Knowledge

Scattering

Source 📝

1361:, are also largely used. The solutions of interest describe the long-term motion of free atoms, molecules, photons, electrons, and protons. The scenario is that several particles come together from an infinite distance away. These reagents then collide, optionally reacting, getting destroyed or creating new particles. The products and unused reagents then fly away to infinity again. (The atoms and molecules are effectively particles for our purposes. Also, under everyday circumstances, only photons are being created and destroyed.) The solutions reveal which directions the products are most likely to fly off to and how quickly. They also reveal the probability of various reactions, creations, and decays occurring. There are two predominant techniques of finding solutions to scattering problems: 1645:) of the scattered wave; typically the upper limit is taken to be about 1/10 the wavelength. In this size regime, the exact shape of the scattering center is usually not very significant and can often be treated as a sphere of equivalent volume. The inherent scattering that radiation undergoes passing through a pure gas is due to microscopic density fluctuations as the gas molecules move around, which are normally small enough in scale for Rayleigh's model to apply. This scattering mechanism is the primary cause of the blue color of the Earth's sky on a clear day, as the shorter blue wavelengths of sunlight passing overhead are more strongly scattered than the longer red wavelengths according to Rayleigh's famous 1/ 426: 189: 49: 1255: 3362: 1383: 619: 466: 534:. The main difference between the effects of single and multiple scattering is that single scattering can usually be treated as a random phenomenon, whereas multiple scattering, somewhat counterintuitively, can be modeled as a more deterministic process because the combined results of a large number of scattering events tend to average out. Multiple scattering can thus often be modeled well with 1200:. One then asks what might happen if two such solutions are set up far away from each other, in the "distant past", and are made to move towards each other, interact (under the constraint of the differential equation) and then move apart in the "future". The scattering matrix then pairs solutions in the "distant past" to those in the "distant future". 598:. Speckle also occurs if multiple parts of a coherent wave scatter from different centers. In certain rare circumstances, multiple scattering may only involve a small number of interactions such that the randomness is not completely averaged out. These systems are considered to be some of the most difficult to model accurately. 1436: 1144:
The term "elastic scattering" implies that the internal states of the scattering particles do not change, and hence they emerge unchanged from the scattering process. In inelastic scattering, by contrast, the particles' internal state is changed, which may amount to exciting some of the electrons of
1714:
to find the distribution of the scattered electromagnetic field. Sophisticated software packages exist which allow the user to specify the refractive index or indices of the scattering feature in space, creating a 2- or sometimes 3-dimensional model of the structure. For relatively large and complex
541:
Because the location of a single scattering center is not usually well known relative to the path of the radiation, the outcome, which tends to depend strongly on the exact incoming trajectory, appears random to an observer. This type of scattering would be exemplified by an electron being fired at
1058: 542:
an atomic nucleus. In this case, the atom's exact position relative to the path of the electron is unknown and would be unmeasurable, so the exact trajectory of the electron after the collision cannot be predicted. Single scattering is therefore often described by probability distributions.
789:
When the target is a set of many scattering centers whose relative position varies unpredictably, it is customary to think of a range equation whose arguments take different forms in different application areas. In the simplest case consider an interaction that removes particles from the
782: 1683:
Both Mie and Rayleigh scattering are considered elastic scattering processes, in which the energy (and thus wavelength and frequency) of the light is not substantially changed. However, electromagnetic radiation scattered by moving scattering centers does undergo a
1488:
owe their appearance to multiple scattering of light by internal or surface inhomogeneities in the object, for example by the boundaries of transparent microscopic crystals that make up a stone or by the microscopic fibers in a sheet of paper. More generally, the
1632:
is a process in which electromagnetic radiation (including light) is scattered by a small spherical volume of variant refractive indexes, such as a particle, bubble, droplet, or even a density fluctuation. This effect was first modeled successfully by
545:
With multiple scattering, the randomness of the interaction tends to be averaged out by a large number of scattering events, so that the final path of the radiation appears to be a deterministic distribution of intensity. This is exemplified by a
1152:
is particularly instructive, as the theory is reasonably complex while still having a good foundation on which to build an intuitive understanding. When two atoms are scattered off one another, one can understand them as being the
256:
in 1911) and the development of quantum theory in the 20th century, the sense of the term became broader as it was recognized that the same mathematical frameworks used in light scattering could be applied to many other phenomena.
1501:) of the surface is determined by scattering. Highly scattering surfaces are described as being dull or having a matte finish, while the absence of surface scattering leads to a glossy appearance, as with polished metal or stone. 1512:
in skin is a common example where both spectral absorption and scattering play important and complex roles in the coloration. Light scattering can also create color without absorption, often shades of blue, as with the sky
888: 585:
Not all single scattering is random, however. A well-controlled laser beam can be exactly positioned to scatter off a microscopic particle with a deterministic outcome, for instance. Such situations are encountered in
1457:) is particularly important. Several different aspects of electromagnetic scattering are distinct enough to have conventional names. Major forms of elastic light scattering (involving negligible energy transfer) are 219:
by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the
593:
Similarly, multiple scattering can sometimes have somewhat random outcomes, particularly with coherent radiation. The random fluctuations in the multiply scattered intensity of coherent radiation are called
1706:
For modeling of scattering in cases where the Rayleigh and Mie models do not apply such as larger, irregularly shaped particles, there are many numerical methods that can be used. The most common are
1581: 1703:
are mostly sufficient to describe the interaction of light with the particle. Mie theory can still be used for these larger spheres, but the solution often becomes numerically unwieldy.
