Knowledge

Secondary ion mass spectrometry

Source đź“ť

220: 1727: 1751: 1739: 27: 376:
of the generation probability of positive secondary ions, while caesium primary ions often are used when electronegative elements are being investigated. For short pulsed ion beams in static SIMS, LMIGs are most often deployed for analysis; they can be combined with either an oxygen gun or a caesium gun during elemental depth profiling, or with a C
443:
The amount of surface cratering created by the process depends on the current (pulsed or continuous) and dimensions of the primary ion beam. While only charged secondary ions emitted from the material surface through the sputtering process are used to analyze the chemical composition of the material,
375:
The choice of the ion species and ion gun respectively depends on the required current (pulsed or continuous), the required beam dimensions of the primary ion beam and on the sample which is to be analyzed. Oxygen primary ions are often used to investigate electropositive elements due to an increase
516:
SIMS can be used in the forensics field to develop fingerprints. Since SIMS is a vacuum based method, it is necessary to determine the order of usage along with other methods of analysis for fingerprints. This is because the mass of the fingerprint significantly decreases after exposure to vacuum
400:
separates the ions in a field-free drift path according to their velocity. Since all ions possess the same kinetic energy the velocity and therefore time of flight varies according to mass. It requires pulsed secondary ion generation using either a pulsed primary ion gun or a pulsed secondary ion
223:
Schematic of a typical dynamic SIMS instrument. High energy (usually several keV) ions are supplied by an ion gun (1 or 2) and focused on to the target sample (3), which ionizes and sputters some atoms off the surface (4). These secondary ions are then collected by ion lenses (5) and filtered
108:
to determine the elemental, isotopic, or molecular composition of the surface to a depth of 1 to 2 nm. Due to the large variation in ionization probabilities among elements sputtered from different materials, comparison against well-calibrated standards is necessary to achieve accurate
512:
SIMS is used for quality assurance purposes in the semiconductor industry and for the characterization of natural samples from this planet and others. More recently, this technique is being applied to nuclear forensics, and a nanoscale version of SIMS, termed NanoSIMS, has been applied to
1031:
C. Engrand; J. Kissel; F. R. Krueger; P. Martin; J. Silén; L. Thirkell; R. Thomas; K. Varmuza (2006). "Chemometric evaluation of time-of-flight secondary ion mass spectrometry data of minerals in the frame of future in situ analyses of cometary's material by COSIMA onboard ROSETTA".
129:, Austria. In the mid-1950s Honig constructed a SIMS instrument at RCA Laboratories in Princeton, New Jersey. Then in the early 1960s two SIMS instruments were developed independently. One was an American project, led by Liebel and Herzog, which was sponsored by 462:. Static SIMS is the process involved in surface atomic monolayer analysis, or surface molecular analysis, usually with a pulsed ion beam and a time of flight mass spectrometer, while dynamic SIMS is the process involved in bulk analysis, closely related to the 343:
source, generates Cs primary ions. Cesium atoms vaporize through a porous tungsten plug and are ionized during evaporation. Depending on the gun design, fine focus or high current can be obtained. A third source type, the
156:, where the primary ion current density is so small that only a negligible fraction (typically 1%) of the first surface layer is necessary for surface analysis. Instruments of this type use pulsed primary ion sources and 440:, depending on the type of instrumentation used, the primary ion beam used and the analytical area, and other factors. Samples as small as individual pollen grains and microfossils can yield results by this technique. 879:
S. Ninomiya; K. Ichiki; H. Yamada; Y. Nakata; T. Seki; T. Aoki; J. Matsuo (2009). "Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams".
372:. The LMIG provides a tightly focused ion beam (<50 nm) with moderate intensity and is additionally able to generate short pulsed ion beams. It is therefore commonly used in static SIMS devices. 469:
Dynamic secondary ion mass spectrometry (DSIMS) is a powerful tool for characterizing surfaces, including the elemental, molecular, and isotopic composition and can be used to study the structure of
1156:
Bright, Nicholas J.; Willson, Terry R.; Driscoll, Daniel J.; Reddy, Subrayal M.; Webb, Roger P.; Bleay, Stephen.; Ward, Neil I.; Kirkby, Karen J.; Bailey, Melanie J. (2013-07-10).
