069 2717: 145:highly oriented pyrolitic graphite 14: 2876: 1189:10.1146/annurev.physchem.52.1.107 779: 710: 647:can also remove SAM molecules by 303:Surface-enhanced Raman scattering 461:Dual polarisation interferometry 402: 399: 393: 337:low energy ion scattering (LEIS) 323:dual polarisation interferometry 78: 66: 33: 2522: 2475: 2440: 2370: 2327: 2291: 2255: 2212: 2106: 2070: 2034: 1991: 1935:Journal of Physical Chemistry C 1908:Journal of Physical Chemistry C 1881:Journal of Physical Chemistry C 1840:Journal of Physical Chemistry C 1524: 1376: 705: 649:local oxidation nanolithography 21:Part of a series of articles on 1985:10.1016/j.progsurf.2003.12.001 1372:. Wiley VCH. pp. 191–193. 722:microelectromechanical systems 541:on the surface only where the 497:getting close enough that the 255: 1: 2633:Journal of Physical Chemistry 1421:10.1126/science.272.5266.1323 1387:. SPIE Press. pp. 94–96. 1255:10.1016/S0079-6816(00)00024-1 1028:Journal of Materials Research 968:10.1016/S0167-5729(03)00015-3 853: 718:nanoelectromechanical systems 621:scanning tunneling microscope 616:scanning tunneling microscope 608:Scanning tunneling microscope 527: 315:scanning tunneling microscopy 241:nanoelectromechanical systems 2434:10.1016/j.apsusc.2012.07.078 2233:10.1126/science.283.5402.661 738:Perfluordecyltrichlorosilane 202:Langmuir adsorption isotherm 7: 1965:Progress in Surface Science 1383:Saliterman, Steven (2006). 1235:Progress in Surface Science 845:Metal organic superlattices 376: 139:(PTCDA) on gold or of e.g. 10: 2881: 1510:10.1016/j.jcis.2007.03.021 679:Focused electron beam and 577:is a process that uses an 557:Micro-contact printing or 346: 295:Second-harmonic generation 198:van der Waals interactions 2356:10.1016/j.aca.2010.10.021 2188:10.1007/s11671-007-9091-3 792:, wire, ribbon, or other 767:from a blood stream. The 539:self-assembled monolayers 262:physical vapor deposition 124:Self-assembled monolayers 2860:Supramolecular chemistry 2738:10.1002/bbpc.19780820917 2531:Chemical Society Reviews 1320:. Wiley. pp. 88–94. 1063:Chemical Society Reviews 623:can also remove SAMs by 299:Sum-frequency generation 211: 191:molecule, reacts with a 170:SAMs are created by the 45:Self-assembled monolayer 2414:Applied Surface Science 2162:Seong, Jin Koh (2007). 948:Surface Science Reports 850:by Hamoudi and Esaulov 730:nanoimprint lithography 695:Atomic force microscope 645:atomic force microscope 641:atomic force microscope 633:Atomic force microscope 588:Northwestern University 579:atomic force microscope 575:Dip-pen nanolithography 568:Dip-pen nanolithography 356:Nanoparticle properties 311:atomic force microscopy 181:Langmuir–Blodgett films 50:Supramolecular assembly 27:Molecular self-assembly 2699:10.1002/andp.201500280 2336:Analytica Chimica Acta 1368:Kaifer, Angel (2001). 