862: 773:
is the problem of determining the characteristics of an object (e.g., its shape, internal constitution) from measurement data of radiation or particles scattered from the object.
1270:
higher than the index of the surrounding medium. This object scatters part of the wave field, although at any individual point, the wave's frequency and wavelength remain intact.
248:, a pioneer in light scattering research, noted the connection between light scattering and acoustic scattering in the 1870s. Near the end of the 19th century, the scattering of 3416: 1484:
Light scattering is one of the two major physical processes that contribute to the visible appearance of most objects, the other being absorption. Surfaces described as
2398:
Roqué, Josep; J. Molera; P. Sciau; E. Pantos; M. Vendrell-Saz (2006). "Copper and silver nanocrystals in lustre lead glazes: development and optical properties".
1653:. The degree of scattering varies as a function of the ratio of the particle diameter to the wavelength of the radiation, along with many other factors including 808: 1672:. In the Mie regime, the shape of the scattering center becomes much more significant and the theory only applies well to spheres and, with some modification, 1729:
involves passing an electric field through a liquid which makes particles move. The bigger the charge is on the particles, the faster they are able to move.
1196:
is known to have some simple, localized solutions, and the solutions are a function of a single parameter, that parameter can take the conceptual role of
2606: 1453:
are one of the best known and most commonly encountered forms of radiation that undergo scattering. Scattering of light and radio waves (especially in
1053:{\displaystyle I=I_{o}e^{-Q\Delta x}=I_{o}e^{-{\frac {\Delta x}{\lambda }}}=I_{o}e^{-\sigma (\eta \Delta x)}=I_{o}e^{-{\frac {\rho \Delta x}{\tau }}},} 723:. Prosaically, wave scattering corresponds to the collision and scattering of a wave with some material object, for instance (sunlight) scattered by 339:
in clothing. The effects of such features on the path of almost any type of propagating wave or moving particle can be described in the framework of
2429:, John H.; Pandis, Spyros N. (2006). Atmospheric Chemistry and Physics - From Air Pollution to Climate Change (2nd Ed.). John Wiley and Sons, Inc. 2117:, John H.; Pandis, Spyros N. (2006). Atmospheric Chemistry and Physics - From Air Pollution to Climate Change (2nd Ed.). John Wiley and Sons, Inc. 3159: 1680:. Closed-form solutions for scattering by certain other simple shapes exist, but no general closed-form solution is known for arbitrary shapes. 406: 2807: 2539: 1849: 1235:
is associated with scattering states. The study of inelastic scattering then asks how discrete and continuous spectra are mixed together.
2579: 1539: 769:
is the problem of determining the distribution of scattered radiation/particle flux basing on the characteristics of the scatterer. The
1089:σ, and the last uses the target mass density ρ to define a density mean free path τ. Hence one converts between these quantities via 530:. It is more common that scattering centers are grouped together; in such cases, radiation may scatter many times, in what is known as 3330: 2564: 2574: 2656: 1874: 3342: 2400: 1266:
travelling upwards. Bottom: The real part of the field after inserting in the path of the plane wave a small transparent disk of
1504:
Spectral absorption, the selective absorption of certain colors, determines the color of most objects with some modification by
1169:. The scattering of two hydrogen atoms will disturb the state of each atom, resulting in one or both becoming excited, or even 3026: 2599: 367: 2960: 2382: 2353: 2284: 2259: 2230: 2147: 2883: 1637:, from whom it gets its name. In order for Rayleigh's model to apply, the sphere must be much smaller in diameter than the 790:"unscattered beam" at a uniform rate that is proportional to the incident number of particles per unit area per unit time ( 175: 683: 240:
in the 17th century). As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that
754:
of a fission fragment as it traverses a thin foil. More precisely, scattering consists of the study of how solutions of
1809: 655: 89: 2629: 2592: 2575:
Lectures of the European school on theoretical methods for electron and positron induced chemistry, Prague, Feb. 2005
2434: 2328: 2308: 2172: 2122: 1804: 1422: 1145:
a scattering atom, or the complete annihilation of a scattering particle and the creation of entirely new particles.
702: 513: 17: 2495: 1108:
In electromagnetic absorption spectroscopy, for example, interaction coefficient (e.g. Q in cm) is variously called
495: 2739: 2345: 2251: 2222: 2139: 1794: 1726: 1688:, which can be detected and used to measure the velocity of the scattering center/s in forms of techniques such as 662: 3297: 3006: 3001: 2724: 566:
are interchangeable in many contexts. Optical elements designed to produce multiple scattering are thus known as
601:
The description of scattering and the distinction between single and multiple scattering are tightly related to
236:(mirror-like) reflections. Originally, the term was confined to light scattering (going back at least as far as 3309: 2981: 1894: 1404: 1208: 755: 640: 491: 816: 3287: 3064: 2986: 2769: 2639: 2513: 2196: 1814: 1283: 437: 94: 2554: 785:
Equivalent quantities used in the theory of scattering from composite specimens, but with a variety of units
669: 3021: 2955: 2950: 2921: 2634: 1759: 1239: 1125: 1192:, scattering theory deals with a more abstract formulation of the same set of concepts. For example, if a 3391: 3089: 2996: 1649:
relation. Along with absorption, such scattering is a major cause of the attenuation of radiation by the
1490: 1400: 1354: 1224: 636: 487: 382:
the quantum interaction and scattering of fundamental particles is described by the Scattering Matrix or
244:
could refer to the scattering of "heat rays" (not then recognized as electromagnetic in nature) in 1800.