505:
was the first instrument to determine the composition of cometary dust in situ with secondary ion mass spectrometry during the spacecraft's 2014–2016 close approaches to comet
244:
sample chamber holding the sample and the secondary ion extraction lens, (4) a mass analyser separating the ions according to their mass-to-charge ratio, and (5) a detector.
1471: 109:
quantitative results. SIMS is the most sensitive surface analysis technique, with elemental detection limits ranging from parts per million to parts per billion.
401:
extraction. It is the only analyzer type able to detect all generated secondary ions simultaneously, and is the standard analyzer for static SIMS instruments.
421:
is similar to an electron multiplier, with lower amplification factor but with the advantage of laterally-resolved detection. Usually it is combined with a
236:, (2) a primary ion column, accelerating and focusing the beam onto the sample (and in some devices an opportunity to separate the primary ion species by 612: 1654: 1649: 1401: 31:
Old magnetic sector SIMS, model IMS 3f, succeeded by the models 4f, 5f, 6f, 7f and most recently, 7f-Auto, launched in 2013 by the manufacturer
750:
Magee, C. W.; Honig, Richard E. (1978). "Secondary ion quadrupole mass spectrometer for depth profiling design and performance evaluation".
1506: 1456: 1644: 1466: 1317: 392:
uses a combination of an electrostatic analyzer and a magnetic analyzer to separate the secondary ions by their mass-to-charge ratio. A
272:
of gas molecules within the detector must be large compared to the size of the instrument), and it also limits surface contamination by
1481: 1672: 1562: 696:
Castaing, R. & Slodzian, G. J. (1962). "Optique corpusculaire—premiers essais de microanalyse par emission ionique secondaire".
1639: 1381: 1075: 348:(LMIG), operates with metals or metallic alloys, which are liquid at room temperature or slightly above. The liquid metal covers a 200: 1755: 1707: 1697: 1461: 454: 339:). This type of ion gun is easy to operate and generates roughly focused but high current ion beams. A second source type, the 153: 224:
according to atomic mass (6), then projected onto an electron multiplier (7, top), Faraday cup (7, bottom), or CCD screen (8).
168:
and also by Charles Evans & Associates. The Castaing and Slodzian design was developed in the 1960s by the French company
1386: 417:
an impact of a single ion starts off an electron cascade, resulting in a pulse of 10 electrons which is recorded directly. A
268:). This is needed to ensure that secondary ions do not collide with background gases on their way to the detector (i.e. the 1391: 1624: 104:
and collecting and analyzing ejected secondary ions. The mass/charge ratios of these secondary ions are measured with a
1743: 1421: 1411: 1363: 1702: 1664: 1486: 1272: 1258: 1244: 1230: 1216: 413:
measures the ion current hitting a metal cup, and is sometimes used for high current secondary ion signals. With an
1687: 1542: 1451: 1416: 397: 157: 141:
by R. Castaing for the PhD thesis of G. Slodzian. These first instruments were based on a magnetic double focusing
1787: 1310: 388:
Depending on the SIMS type, there are three basic analyzers available: sector, quadrupole, and time-of-flight. A
121:
observed a release of positive ions and neutral atoms from a solid surface induced by ion bombardment. Improved
1692: 1677: 125:
technology in the 1940s enabled the first prototype experiments on SIMS by Herzog and Viehböck in 1949, at the
1682: 1629: 506: 396:
separates the masses by resonant electric fields, which allow only the selected masses to pass through. The
1712: 1603: 1406: 1290: 1157: 1588: 418: 1777: 1731: 1358: 1303: 1237:
Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis
1634: 1619: 1547: 1532: 1337: 393: 149: 161: 1431: 345: 138: 1501: 1209:
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends
490: 1436: 1265:
Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications
606: 73: 466:
process, using a DC primary ion beam and a magnetic sector or quadrupole mass spectrometer.
1041: 989: 889: 837: 802: 759: 724: 670: 635: 586: 502: 425:
screen, and signals are recorded either with a CCD-camera or with a fluorescence detector.
207:
based on the Liebl and Herzog design, and produced by Australian Scientific Instruments in
181: 126: 980:
levels in the Proterozoic atmosphere estimated from analyses of individual microfossils".
793:
Benninghoven, A (1969). "Analysis of sub-monolayers on silver by secondary ion emission".