1352:. CRC. pp. 62–63. 995:10.1002/anie.200806339 551:Micro-contact printing 442: 167: 1169:Annu. Rev. Phys. Chem 1048:10.1557/JMR.2004.0251 670:3. Modify tail groups 443: 165: 85:Technology portal 1348:Madou, Marc (2002). 983:Angew. Chem. Int. Ed 810:Van der Waals forces 499:Van der Waals forces 494:Van der Waals forces 490:van der Waals forces 389: 2814:(23): 11570–11579. 2795:10.1021/la00088a035 2690:2016AnP...528..242H 2588:1998Natur.396..444K 2426:2012ApSS..259..538C 2385:(51): 16884–16891. 2348:2011AcAC..684....1N 2313:10.1021/ja00019a011 2180:2007NRL.....2..519K 2050:(23): 13245–13249. 1977:2004PrSS...75....1S 1887:(33): 16518–16523. 1846:(47): 19993–19999. 1792:2008PCCP...10.6836H 1697:10.1021/ja00183a049 1660:10.1021/ja00351a063 1589:10.1021/ja00155a016 1583:(50): 12528–12536. 1545:10.1021/la00016a001 1502:2007JCIS..312..413S 1413:1996Sci...272.1323A 1407:(5266): 1323–1325. 1247:2000PrSS...65..151S 1181:2001ARPC...52..107S 1040:2004JMatR..19.1889W 960:2003SurSR..50..201B 665:15–20 minutes. 305:(SERS), as well as 2678:Annalen der Physik 2168:Nanoscale Res Lett 1127:10.1039/C0SC00162G 586:and co-workers at 533:1. Locally attract 438: 168: 73:Science portal 55:DNA nanotechnology 2865:Self-organization 2820:10.1021/la701382n 2760:(14): 2721–2730. 2645:10.1021/jp983836l 2500:10.1021/la0531042 2391:10.1021/ja0657049 2307:(19): 7152–7167. 2277:10.1021/la102225r 2271:(20): 15895–900. 2227:(5402): 661–663. 2128:10.1021/la103812v 2092:10.1021/la903250m 2056:10.1021/la802682n 2012:10.1021/la035851+ 1947:10.1021/jp020968c 1941:(37): 9655–9658. 1920:10.1021/jp711194s 1914:(10): 3899–3906. 1893:10.1021/jp2042922 1852:10.1021/jp1044157 1786:(45): 6836–6841. 1735:10.1021/la904317b 1729:(10): 7242–7247. 1654:(13): 4481–4483. 1464:10.1021/ja068916e 989:(40): 7298–7332. 925:10.1021/cr0300789 734:injection molding 595:2. Locally remove 433: 266:electrodeposition 121: 120: 2872: 2831: 2798: 2789:(4): 1074–1087. 2777: 2741: 2712: 2711: 2701: 2684:(3–4): 242–263. 2669: 2663: 2662: 2656: 2648: 2628: 2622: 2621: 2615: 2607: 2571: 2565: 2564: 2553:10.1039/b501599p 2546: 2526: 2520: 2519: 2494:(6): 2899–2905. 2479: 2473: 2472: 2461:10.1039/b816986a 2455:(9): 1171–1177. 2444: 2438: 2437: 2409: 2403: 2402: 2374: 2368: 2367: 2331: 2325: 2324: 2295: 2289: 2288: 2259: 2253: 2252: 2216: 2210: 2209: 2199: 2159: 2140: 2139: 2110: 2104: 2103: 2086:(6): 3829–3834. 2074: 2068: 2067: 2038: 2032: 2031: 2006:(8): 3240–3245. 1995: 1989: 1988: 1960: 1951: 1950: 1930: 1924: 1923: 1903: 1897: 1896: 1876: 1870: 1869: 1863: 1855: 1835: 1826: 1825: 1819: 1811: 1800:10.1039/B809760G 1774: 1761: 1760: 1754: 1746: 1718: 1705: 1704: 1682: 1673: 1664: 1663: 1643: 1632: 1631: 1630:on 22 June 2010. 