31: 1945:
Newton, Isaac (1665). "A letter of Mr. Isaac Newton Containing his New Theory About Light and Colours".
252:(electron beams) and X-rays was observed and discussed. With the discovery of subatomic particles (e.g. 3365: 3127: 2935: 2906: 2568: 770: 651: 578:
that occurs when coherent radiation is multiply scattered by a random medium, is usually attributed to
359: 1964:
Herschel, William (1800). "Experiments on the Solar, and on the Terrestrial Rays that Occasion Heat".
1532:
Models of light scattering can be divided into three domains based on a dimensionless size parameter,
3406: 3149: 3016: 2940: 2901: 2858: 2832: 2789: 2682: 1526: 1450: 1177: 602: 445: 3401: 3216: 3196: 3186: 3176: 3132: 2707: 1789: 1133: 476: 168: 84: 758:, propagating freely "in the distant past", come together and interact with one another or with a 48: 3396: 2911: 2837: 1899: 1393: 1323: 1117: 1086: 629: 590:
scattering as well, where the targets tend to be macroscopic objects such as people or aircraft.
571: 480: 402: 398: 3325: 2873: 1350: 1215:
on the manifold. As a result, the solutions often have a spectrum that can be identified with a
1162: 207:
is a wide range of physical processes where moving particles or radiation of some form, such as
3236: 3011: 2991: 2916: 2784: 2559: 1884: 1799: 1711: 1664:
For larger diameters, the problem of electromagnetic scattering by spheres was first solved by
1327: 1243: 1113: 750:, the Bragg scattering (or diffraction) of electrons and X-rays by a cluster of atoms, and the 387: 129: 2827: 2045: 2023: 3411: 3261: 2774: 2754: 1924: 1879: 1779: 1774: 1707: 1650: 1362: 1298:, scatter from solid objects or propagate through non-uniform media (such as sound waves, in 1193: 879: 736: 149: 124: 1282:
is a framework for studying and understanding the interaction or scattering of solutions to
3292: 3221: 3166: 2896: 2719: 2677: 2461: 2374: 2057: 1996: 1889: 1834: 1754: 1654: 1521:, and the feathers of some birds (Prum et al. 1998). However, resonant light scattering in 1466: 1335: 1275: 751: 273: 74: 1739: 1699:
At values of the ratio of particle diameter to wavelength more than about 10, the laws of
8: 3386: 3277: 3246: 3191: 3171: 3079: 3036: 2891: 2817: 2744: 2734: 2646: 1869: 1668:, and scattering by spheres larger than the Rayleigh range is therefore usually known as 1658: 1629: 1606: 1514: 1494: 1458: 1267: 1232: 720: 351: 346:
Some areas where scattering and scattering theory are significant include radar sensing,
161: 119: 2465: 2450:; Scott Williamson; Jan Dyck (1998). "Coherent light scattering by blue feather barbs". 2061: 2000: 1124:
or units of 10 cm), density mean free path (e.g. τ in grams/cm), and its reciprocal the
676: 3337: 3206: 3104: 2812: 2759: 2651: 2477: 2413: 2075: 2004: 1914: 1859: 1844: 1769: 1764: 1505: 1478: 1366: 793: 759: 347: 277: 261: 226: 139: 109: 104: 79: 2549: 3347: 3256: 3226: 3154: 3117: 3112: 3094: 3059: 3049: 2764: 2729: 2712: 2615: 2447: 2430: 2378: 2349: 2324: 2304: 2280: 2255: 2226: 2168: 2143: 2118: 2093: 1749: 1346: 1342: 1166: 1149: 579: 425: 391: 340: 328: 253: 221: 1715:
structures, these models usually require substantial execution times on a computer.