8: 1782: 1583: 1552: 1426: 1396: 414: 325: 293: 208: 1045: 993: 893: 841: 806: 763: 728: 674: 639: 590: 1511: 1253:, IM Publications, Chichester UK and SurfaceSpectra, Manchester, UK, 2001 (789 pages), 1158:"Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions" 1013: 861: 340: 1093: 1326: 1268: 1254: 1240: 1226: 1212: 1185: 1177: 1138: 1118: 1057: 1005: 905: 853: 775: 736: 389: 204: 173: 142: 105: 1173: 865: 1496: 1476: 1441: 1169: 1130: 1049: 1017: 997: 897: 845: 810: 767: 732: 678: 643: 626:
Honig, R. E. (1958). "Sputtering of surfaces by positive ion beams of low energy".
594: 559: 437: 948: 433: 356:
source is able to operate with elemental gallium, recently developed sources for
219: 177: 148:
In the 1970s, K. Wittmaack and C. Magee developed SIMS instruments equipped with
923: 1446: 1134: 269: 563: 1771: 1593: 1353: 1181: 1142: 814: 577:
Herzog, R. F. K., Viehboeck, F. (1949). "Ion source for mass spectrography".
486: 369: 289: 257: 118: 1557: 1189: 1061: 1009: 909: 857: 849: 779: 598: 482: 444:
these represent a small fraction of the particles emitted from the sample.
422: 715:
Wittmaack, K. (1975). "Pre-equilibrium variation of secondary ion yield".
288:
are employed. In one, ions of gaseous elements are usually generated with
1598: 1537: 1516: 1286: 1030: 410: 352:
tip and emits ions under influence of an intense electric field. While a
237: 122: 1119:"Subcellular quantitative imaging of metabolites at the organelle level" 1001: 1373: 463: 273: 261: 97: 92:) is a technique used to analyze the composition of solid surfaces and 77: 878: 771: 682: 647: 1053: 901: 828:
S. Hofmann (2004). "Sputter-depth profiling for thin-film analysis".
478: 470: 336: 297: 180:. Recent developments are focusing on novel primary ion species like 134: 93: 1295: 547: 1567: 526: 349: 233: 101: 474: 365: 353: 285: 229: 192: 165: 152:. Around the same time, A. Benninghoven introduced the method of 160:
and were developed by Benninghoven, Niehuis and Steffens at the
1076:"Dynamic Secondary Ion Mass Spectrometry (SIMS/DSIMS Analysis)" 576: 361: 309: 253: 241: 169: 32: 452:
In the field of surface analysis, it is usual to distinguish
305: 301: 26: 1223:
Secondary Ion Mass Spectrometry: Principles and Applications
380:
or gas cluster ion source during molecular depth profiling.
228:
A secondary ion mass spectrometer consists of (1) a primary
695: 357: 265: 188: 130: 1155: 428: 1342: 949:"SIMS Detection Limits of Selected Elements in Si and SiO 436:
for most trace elements are between 10 and 10 atoms per
1267:, pp. 86–121, Wiley-VCH, Weinheim, Germany, 2002, 975: 661:
Liebl, H. J. (1967). "Ion microprobe mass analyzer".