1629: 1623:. Archived from 1622: 1613: 1607: 1606: 1600: 1592: 1572: 1563: 1562: 1556: 1548: 1528: 1522: 1521: 1485: 1476: 1475: 1458:(8): 2232–2233. 1447: 1441: 1440: 1395: 1389: 1388: 1380: 1374: 1373: 1365: 1354: 1353: 1345: 1336: 1335: 1329: 1321: 1313: 1288: 1287: 1281: 1273: 1265: 1259: 1258: 1241:(5–8): 151–257. 1230: 1215: 1214: 1208: 1200: 1164: 1139: 1138: 1112: 1103: 1097: 1096: 1085:10.1039/b206566p 1078: 1058: 1052: 1051: 1034:(7): 1889–1916. 1023: 1017: 1016: 1006: 978: 972: 971: 954:(6–8): 201–341. 943: 937: 936: 919:(4): 1103–1170. 908: 802:carbon nanotubes 625:field desorption 559:soft lithography 447: 445: 444: 439: 434: 432: 424: 416: 411: 273:Characterization 113: 106: 99: 83: 82: 71: 70: 37: 18: 17: 2880: 2879: 2875: 2874: 2873: 2871: 2870: 2869: 2840: 2839: 2720: 2718:Further reading 2715: 2670: 2666: 2650: 2649: 2629: 2625: 2609: 2608: 2572: 2568: 2544:10.1.1.454.2979 2527: 2523: 2480: 2476: 2445: 2441: 2410: 2406: 2375: 2371: 2332: 2328: 2296: 2292: 2260: 2256: 2217: 2213: 2174:(11): 519–545. 2160: 2143: 2111: 2107: 2075: 2071: 2039: 2035: 1996: 1992: 1961: 1954: 1931: 1927: 1904: 1900: 1877: 1873: 1857: 1856: 1836: 1829: 1813: 1812: 1775: 1764: 1748: 1747: 1719: 1708: 1680: 1674: 1667: 1644: 1635: 1627: 1620: 1614: 1610: 1594: 1593: 1573: 1566: 1550: 1549: 1529: 1525: 1486: 1479: 1448: 1444: 1396: 1392: 1381: 1377: 1366: 1357: 1346: 1339: 1323: 1322: 1314: 1291: 1275: 1274: 1266: 1262: 1231: 1218: 1202: 1201: 1165: 1142: 1110: 1104: 1100: 1076:10.1.1.467.5727 1059: 1055: 1024: 1020: 979: 975: 944: 940: 909: 860: 856: 847: 782: 713: 708: 672: 597: 535: 530: 425: 417: 415: 392: 390: 387: 386: 379: 358: 349: 275: 258: 237: 233: 229: 225: 214: 185:trichlorosilane 117: 77: 65: 12: 11: 5: 2878: 2868: 2867: 2862: 2857: 2852: 2850:Nanotechnology 2838: 2837: 2832: 2804:Landfester, K. 2799: 2778: 2749: 2742: 2719: 2716: 2714: 2713: 2664: 2639:(3): 399–401. 2623: 2582:(3): 444–446. 2566: 2521: 2474: 2439: 2404: 2369: 2326: 2290: 2254: 2211: 2141: 2122:(3): 943–947. 2105: 2069: 2033: 1990: 1952: 1925: 1898: 1871: 1827: 1762: 1706: 1691:(1): 321–335. 1665: 1633: 1608: 1564: 1539:(4): 979–983. 1523: 1496:(2): 413–424. 1477: 1442: 1390: 1375: 1355: 1337: 1289: 1260: 1216: 1140: 1098: 1069:(3): 139–150. 1053: 1018: 973: 938: 857: 855: 852: 846: 843: 798:nanostructures 786:nanostructures 781: 780:Patterned SAMs 778: 776:waste stream. 