526:
When radiation is only scattered by one localized scattering center, this is called
188: 3074: 3069: 2926: 2822: 2481: 2469: 2452: 2426: 2409: 2114: 2079: 2065: 1864: 1854: 1700: 1470: 1358: 1319: 1109: 535: 449: 379: 363: 241: 114: 2096:(1911). "The Scattering of α and ÎČ rays by Matter and the Structure of the Atom". 715:
Scattering theory is a framework for studying and understanding the scattering of
3304: 3231: 3211: 3181: 3144: 3139: 3044: 2868: 1839: 1718: 1440: 1307: 1212: 595: 371: 281: 54: 3282: 3251: 3241: 2863: 2853: 2687: 2544: 1909: 1824: 1784: 1744: 1616: 1518: 1331: 1082: 747: 740: 732: 575: 429: 414: 355: 332: 134: 99: 69: 2321:
Transmission electron microscopy: Physics of image formation and microanalysis
2188: 1619:(particle about the same size as wavelength of light, valid only for spheres); 1525:
can produce many different highly saturated and vibrant hues, especially when
1310:, the differential equation is again the wave equation, and the scattering of 3380: 3201: 3054: 2945: 2779: 2749: 2702: 2445: 1722: 1685: 1634: 1594:
is the wavelength of incident radiation in the medium. Based on the value of
1522: 1498: 1291: 1216: 1158: 300: 287:
The types of non-uniformities which can cause scattering, sometimes known as
196: 1085:λ, the third uses the number of targets per unit volume η to define an area 3084: 2697: 2692: 1254: 453: 375: 245: 237: 1625:≫ 1: geometric scattering (particle much larger than wavelength of light). 3122: 1919: 1228: 1189: 1180:" refers to a special kind of scattering experiment in particle physics. 1154: 1121: 324: 320: 316: 249: 144: 1829: 1677: 1669: 1665: 1638: 1462: 1407: in this section. Unsourced material may be challenged and removed. 1315: 1295: 1263: 1170: 643: in this section. Unsourced material may be challenged and removed. 547: 272:
scattering in the Earth's upper atmosphere; particle collisions inside
269: 216: 192: 2008: 1984: 1435: 2976: 2672: 2580:
E. Koelink, Lectures on scattering theory, Delft the Netherlands 2006
2070: 1819: 1673: 1303: 1299: 1287: 1259: 724: 555: 433: 2584: 1382: 618: 465: 362:. Particle-particle scattering theory is important in areas such as 224:. Reflections of radiation that undergo scattering are often called 2535:
Research group on light scattering and diffusion in complex systems
2534: 1904: 1220: 1204: 441: 410: 383: 358:
process monitoring, acoustic tiling, free-space communications and
296: 265: 232: 2473: 1207:. Frequently, the means to the solution requires the study of the 397:
Scattering is quantified using many different concepts, including
1157:
solutions of some differential equation. Thus, for example, the
728: 308: 304: 2540:
Multiple light scattering from a photonic science point of view
2397: 1444: 58: 2024:"The Magnetic Deflection of Diffusely Reflected Cathode Rays" 1693: 1689: 1509: 1474: 1454: 1443:
of scattering between two electrons by emission of a virtual
1311: 587: 336: 312: 276:; electron scattering by gas atoms in fluorescent lamps; and 212: 208: 57:
of scattering between two electrons by emission of a virtual
2301:
Electron energy-loss spectroscopy in the electron microscope
781: 1197: 1165:
with a negative inverse-power (i.e., attractive Coulombic)
744: 716: 1989:
Philosophical Transactions of the Royal Society of London
551: 295:, are too numerous to list, but a small sample includes 2368: 1203:
Solutions to differential equations are often posed on
3417:
Scattering, absorption and radiative transfer (optics)
2506: 2342:
Inverse Acoustic and Electromagnetic Scattering Theory
2245: 2216: 2136:
Inverse Acoustic and Electromagnetic Scattering Theory
1120:. In nuclear physics, area cross-sections (e.g. σ in 2371:
Absorption and Scattering of Light by Small Particles
1542: 891: 819: 796: 2488: 1219:, and scattering is described by a certain map, the 2165:
Elementary Particle Physics: Concepts and Phenomena