1207:Benninghoven, A., RĂĽdenauer, F. G., Werner, H. W., 203:(SHRIMP) is a large-diameter, double-focusing SIMS 100:the surface of the specimen with a focused primary 1098:The University of Edinburgh: School of Geosciences 916: 1769: 489:in the early 1980s. DSIMS is mainly used by the 276:of background gas particles during measurement. 1251:ToF-SIMS: Surface Analysis by Mass Spectrometry 792: 545: 1311: 1225:, Clarendon Press, Oxford, 1989 (341 pages), 924:"Cesium Ion Gun System for CAMECA SIMS Units" 714: 1235:Wilson, R. G., Stevie, F. A., Magee, C. W., 660: 625: 611:: CS1 maint: multiple names: authors list ( 16:Surface chemical analysis and imaging method 969: 447: 145:and used argon for the primary beam ions. 1318: 1304: 1221:Vickerman, J. C., Brown, A., Reed, N. M., 827: 749: 195:, or large gas cluster ion beams (e.g., Ar 133:at GCA Corp, Massachusetts, for analyzing 25: 1239:, John Wiley & Sons, New York, 1989, 1034:Rapid Communications in Mass Spectrometry 976:Kaufman, A.J.; Xiao, S. (2003). "High CO 953:Under Normal Depth Profiling Conditions" 218: 201:sensitive high-resolution ion microprobe 1200: 1116: 429:Detection limits and sample degradation 320:), or even ionized molecules such as SF 1770: 1211:, Wiley, New York, 1987 (1227 pages), 1325: 1299: 958:. Evans Analytical Group. May 4, 2007 279: 1738: 1750: 13: 214: 14: 1799: 1279: 158:time-of-flight mass spectrometers 1749: 1737: 1726: 1725: 1117:Siuzdak, Gary (September 2023). 752:Review of Scientific Instruments 383: 240:or to pulse the beam), (3) high 139:University of Paris-Sud in Orsay 1174:10.1016/j.forsciint.2013.03.047 1149: 1110: 1094:"NERC Ion Mirco-Probe Facility" 1086: 1068: 1024: 941: 872: 717:Int. J. Mass Spectrom. Ion Phys 496: 477:, and the surface chemistry of 86:Secondary-ion mass spectrometry 20:Secondary-ion mass spectrometry 1249:Vickerman, J. C., Briggs, D., 1162:Forensic Science International 821: 786: 743: 708: 689: 654: 619: 570: 548:"Rays of positive electricity" 539: 501:The COSIMA instrument onboard 390:sector field mass spectrometer 143:sector field mass spectrometer 1: 368:use alloys which lower their 830:Phil. Trans. R. Soc. Lond. A 737:10.1016/0020-7381(75)80005-2 532: 398:time of flight mass analyzer 7: 1589:Microchannel plate detector 928:www.peabody-scientific.com/ 882:Rapid Commun. Mass Spectrom 520: 419:microchannel plate detector 404: 10: 1804: 1135:10.1038/s42255-023-00882-z 117:In 1910 British physicist 112: 60:Solid surfaces, thin films 1721: 1663: 1612: 1576: 1525: 1372: 1333: 564:10.1080/14786441008636962 513:pharmaceutical research. 507:67P/Churyumov–Gerasimenko 481:. DSIMS was developed by 247: 150:quadrupole mass analyzers 69: 64: 56: 48: 40: 24: 1604:Langmuir–Taylor detector 1285:Tutorial pages for SIMS 1263:Bubert, H., Jenett, H., 815:10.1002/pssb.19690340267 448:Static and dynamic modes 394:quadrupole mass analyzer 256:with pressures below 10 546:Thomson, J. J. (1910). 