745:nanostructures 712: 711:Thin-film SAMs 709: 707: 704: 703: 702: 698: 697: 691: 690: 685: 684: 671: 668: 667: 666: 661: 660: 653: 652: 636: 635: 629: 628: 611: 610: 601:nanostructures 596: 593: 592: 591: 571: 570: 564: 563: 554: 553: 534: 531: 529: 526: 521: 520: 517: 514: 511: 478: 477: 474: 471: 449: 448: 437: 431: 428: 423: 420: 414: 410: 407: 404: 401: 398: 395: 378: 375: 357: 354: 348: 345: 274: 271: 257: 254: 249:self assembled 245:covalent bonds 235: 231: 227: 223: 213: 210: 119: 118: 116: 115: 108: 101: 93: 90: 89: 88: 87: 75: 60: 59: 58: 57: 52: 47: 39: 38: 30: 29: 23: 22: 9: 6: 4: 3: 2: 2877: 2866: 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2847: 2845: 2836: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2800: 2796: 2792: 2788: 2784: 2779: 2775: 2771: 2767: 2763: 2759: 2755: 2750: 2747: 2743: 2739: 2735: 2731: 2727: 2722: 2721: 2709: 2705: 2700: 2695: 2691: 2687: 2683: 2679: 2675: 2668: 2660: 2654: 2646: 2642: 2638: 2634: 2627: 2619: 2613: 2605: 2601: 2597: 2596:10.1038/24808 2593: 2589: 2585: 2581: 2577: 2570: 2562: 2558: 2554: 2550: 2545: 2540: 2536: 2532: 2525: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2489: 2485: 2478: 2470: 2466: 2462: 2458: 2454: 2450: 2449:Lab on a Chip 2443: 2435: 2431: 2427: 2423: 2419: 2415: 2408: 2400: 2396: 2392: 2388: 2384: 2380: 2373: 2365: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2330: 2322: 2318: 2314: 2310: 2306: 2302: 2294: 2286: 2282: 2278: 2274: 2270: 2266: 2258: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 2222: 2215: 2207: 2203: 2198: 2193: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2158: 2156: 2154: 2152: 2150: 2148: 2146: 2137: 2133: 2129: 2125: 2121: 2117: 2109: 2101: 2097: 2093: 2089: 2085: 2081: 2073: 2065: 2061: 2057: 2053: 2049: 2045: 2037: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1994: 1986: 1982: 1978: 1974: 1971:(1–2): 1–68. 1970: 1966: 1959: 1957: 1948: 1944: 1940: 1936: 1929: 1921: 1917: 1913: 1909: 1902: 1894: 1890: 1886: 1882: 1875: 1867: 1861: 1853: 1849: 1845: 1841: 1834: 1832: 1823: 1817: 1809: 1805: 1801: 1797: 1793: 1789: 1785: 1781: 1773: 1771: 1769: 1767: 1758: 1752: 1744: 1740: 1736: 1732: 1728: 1724: 1717: 1715: 1713: 1711: 1702: 1698: 1694: 1690: 1686: 1679: 1672: 1670: 1661: 1657: 1653: 1649: 1642: 1640: 1638: 1626: 1619: 1612: 1604: 1598: 1590: 1586: 1582: 1578: 1571: 1569: 1560: 1554: 1546: 1542: 1538: 1534: 1527: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1484: 1482: 1473: 1469: 1465: 1461: 1457: 1453: 1446: 1438: 1434: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1394: 1386: 1379: 1371: 1364: 1362: 1360: 1351: 1344: 1342: 1333: 1327: 1319: 1312: 1310: 1308: 1306: 1304: 1302: 1300: 1298: 1296: 1294: 1285: 1279: 1271: 1264: 1256: 1252: 1248: 1244: 1240: 1236: 1229: 1227: 1225: 1223: 1221: 1212: 1206: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1163: 1161: 1159: 1157: 1155: 1153: 1151: 1149: 1147: 1145: 1136: 1132: 1128: 1124: 1121:(1): 97–101. 