1139: 1136:(e.g. λ in nanometers) is often discussed instead. 762:, and then propagate away "to the distant future". 2339: 2133: 1576:{\displaystyle \alpha =\pi D_{\text{p}}/\lambda ,} 1575: 1132:are all popular, while in electron microscopy the 1052: 856: 802: 2555:World directory of neutron scattering instruments 1696:. This shift involves a slight change in energy. 1609:(small particle compared to wavelength of light); 853: 420: 268:, photons and other particles. Examples include: 3378: 2565:Optics Classification and Indexing Scheme (OCIS) 2496:"Understanding Electrophoretic Light Scattering" 1353:, although equivalent formulations, such as the 1294:, and scattering studies how its solutions, the 1173:, representing an inelastic scattering process. 1070:is the initial flux, path length Δx â‰Ą  776: 731:. Scattering also includes the interaction of 407:bidirectional scattering distribution function 2600: 1850:Phase space measurement with forward modeling 1081:, the second equality defines an interaction 554:. Multiple scattering is highly analogous to 169: 2369:Bohren, Craig F.; Donald R. Huffman (1983). 2277:Optical Scattering: Measurement and Analysis 260:Scattering can refer to the consequences of 2246:Gonis, Antonios; William H. Butler (1999). 2217:Gonis, Antonios; William H. Butler (1999). 494:. Unsourced material may be challenged and 2607: 2593: 2092: 1725:under the influence of an electric field. 176: 162: 2162: 2069: 1985:"On the Atmosphere as a Vehicle of Sound" 1423:Learn how and when to remove this message 1238:An important, notable development is the 1183: 852: 703:Learn how and when to remove this message 514:Learn how and when to remove this message 1963: 1875:Resonances in scattering from potentials 1434: 1334:, the solutions of which correspond to 1253: 875:is the distance traveled in the target. 857:{\displaystyle {\frac {dI}{dx}}=-QI\,\!} 780: 432:is a faint, diffuse glow visible in the 424: 215:, are forced to deviate from a straight 187: 2401:Journal of the European Ceramic Society 2021: 1982: 1590:is the circumference of a particle and 1223:, on Hilbert spaces. Solutions with a 230:and unscattered reflections are called 14: 3379: 2274: 1944: 1249: 368:atomic, molecular, and optical physics 2614: 2588: 2340:Colton, David; Rainer Kress (1998). 2189:"Zodiacal Glow Lightens Paranal Sky" 2134:Colton, David; Rainer Kress (1998). 1405:adding citations to reliable sources 1376: 641:adding citations to reliable sources 612: 492:adding citations to reliable sources 459: 2323:(Fourth Edition, Springer, Berlin) 2303:(Second Edition, Plenum Press, NY) 2167:. Springer-Verlag. pp. 80–93. 1372: 1290:, the differential equation is the 24: 2414:10.1016/j.jeurceramsoc.2005.12.024 2279:. SPIE Optical Engineering Press. 1242:, central to the solution of many 1105:, as shown in the figure at left. 1033: 995: 951: 919: 871:is an interaction coefficient and 199:light beam makes the beam scatter. 25: 3428: 2528: 1529:is involved (RoquĂ© et al. 2006). 1161:corresponds to a solution to the 3361: 3360: 1953:. Royal Society of London: 3087. 1795:Electrophoretic light scattering 1727:Electrophoretic light scattering 1465:. Inelastic scattering includes 1381: 1140:Elastic and inelastic scattering 617: 464: 436:. The phenomenon stems from the 47: 2439: 2420: 2391: 2362: 2333: 2313: 2293: 2268: 2239: 2210: 2181: 2046:"Recent Work with Röntgen Rays" 1972:. Royal Society of London: 770. 1392:needs additional citations for 1349:, the relevant equation is the 878:The above ordinary first-order 628:needs additional citations for 3310:Relativistic quantum mechanics 2156: 2127: 2108: 2086: 2056:(1383): 613–616. 30 Apr 1896. 2038: 2022:Merritt, Ernest (5 Oct 1898). 2015: 1976: 1957: 1938: 1895:Scattering from rough surfaces 1284:partial differential equations 1231:in quantum mechanics, while a 1001: 989: 756:partial differential equations 421:Single and multiple scattering 386:, introduced and developed by 13: 1: 3288:Quantum statistical mechanics 3065:Quantum differential calculus 2987:Delayed-choice quantum eraser 2770:Symmetry in quantum mechanics 2248:Multiple Scattering in Solids 2219:Multiple Scattering in Solids 2197:European Southern Observatory 1931: 1815:Light scattering by particles 1805:Haag–Ruelle scattering theory 1508:. The apparent blue color of 1322:, the equations are those of 1148:The example of scattering in 777:Attenuation due to scattering 95:Light scattering by particles 2550:Neutron and X-Ray Scattering 1760:Characteristic mode analysis 1740:Attenuation#Light scattering 1306:). In the case of classical 1240:inverse scattering transform 1126:mass attenuation coefficient 262:particle-particle collisions 7: 3090:Quantum stochastic calculus 3080:Quantum measurement problem 3002:Mach–Zehnder interferometer 1732: 1355:Lippmann-Schwinger equation 882:has solutions of the form: 32:Scattering (disambiguation) 27:Range of physical processes 10: 3433: 2569:Optical Society of America 2560:Scattering and diffraction 1966:Philosophical Transactions 1947:Philosophical Transactions 1721:involves the migration of 771:inverse scattering problem 360:computer-generated imagery 335:in organisms, and textile 264:between molecules, atoms, 29: 3356: 3318: 3270: 3150:Quantum complexity theory 3128:Quantum cellular automata 3103: 3035: 2969: 2882: 2846: 2833:Path integral formulation 2800: 2665: 2622: 1527:surface plasmon resonance 1178:deep inelastic scattering 767:direct scattering problem 608: 3217:Quantum machine learning 3197:Quantum key distribution 3187:Quantum image processing 3177:Quantum error correction 3027:Wheeler's delayed choice 2275:Stover, John C. (1995). 