232:generating the primary 1788:Semiconductor analysis 1548:Quadrupole mass filter 850:10.1098/rsta.2003.1304 599:10.1103/PhysRev.76.855 491:semiconductor industry 225: 187:, ionized clusters of 795:Physica Status Solidi 473:, the composition of 222: 162:University of MĂĽnster 74:Fast atom bombardment 1201:General bibliography 346:liquid metal ion gun 127:University of Vienna 1584:Electron multiplier 1553:Quadrupole ion trap 1046:2006RCMS...20.1361E 1002:10.1038/nature01902 994:2003Natur.425..279K 894:2009RCMS...23.1601N 842:2004RSPTA.362...55H 807:1969PSSBR..34..169B 764:1978RScI...49..477M 729:1975IJMSI..17...39W 675:1967JAP....38.5277L 640:1958JAP....29..549H 591:1949PhRv...76..855H 415:electron multiplier 294:electron ionization 209:Canberra, Australia 137:, the other at the 21: 341:surface ionization 280:Primary ion source 226: 19: 1778:Mass spectrometry 1765: 1764: 1327:Mass spectrometry 1123:Nature Metabolism 988:(6955): 279–282. 888:(11): 1601–1606. 772:10.1063/1.1135438 683:10.1063/1.1709314 669:(13): 5277–5280. 648:10.1063/1.1723219 205:sector instrument 174:materials science 106:mass spectrometer 83: 82: 52:Mass spectrometry 1795: 1753: 1752: 1741: 1740: 1729: 1728: 1320: 1313: 1306: 1297: 1296: 1194: 1193: 1153: 1147: 1146: 1129:(9): 1446–1448. 1114: 1108: 1107: 1105: 1104: 1090: 1084: 1083: 1072: 1066: 1065: 1054:10.1002/rcm.2448 1040:(8): 1361–1368. 1028: 1022: 1021: 973: 967: 966: 964: 963: 957: 945: 939: 938: 936: 934: 920: 914: 913: 902:10.1002/rcm.4046 876: 870: 869: 825: 819: 818: 790: 784: 783: 747: 741: 740: 712: 706: 705: 693: 687: 686: 658: 652: 651: 623: 617: 616: 610: 602: 574: 568: 567: 558:(118): 752–767. 543: 438:cubic centimetre 434:Detection limits 324:(generated from 252:SIMS requires a 65:Other techniques 29: 22: 18: 1803: 1802: 1798: 1797: 1796: 1794: 1793: 1792: 1768: 1767: 1766: 1761: 1717: 1659: 1608: 1572: 1521: 1368: 1329: 1324: 1291:instrumentation 1282: 1277: 1203: 1198: 1197: 1154: 1150: 1115: 1111: 1102: 1100: 1092: 1091: 1087: 1074: 1073: 1069: 1029: 1025: 979: 974: 970: 961: 959: 955: 952: 947: 946: 942: 932: 930: 922: 921: 917: 877: 873: 836:(1814): 55–75. 826: 822: 801:(2): K169–171. 791: 787: 748: 744: 713: 709: 694: 690: 659: 655: 624: 620: 604: 603: 575: 571: 544: 540: 535: 523: 499: 450: 431: 407: 386: 379: 334: 329: 323: 319: 315: 296:, for instance 284:Three types of 282: 250: 217: 215:Instrumentation 198: 185: 178:surface science 115: 76: 36: 17: 12: 11: 5: 1801: 1791: 1790: 1785: 1780: 1763: 1762: 1760: 1759: 1747: 1735: 1722: 1719: 1718: 1716: 1715: 1710: 1705: 1700: 1695: 1690: 1685: 1680: 1675: 1669: 1667: 1661: 1660: 1658: 1657: 1652: 1647: 1642: 1637: 1632: 1627: 1622: 1616: 1614: 1613:MS combination 1610: 1609: 1607: 1606: 1601: 1596: 1591: 1586: 1580: 1578: 1574: 1573: 1571: 1570: 1565: 1560: 1555: 1550: 1545: 1543:Time-of-flight 1540: 1535: 1529: 1527: 1523: 1522: 1520: 1519: 1514: 1509: 1504: 1499: 1494: 1489: 1484: 1479: 1474: 1469: 1464: 1459: 1454: 1449: 1444: 1439: 1434: 1429: 1424: 1419: 1414: 1409: 1404: 1399: 1394: 1389: 1384: 1378: 1376: 1370: 1369: 1367: 1366: 1361: 1356: 1351: 1340: 1334: 1331: 1330: 1323: 1322: 1315: 1308: 1300: 1294: 1293: 1281: 1280:External links 1278: 1276: 1275: 1261: 1247: 1233: 1219: 1204: 1202: 1199: 1196: 1195: 1168:(1–3): 81–86. 1148: 1109: 1085: 1067: 1023: 977: 968: 950: 940: 915: 871: 820: 785: 758:(4): 477–485. 742: 707: 688: 653: 634:(3): 549–555. 618: 585:(6): 855–856. 