1120: 1116: 1109: 1102: 1094: 1090: 1086: 1082: 1077: 1072: 1068: 1064: 1057: 1049: 1045: 1041: 1037: 1033: 1029: 1022: 1014: 1010: 1005: 1000: 996: 992: 988: 984: 977: 969: 965: 961: 957: 953: 949: 942: 934: 930: 926: 922: 918: 914: 907: 905: 903: 901: 899: 897: 895: 893: 891: 889: 887: 885: 883: 881: 879: 877: 875: 873: 871: 869: 867: 865: 863: 858: 851: 842: 840: 835: 831: 827: 823: 819: 815: 811: 807: 803: 799: 795: 794:nanostructure 791: 787: 777: 775: 770: 766: 762: 761:nanoparticles 758: 754: 753:nanostructure 750: 749:nanostructure 746: 741: 739: 735: 731: 727: 723: 719: 716:electronics, 700: 699: 696: 693: 692: 687: 686: 682: 678: 677: 676: 663: 662: 658: 655: 654: 650: 646: 642: 638: 637: 634: 631: 630: 626: 622: 617: 613: 612: 609: 606: 605: 604: 602: 589: 585: 580: 576: 573: 572: 569: 566: 565: 560: 556: 555: 552: 549: 548: 547: 544: 543:nanostructure 540: 525: 518: 515: 512: 509: 508: 507: 503: 500: 495: 491: 486: 482: 475: 472: 469: 468: 467: 464: 462: 458: 454: 435: 429: 426: 421: 418: 412: 405: 385: 384: 383: 374: 372: 368: 363: 353: 344: 342: 338: 333: 332:Contact angle 329: 324: 320: 316: 312: 308: 304: 300: 296: 292: 288: 284: 280: 270: 267: 263: 253: 250: 246: 242: 220: 209: 207: 203: 199: 194: 190: 186: 182: 176: 173: 172:chemisorption 164: 160: 158: 154: 150: 146: 142: 138: 133: 129: 125: 114: 109: 107: 102: 100: 95: 94: 92: 91: 86: 81: 76: 74: 69: 64: 63: 62: 61: 56: 53: 51: 48: 46: 43: 42: 41: 40: 36: 32: 31: 28: 25: 24: 20: 19: 16: 2811: 2807: 2786: 2782: 2757: 2754:Biomaterials 2753: 2745: 2729: 2725: 2681: 2677: 2667: 2653:cite journal 2636: 2632: 2626: 2612:cite journal 2579: 2575: 2569: 2537:(1): 29–38. 2534: 2530: 2524: 2491: 2487: 2477: 2452: 2448: 2442: 2417: 2413: 2407: 2382: 2378: 2372: 2342:(1–2): 1–7. 2339: 2335: 2329: 2304: 2300: 2293: 2268: 2264: 2257: 2224: 2220: 2214: 2171: 2167: 2119: 2115: 2108: 2083: 2079: 2072: 2047: 2043: 2036: 2003: 1999: 1993: 1968: 1964: 1938: 1934: 1928: 1911: 1907: 1901: 1884: 1880: 1874: 1860:cite journal 1843: 1839: 1816:cite journal 1783: 1779: 1751:cite journal 1726: 1722: 1688: 1684: 1651: 1647: 1625:the original 1611: 1597:cite journal 1580: 1576: 1553:cite journal 1536: 1532: 1526: 1493: 1489: 1455: 1451: 1445: 1404: 1400: 1393: 1384: 1378: 1369: 1349: 1317: 1269: 1263: 1238: 1234: 1205:cite journal 1172: 1168: 1118: 1114: 1101: 1066: 1062: 1056: 1031: 1027: 1021: 986: 982: 976: 951: 947: 941: 916: 912: 848: 790:nanoparticle 783: 769:nanoparticle 763:to remove a 742: 714: 706:Applications 673: 598: 536: 522: 504: 487: 483: 479: 465: 456: 452: 450: 380: 367:immunoassays 359: 350: 279:ellipsometry 276: 264:techniques, 259: 215: 177: 169: 157:phosphonates 127: 123: 122: 44: 15: 2420:: 538–541. 