2163:Nachtmann, Otto (1990). 1790:Dynamic Light Scattering 1134:inelastic mean free path 403:attenuation coefficients 399:scattering cross section 3133:Quantum finite automata 2193:ESO Picture of the Week 1900:Scintillation (physics) 1324:Quantum electrodynamics 1244:exactly solvable models 1118:attenuation coefficient 572:Coherent backscattering 3237:Quantum neural network 2545:Neutron Scattering Web 2098:Philosophical Magazine 1983:Tyndall, John (1874). 1885:Small-angle scattering 1708:finite-element methods 1577: 1447: 1328:Quantum chromodynamics 1271: 1184:Mathematical framework 1114:absorption coefficient 1054: 858: 804: 786: 550:passing through thick 457: 388:John Archibald Wheeler 200: 3262:Quantum teleportation 2790:Wave–particle duality 2319:Ludwig Reimer (1997) 2299:R. F. Egerton (1996) 1925:X-ray crystallography 1880:Rutherford scattering 1780:Diffuse sky radiation 1775:Deep scattering layer 1598:, these domains are: 1578: 1536:which is defined as: 1451:Electromagnetic waves 1438: 1363:partial wave analysis 1336:fundamental particles 1257: 1194:differential equation 1128:(e.g. in cm/gram) or 1055: 880:differential equation 859: 805: 784: 739:(or angle change) of 737:Rutherford scattering 603:wave–particle duality 428: 274:particle accelerators 191: 150:X-ray crystallography 3293:Quantum field theory 3222:Quantum metamaterial 3167:Quantum cryptography 2897:Consistent histories 1890:Scattering amplitude 1835:Molecular scattering 1755:Brillouin scattering 1540: 1467:Brillouin scattering 1401:improve this article 1351:Schrödinger equation 1276:mathematical physics 1163:Schrödinger equation 889: 817: 794: 752:inelastic scattering 637:improve this article 574:, an enhancement of 488:improve this section 30:For other uses, see 3278:Quantum fluctuation 3247:Quantum programming 3207:Quantum logic gates 3192:Quantum information 3172:Quantum electronics 2647:Classical mechanics 2518:Malvern Panalytical 2466:1998Natur.396...28P 2062:1896Natur..53..613. 2001:1874RSPT..164..183T 1870:Rayleigh scattering 1712:Maxwell's equations 1630:Rayleigh scattering 1607:Rayleigh scattering 1515:Rayleigh scattering 1459:Rayleigh scattering 1268:index of refraction 1250:Theoretical physics 1233:continuous spectrum 1074: −  560:multiple scattering 532:multiple scattering 446:interplanetary dust 352:semiconductor wafer 323:solids, defects in 227:diffuse reflections 3392:Physical phenomena 3331:in popular culture 3113:Quantum algorithms 2961:Von Neumann–Wigner 2941:Objective collapse 2652:Old quantum theory 2514:"Light Scattering" 2446:Prum, Richard O.; 1915:Thomson scattering 1860:Powder diffraction 1845:Neutron scattering 1770:Coulomb scattering 1765:Compton scattering 1573: 1517:), the human blue 1506:elastic scattering 1479:Compton scattering 1448: 1367:Born approximation 1272: 1050: 854: 800: 787: 760:boundary condition 458: 448:spread throughout 348:medical ultrasound 293:scattering centers 278:neutron scattering 201: 110:Powder diffraction 3374: 3373: 3348:Quantum mysticism 3326:Schrödinger's cat 3257:Quantum simulator 3227:Quantum metrology 3155:Quantum computing 3118:Quantum amplifier 3095:Quantum spacetime 3060:Quantum cosmology 3050:Quantum chemistry 2765:Scattering theory 2713:Zero-point energy 2708:Degenerate levels 2616:Quantum mechanics 2448:Rodolfo H. Torres 2408:(16): 3813–3824. 