569: 537: 536: 534: 531: 530: 529: 522: 519: 498: 495: 449: 446: 430: 427: 406: 403: 385: 382: 377: 370:melting points 332: 327: 321: 317: 313: 290:duoplasmatrons 281: 278: 270:mean free path 249: 246: 216: 213: 196: 183: 114: 111: 81: 80: 71: 67: 66: 62: 61: 58: 54: 53: 50: 49:Classification 46: 45: 42: 38: 37: 30: 15: 9: 6: 4: 3: 2: 1800: 1789: 1786: 1784: 1781: 1779: 1776: 1775: 1773: 1758: 1757: 1748: 1746: 1745: 1736: 1734: 1733: 1724: 1723: 1720: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1670: 1668: 1666: 1665:Fragmentation 1662: 1656: 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1617: 1615: 1611: 1605: 1602: 1600: 1597: 1595: 1594:Daly detector 1592: 1590: 1587: 1585: 1582: 1581: 1579: 1575: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1530: 1528: 1526:Mass analyzer 1524: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1379: 1377: 1375: 1371: 1365: 1362: 1360: 1357: 1355: 1354:Mass spectrum 1352: 1350: 1349: 1345: 1341: 1339: 1336: 1335: 1332: 1328: 1321: 1316: 1314: 1309: 1307: 1302: 1301: 1298: 1292: 1288: 1284: 1283: 1274: 1273:3-527-30458-4 1270: 1266: 1262: 1260: 1259:1-901019-03-9 1256: 1252: 1248: 1246: 1245:0-471-51945-6 1242: 1238: 1234: 1232: 1231:0-19-855625-X 1228: 1224: 1220: 1218: 1217:0-471-51945-6 1214: 1210: 1206: 1205: 1191: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1159: 1152: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1113: 1099: 1095: 1089: 1081: 1077: 1071: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1027: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 983: 972: 954: 944: 929: 925: 919: 911: 907: 903: 899: 895: 891: 887: 883: 875: 867: 863: 859: 855: 851: 847: 843: 839: 835: 831: 824: 816: 812: 808: 804: 800: 796: 789: 781: 777: 773: 769: 765: 761: 757: 753: 746: 738: 734: 730: 726: 722: 718: 711: 703: 699: 692: 684: 680: 676: 672: 668: 664: 663:J. Appl. Phys 657: 649: 645: 641: 637: 633: 629: 628:J. Appl. Phys 622: 614: 608: 600: 596: 592: 588: 584: 580: 573: 565: 561: 557: 553: 549: 542: 538: 528: 525: 524: 518: 514: 510: 508: 504: 494: 492: 488: 487:Koichi Tanaka 484: 480: 476: 472: 467: 465: 461: 457: 456: 445: 441: 439: 435: 426: 424: 420: 416: 412: 402: 399: 395: 391: 384:Mass analyzer 381: 373: 371: 367: 363: 359: 355: 351: 347: 342: 338: 330: 311: 307: 303: 299: 295: 291: 287: 277: 275: 271: 267: 263: 259: 255: 245: 243: 239: 235: 231: 221: 212: 210: 206: 202: 194: 190: 186: 179: 175: 171: 170:CAMECA S.A.S. 167: 163: 159: 155: 151: 146: 144: 140: 136: 132: 128: 124: 120: 119:J. J. Thomson 110: 107: 103: 99: 95: 91: 87: 79: 75: 72: 68: 63: 59: 55: 51: 47: 43: 39: 34: 28: 23: 1754: 1742: 1730: 1558:Penning trap 1491: 1347: 1343: 1264: 1250: 1236: 1222: 1208: 1165: 1161: 1151: 1126: 1122: 1112: 1101:. Retrieved 1097: 1088: 1079: 1070: 1037: 1033: 1026: 985: 981: 971: 960:. Retrieved 943: 931:. Retrieved 927: 918: 885: 881: 874: 833: 829: 823: 798: 794: 788: 755: 751: 745: 723:(1): 39–50. 720: 716: 710: 701: 697: 691: 666: 662: 656: 631: 627: 621: 607:cite journal 582: 578: 572: 555: 551: 541: 517:conditions. 515: 511: 500: 497:Applications 483:John B. Fenn 468: 460:dynamic SIMS 459: 453: 451: 442: 432: 408: 387: 374: 283: 260:(roughly 10 251: 227: 172:and used in 147: 116: 89: 85: 84: 1756:WikiProject 1599:Faraday cup 1538:Wien filter 1359:MS software 698:Microscopie 455:static SIMS 423:fluorescent 411:Faraday cup 298:noble gases 254:high vacuum 238:Wien filter 154:static SIMS 123:vacuum pump 1783:Ion source 1772:Categories 1374:Ion source 1103:2017-02-28 962:2007-11-22 933:8 November 704:: 395–399. 