814:Chad Mirkin 806:hydrophilic 720:(NEMS) and 683:irradiation 681:ultraviolet 659:irradiation 657:Ultraviolet 584:Chad Mirkin 256:Preparation 2855:Thin films 2844:Categories 2732:(9): 883. 1175:: 107–37. 1004:2066/75325 854:References 818:biosensors 757:biosensors 528:Patterning 313:(AFM) and 208:isotherm. 141:porphyrins 132:adsorption 2708:124513678 2539:CiteSeerX 2508:0743-7463 2321:0002-7863 2020:0743-7463 1616:Wysocki. 1326:cite book 1278:cite book 1115:Chem. Sci 1071:CiteSeerX 913:Chem. Rev 839:biosensor 834:biosensor 830:molecules 689:disorder. 422:θ 406:θ 403:− 2828:17914848 2808:Langmuir 2783:Langmuir 2774:14962551 2561:16365640 2516:16519501 2488:Langmuir 2469:19370233 2399:17177439 2364:21167979 2285:20845943 2265:Langmuir 2249:27011581 2206:21794185 2136:21214202 2116:Langmuir 2100:20058870 2080:Langmuir 2064:18980356 2044:Langmuir 2028:15875853 2000:Langmuir 1808:19015788 1743:20199099 1723:Langmuir 1701:Archived 1533:Langmuir 1518:17451727 1472:17274618 1437:24880913 1197:11326061 1135:97346507 1093:12792937 1013:19746490 933:15826011 826:proteins 377:Kinetics 362:colloids 193:hydroxyl 2686:Bibcode 2604:4420426 2584:Bibcode 2422:Bibcode 2344:Bibcode 2241:9924019 2221:Science 2197:3246612 2176:Bibcode 1973:Bibcode 1788:Bibcode 1498:Bibcode 1429:8662464 1409:Bibcode 1401:Science 1243:Bibcode 1177:Bibcode 1036:Bibcode 956:Bibcode 774:laminar 371:sensors 347:Defects 301:(SFG), 297:(SHG), 219:wetting 206:Frumkin 159:, etc. 153:silanes 2826:  2772:  2706:  2602:  2576:Nature 2559:  2541:  2514:  2506:  2467:  2397:  2362:  2319:  2283:  2247:  2239:  2204:  2194:  2134:  2098:  2062:  2026:  2018:  1806:  1741:  1516:  1470:  1435:  1427:  1195:  1133:  1091:  1073:  1011:  931:  765:fungus 726:Rain-X 451:Where 149:thiols 2704:S2CID 2600:S2CID 2245:S2CID 1681:(PDF) 1628:(PDF) 1621:(PDF) 1433:S2CID 1131:S2CID 1111:(PDF) 828:, or 822:cells 740:SAM. 212:Types 2824:PMID 2770:PMID 2659:link 2618:link 2557:PMID 2512:PMID 2504:ISSN 2465:PMID 2395:PMID 2360:PMID 2317:ISSN 2281:PMID 2237:PMID 2202:PMID 2132:PMID 2096:PMID 2060:PMID 2024:PMID 2016:ISSN 1866:link 1822:link 1804:PMID 1757:link 1739:PMID 1603:link 1559:link 1514:PMID 1468:PMID 1425:PMID 1332:link 1284:link 1211:link 1193:PMID 1089:PMID 1009:PMID 929:PMID 614:The 339:and 289:and 281:and 189:FDTS 183:. A 2816:doi 2791:doi 2762:doi 2734:doi 2694:doi 2682:528 2641:doi 2637:103 2592:doi 2580:396 2549:doi 2496:doi 2457:doi 2430:doi 2418:259 2387:doi 2383:128 2352:doi 2340:684 2309:doi 2305:113 2273:doi 2229:doi 2225:283 2192:PMC 2184:doi 2124:doi 2088:doi 2052:doi 2008:doi 1981:doi 1943:doi 1939:106 1916:doi 1912:112 1889:doi 1885:115 1848:doi 1844:114 1796:doi 1731:doi 1693:doi 1689:111 1656:doi 1652:105 1585:doi 1581:117 1541:doi 1506:doi 1494:312 1460:doi 1456:129 1417:doi 1405:272 1251:doi 1185:doi 1123:doi 1081:doi 1044:doi 999:hdl 991:doi 964:doi 921:doi 917:105 369:or 143:on 128:SAM 2846:: 2822:. 