2384:978-0-471-29340-8 2355:978-3-540-62838-5 2286:978-0-8194-1934-7 2261:978-0-387-98853-5 2232:978-0-387-98853-5 2149:978-3-540-62838-5 2028:Electrical Review 1750:Bragg diffraction 1559: 1433: 1432: 1425: 1359:Faddeev equations 1347:quantum chemistry 1345:, which includes 1343:quantum mechanics 1280:scattering theory 1225:discrete spectrum 1167:central potential 1150:quantum chemistry 1043: 961: 838: 803:{\displaystyle I} 713: 712: 705: 687: 580:weak localization 528:single scattering 524: 523: 516: 392:Werner Heisenberg 341:scattering theory 329:surface roughness 254:Ernest Rutherford 222:law of reflection 186: 185: 70:Bragg diffraction 18:Scatter (physics) 16:(Redirected from 3424: 3407:Particle physics 3364: 3363: 3075:Quantum geometry 3070:Quantum dynamics 2927:Superdeterminism 2823:Matrix mechanics 2678:Bra–ket notation 2609: 2602: 2595: 2586: 2585: 2522: 2521: 2510: 2504: 2503: 2500:Wyatt Technology 2492: 2486: 2485: 2443: 2437: 2424: 2418: 2417: 2395: 2389: 2388: 2366: 2360: 2359: 2337: 2331: 2317: 2311: 2297: 2291: 2290: 2272: 2266: 2265: 2243: 2237: 2236: 2214: 2208: 2207: 2205: 2203: 2185: 2179: 2178: 2160: 2154: 2153: 2131: 2125: 2112: 2106: 2105: 2090: 2084: 2083: 2073: 2071:10.1038/053613a0 2042: 2036: 2035: 2019: 2013: 2012: 1980: 1974: 1973: 1961: 1955: 1954: 1942: 1865:Raman scattering 1855:Photon diffusion 1701:geometric optics 1582: 1580: 1579: 1574: 1566: 1561: 1560: 1557: 1471:Raman scattering 1428: 1421: 1417: 1414: 1408: 1385: 1377: 1373:Electromagnetics 1320:particle physics 1302:, coming from a 1130:area per nucleon 1059: 1057: 1056: 1051: 1046: 1045: 1044: 1039: 1028: 1018: 1017: 1005: 1004: 977: 976: 964: 963: 962: 957: 949: 939: 938: 926: 925: 907: 906: 863: 861: 860: 855: 839: 837: 829: 821: 809: 807: 806: 801: 735:on a table, the 708: 701: 697: 694: 688: 686: 645: 621: 613: 558:, and the terms 536:diffusion theory 519: 512: 508: 505: 499: 468: 460: 380:particle physics 364:particle physics 311:fluctuations in 282:nuclear reactors 242:William Herschel 178: 171: 164: 51: 37: 36: 21: 3432: 3431: 3427: 3426: 3425: 3423: 3422: 3421: 3402:Nuclear physics 3377: 3376: 3375: 3370: 3352: 3338:Wigner's friend 3314: 3305:Quantum gravity 3266: 3252:Quantum sensing 3232:Quantum network 3212:Quantum machine 3182:Quantum imaging 3145:Quantum circuit 3140:Quantum channel 3099: 3045:Quantum biology 3031: 3007:Elitzur–Vaidman 2982:Davisson–Germer 2965: 2917:Hidden-variable 2907:de Broglie–Bohm 2884:Interpretations 2878: 2842: 2796: 2683:Complementarity 2661: 2618: 2613: 2531: 2526: 2525: 2512: 2511: 2507: 2494: 2493: 2489: 2460:(6706): 28–29. 2444: 2440: 2425: 2421: 2396: 2392: 2385: 2367: 2363: 2356: 2338: 2334: 2318: 2314: 2298: 2294: 2287: 2273: 2269: 2262: 2244: 2240: 2233: 2215: 2211: 2201: 2199: 2187: 2186: 2182: 2175: 2161: 2157: 2150: 2132: 2128: 2113: 2109: 2091: 2087: 2044: 2043: 2039: 2020: 2016: 1981: 1977: 1962: 1958: 1943: 1939: 1934: 1929: 1840:Mott scattering 1735: 1719:Electrophoresis 1589: 1562: 1556: 1552: 1541: 1538: 1537: 1477:scattering and 1441:Feynman diagram 1429: 1418: 1412: 1409: 1398: 1386: 1375: 1318:is studied. In 1308:electrodynamics 1252: 1186: 1142: 1080: 1069: 1029: 1027: 1023: 1019: 1013: 1009: 982: 978: 972: 968: 950: 948: 944: 940: 934: 930: 912: 908: 902: 898: 890: 887: 886: 830: 822: 820: 818: 815: 814: 795: 792: 791: 779: 741:alpha particles 709: 698: 692: 689: 646: 644: 634: 622: 611: 520: 509: 503: 500: 485: 469: 423: 372:nuclear physics 325:monocrystalline 321:polycrystalline 182: 62: 61: 55:Feynman diagram 35: 28: 23: 22: 15: 12: 11: 5: 3430: 3420: 3419: 3414: 3409: 3404: 3399: 3397:Atomic physics 3394: 3389: 3372: 3371: 3369: 3368: 3357: 3354: 3353: 3351: 3350: 3345: 3340: 3335: 3334: 3333: 3322: 3320: 3316: 3315: 3313: 3312: 3307: 3302: 3301: 3300: 3290: 3285: 3283:Casimir effect 3280: 3274: 3272: 3268: 3267: 3265: 3264: 3259: 3254: 3249: 3244: 3242:Quantum optics 3239: 3234: 3229: 3224: 3219: 3214: 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3174: 3169: 3164: 3163: 3162: 3152: 3147: 3142: 3137: 3136: 3135: 3125: 3120: 3115: 3109: 3107: 3101: 3100: 3098: 3097: 3092: 3087: 3082: 3077: 3072: 3067: 3062: 3057: 3052: 3047: 3041: 3039: 3033: 3032: 3030: 3029: 3024: 3019: 3017:Quantum eraser 3014: 3009: 3004: 2999: 2994: 2989: 2984: 2979: 2973: 2971: 2967: 2966: 2964: 2963: 2958: 2953: 2948: 2943: 2938: 2933: 2932: 2931: 2930: 2929: 2914: 2909: 2904: 2899: 2894: 2888: 2886: 2880: 2879: 2877: 2876: 2871: 2866: 2861: 2856: 2850: 2848: 2844: 2843: 2841: 2840: 2835: 2830: 2825: 2820: 2815: 2810: 2804: 2802: 2798: 2797: 2795: 2794: 2793: 2792: 2787: 2777: 2772: 2767: 2762: 2757: 2752: 2747: 2742: 2737: 2732: 2727: 2722: 2717: 2716: 2715: 2710: 2705: 2700: 2690: 2688:Density matrix 2685: 2680: 2675: 2669: 2667: 2663: 2662: 2660: 2659: 2654: 2649: 2644: 2643: 2642: 2632: 2626: 2624: 2620: 2619: 2612: 2611: 2604: 2597: 2589: 2583: 2582: 2577: 2572: 2562: 2557: 2552: 