471:thin films 464:sputtering 274:adsorption 135:Moon rocks 98:sputtering 94:thin films 78:Microprobe 1635:Hybrid MS 1182:0379-0738 1143:2522-5812 579:Phys. Rev 552:Phil. Mag 533:Citations 479:catalysts 337:fullerene 1732:Category 1577:Detector 1568:Orbitrap 1364:Acronyms 1190:23622791 1080:Lucideon 1062:16555371 1010:13679912 910:19399762 866:25704967 858:15306276 780:18699129 527:NanoSIMS 521:See also 475:polymers 405:Detector 350:tungsten 286:ion guns 234:ion beam 102:ion beam 57:Analytes 1744:Commons 1472:MALDESI 1042:Bibcode 1018:4414329 990:Bibcode 890:Bibcode 838:Bibcode 803:Bibcode 760:Bibcode 725:Bibcode 671:Bibcode 636:Bibcode 587:Bibcode 503:Rosetta 366:bismuth 354:gallium 230:ion gun 199:). The 193:bismuth 166:Germany 113:History 70:Related 41:Acronym 1650:IMS/MS 1563:FT-ICR 1533:Sector 1287:theory 1271:  1257:  1243:  1229:  1215:  1188:  1180:  1141:  1060:  1016:  1008:  982:Nature 908:  864:  856:  778:  362:indium 331:) or C 310:oxygen 292:or by 248:Vacuum 242:vacuum 33:CAMECA 1703:IRMPD 1655:CE-MS 1645:LC/MS 1640:GC/MS 1620:MS/MS 1507:SELDI 1467:MALDI 1462:LAESI 1402:DAPPI 1014:S2CID 956:(PDF) 862:S2CID 312:(O, O 1708:NETD 1673:BIRD 1492:SIMS 1487:SESI 1422:EESI 1417:DIOS 1412:DESI 1407:DART 1392:APPI 1387:APLI 1382:APCI 1338:Mass 1289:and 1269:ISBN 1255:ISBN 1241:ISBN 1227:ISBN 1213:ISBN 1186:PMID 1178:ISSN 1139:ISSN 1058:PMID 1006:PMID 935:2013 906:PMID 854:PMID 776:PMID 613:link 485:and 458:and 364:and 358:gold 266:torr 262:mbar 191:and 189:gold 176:and 131:NASA 90:SIMS 44:SIMS 1713:SID 1698:HCD 1693:ETD 1688:EDD 1683:ECD 1678:CID 1630:AMS 1625:QqQ 1502:SSI 1482:PTR 1477:MIP 1457:ICP 1437:FAB 1432:ESI 1170:doi 1166:230 1131:doi 1050:doi 998:doi 986:425 898:doi 846:doi 834:362 811:doi 768:doi 733:doi 679:doi 644:doi 595:doi 560:doi 316:, O 308:), 264:or 197:700 96:by 1774:: 1517:TS 1512:TI 1497:SS 1452:IA 1447:GD 1442:FD 1427:EI 1397:CI 1184:. 1176:. 1164:. 1160:. 1137:. 1125:. 1121:. 1096:. 1078:. 1056:. 1048:. 1038:20 1036:. 1012:. 1004:. 996:. 984:. 926:. 904:. 896:. 886:23 884:. 860:. 852:. 844:. 832:. 809:. 799:34 797:. 774:. 766:. 756:49 754:. 731:. 721:17 719:. 700:. 677:. 667:38 665:. 642:. 632:29 630:. 609:}} 605:{{ 593:. 583:76 581:. 556:20 554:. 550:. 509:. 493:. 409:A 378:60 360:, 333:60 326:SF 306:Xe 304:, 302:Ar 258:Pa 211:. 184:60 164:, 1348:z 1346:/ 1344:m 1319:e 1312:t 1305:v 1192:. 1172:: 1145:. 1133:: 1127:5 1106:. 1082:. 1064:. 1052:: 1044:: 1020:. 1000:: 992:: 978:2 965:. 951:2 937:. 912:. 900:: 892:: 868:. 848:: 840:: 817:. 813:: 805:: 782:. 770:: 762:: 739:. 735:: 727:: 702:1 685:. 681:: 673:: 650:. 646:: 638:: 615:) 601:. 597:: 589:: 566:. 562:: 335:( 328:6 322:5 318:2 314:2 300:( 182:C 88:( 35:.

Index


CAMECA
Fast atom bombardment
Microprobe
thin films
sputtering
ion beam
mass spectrometer
J. J. Thomson
vacuum pump
University of Vienna
NASA
Moon rocks
University of Paris-Sud in Orsay
sector field mass spectrometer
quadrupole mass analyzers
static SIMS
time-of-flight mass spectrometers
University of MĂĽnster
Germany
CAMECA S.A.S.
materials science
surface science
C60
gold
bismuth
sensitive high-resolution ion microprobe
sector instrument
Canberra, Australia

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