2812:23 2810:. 2785:. 2768:. 2758:25 2756:. 2730:82 2728:. 2702:. 2692:. 2680:. 2676:. 2655:}} 2651:{{ 2635:. 2614:}} 2610:{{ 2598:. 2590:. 2578:. 2555:. 2547:. 2535:35 2533:. 2510:. 2502:. 2492:22 2490:. 2486:. 2463:. 2451:. 2428:. 2416:. 2393:. 2381:. 2358:. 2350:. 2338:. 2315:. 2303:. 2279:. 2269:26 2267:. 2243:. 2235:. 2223:. 2200:. 2190:. 2182:. 2170:. 2166:. 2144:^ 2130:. 2120:27 2118:. 2094:. 2084:26 2082:. 2058:. 2048:24 2046:. 2022:. 2014:. 2004:20 2002:. 1979:. 1969:75 1967:. 1955:^ 1937:. 1910:. 1883:. 1862:}} 1858:{{ 1842:. 1830:^ 1818:}} 1814:{{ 1802:. 1794:. 1784:10 1782:. 1765:^ 1753:}} 1749:{{ 1737:. 1727:26 1725:. 1709:^ 1699:. 1687:. 1683:. 1668:^ 1650:. 1636:^ 1599:}} 1595:{{ 1579:. 1567:^ 1555:}} 1551:{{ 1537:10 1535:. 1512:. 1504:. 1492:. 1480:^ 1466:. 1454:. 1431:. 1423:. 1415:. 1403:. 1358:^ 1340:^ 1328:}} 1324:{{ 1292:^ 1280:}} 1276:{{ 1249:. 1239:65 1237:. 1219:^ 1207:}} 1203:{{ 1191:. 1183:. 1173:52 1171:. 1143:^ 1129:. 1117:. 1113:. 1087:. 1079:. 1067:32 1065:. 1042:. 1032:19 1030:. 1007:. 997:. 987:48 985:. 962:. 952:50 950:. 927:. 915:. 861:^ 841:. 824:, 343:. 234:CH 155:, 151:, 2830:. 2818:: 2797:. 2793:: 2787:5 2776:. 2764:: 2740:. 2736:: 2710:. 2696:: 2688:: 2661:) 2647:. 2643:: 2620:) 2606:. 2594:: 2586:: 2563:. 2551:: 2518:. 2498:: 2471:. 2459:: 2453:9 2436:. 2432:: 2424:: 2401:. 2389:: 2366:. 2354:: 2346:: 2323:. 2311:: 2287:. 2275:: 2251:. 2231:: 2208:. 2186:: 2178:: 2172:2 2138:. 2126:: 2102:. 2090:: 2066:. 2054:: 2030:. 2010:: 1987:. 1983:: 1975:: 1949:. 1945:: 1922:. 1918:: 1895:. 1891:: 1868:) 1854:. 1850:: 1824:) 1810:. 1798:: 1790:: 1759:) 1745:. 1733:: 1695:: 1662:. 1658:: 1605:) 1591:. 1587:: 1561:) 1547:. 1543:: 1520:. 1508:: 1500:: 1474:. 1462:: 1439:. 1419:: 1411:: 1334:) 1286:) 1257:. 1253:: 1245:: 1213:) 1199:. 1187:: 1179:: 1137:. 1125:: 1119:1 1095:. 1083:: 1050:. 1046:: 1038:: 1015:. 1001:: 993:: 970:. 966:: 958:: 935:. 923:: 651:. 590:. 457:k 453:Ξ 436:. 430:t 427:d 419:d 413:= 409:) 400:1 397:( 394:k 236:2 232:4 230:H 228:6 226:C 224:2 126:( 112:e 105:t 98:v

Index

Molecular self-assembly

Self-assembled monolayer
Supramolecular assembly
DNA nanotechnology
icon
Science portal
icon
Technology portal
v
t
e
adsorption
perylenetetracarboxylic dianhydride
porphyrins
highly oriented pyrolitic graphite
thiols
silanes
phosphonates

chemisorption
Langmuir–Blodgett films
trichlorosilane
FDTS
hydroxyl
van der Waals interactions
Langmuir adsorption isotherm
Frumkin
wetting
nanoelectromechanical systems

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