2547: 2542: 2537: 2530: 2529:External links 2527: 2524: 2523: 2505: 2487: 2438: 2419: 2390: 2383: 2361: 2354: 2332: 2312: 2292: 2285: 2267: 2260: 2238: 2231: 2209: 2180: 2173: 2155: 2148: 2126: 2107: 2094:Rutherford, E. 2085: 2037: 2014: 1975: 1956: 1936: 1935: 1933: 1930: 1928: 1927: 1922: 1917: 1912: 1910:Tyndall effect 1907: 1902: 1897: 1892: 1887: 1882: 1877: 1872: 1867: 1862: 1857: 1852: 1847: 1842: 1837: 1832: 1827: 1825:Mie scattering 1822: 1817: 1812: 1807: 1802: 1797: 1792: 1787: 1785:Doppler effect 1782: 1777: 1772: 1767: 1762: 1757: 1752: 1747: 1745:Backscattering 1742: 1736: 1734: 1731: 1723:macromolecules 1670:Mie scattering 1627: 1626: 1620: 1617:Mie scattering 1610: 1587: 1572: 1569: 1565: 1555: 1551: 1548: 1545: 1463:Mie scattering 1431: 1430: 1389: 1387: 1380: 1374: 1371: 1332:Standard Model 1251: 1248: 1227:correspond to 1185: 1182: 1141: 1138: 1083:mean free path 1078: 1067: 1061: 1060: 1049: 1042: 1038: 1035: 1032: 1026: 1022: 1016: 1012: 1008: 1003: 1000: 997: 994: 991: 988: 985: 981: 975: 971: 967: 960: 956: 953: 947: 943: 937: 933: 929: 924: 921: 918: 915: 911: 905: 901: 897: 894: 865: 864: 851: 848: 845: 842: 836: 833: 828: 825: 799: 778: 775: 733:billiard balls 711: 710: 625: 623: 616: 610: 607: 576:backscattering 522: 521: 472: 470: 463: 430:Zodiacal light 422: 419: 415:mean free path 356:polymerization 197:LCD projectors 184: 183: 181: 180: 173: 166: 158: 155: 154: 153: 152: 147: 142: 137: 132: 127: 122: 117: 112: 107: 102: 97: 92: 87: 82: 77: 72: 64: 63: 53: 52: 44: 43: 26: 9: 6: 4: 3: 2: 3429: 3418: 3415: 3413: 3410: 3408: 3405: 3403: 3400: 3398: 3395: 3393: 3390: 3388: 3385: 3384: 3382: 3367: 3359: 3358: 3355: 3349: 3346: 3344: 3341: 3339: 3336: 3332: 3329: 3328: 3327: 3324: 3323: 3321: 3317: 3311: 3308: 3306: 3303: 3299: 3296: 3295: 3294: 3291: 3289: 3286: 3284: 3281: 3279: 3276: 3275: 3273: 3269: 3263: 3260: 3258: 3255: 3253: 3250: 3248: 3245: 3243: 3240: 3238: 3235: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3202:Quantum logic 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3161: 3158: 3157: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3134: 3131: 3130: 3129: 3126: 3124: 3121: 3119: 3116: 3114: 3111: 3110: 3108: 3106: 3102: 3096: 3093: 3091: 3088: 3086: 3083: 3081: 3078: 3076: 3073: 3071: 3068: 3066: 3063: 3061: 3058: 3056: 3055:Quantum chaos 3053: 3051: 3048: 3046: 3043: 3042: 3040: 3038: 3034: 3028: 3025: 3023: 3022:Stern–Gerlach 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2974: 2972: 2968: 2962: 2959: 2957: 2956:Transactional 2954: 2952: 2949: 2947: 2946:Quantum logic 2944: 2942: 2939: 2937: 2934: 2928: 2925: 2924: 2923: 2920: 2919: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2889: 2887: 2885: 2881: 2875: 2872: 2870: 2867: 2865: 2862: 2860: 2857: 2855: 2852: 2851: 2849: 2845: 2839: 2836: 2834: 2831: 2829: 2826: 2824: 2821: 2819: 2816: 2814: 2811: 2809: 2806: 2805: 2803: 2799: 2791: 2788: 2786: 2783: 2782: 2781: 2780:Wave function 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2755:Superposition 2753: 2751: 2750:Quantum state 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2714: 2711: 2709: 2706: 2704: 2703:Excited state 2701: 2699: 2696: 2695: 2694: 2691: 2689: 2686: 2684: 2681: 2679: 2676: 2674: 2671: 2670: 2668: 2664: 2658: 2655: 2653: 2650: 2648: 2645: 2641: 2638: 2637: 2636: 2633: 2631: 2628: 2627: 2625: 2621: 2617: 2610: 2605: 2603: 2598: 2596: 2591: 2590: 2587: 2581: 2578: 2576: 2573: 2570: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2532: 2519: 2515: 2509: 2501: 2497: 2491: 2483: 2479: 2475: 2474:10.1038/23838 2471: 2467: 2463: 2459: 2455: 2454: 2449: 2442: 2436: 2435:0-471-82857-2 2432: 2428: 2423: 2415: 2411: 2407: 2403: 2402: 2394: 2386: 2380: 2376: 2372: 2365: 2357: 2351: 2347: 2343: 2336: 2330: 2329:3-540-62568-2 2326: 2322: 2316: 2310: 2309:0-306-45223-5 2306: 2302: 2296: 2288: 2282: 2278: 2271: 2263: 2257: 2253: 2249: 2242: 2234: 2228: 2224: 2220: 2213: 2198: 2194: 2190: 2184: 2176: 2174:3-540-50496-6 2170: 2166: 2159: 2151: 2145: 2141: 2137: 2130: 2124: 2123:0-471-82857-2 2120: 2116: 2111: 2103: 2099: 2095: 2089: 2081: 2077: 2072: 2067: 2063: 2059: 2055: 2051: 2047: 2041: 2033: 2029: 2025: 2018: 2010: 2006: 2002: 1998: 1994: 1990: 1986: 1979: 1971: 1967: 1960: 1952: 1948: 1941: 1937: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1831: 1828: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1738: 1737: 1730: 1728: 1724: 1720: 1716: 1713: 1709: 1704: 1702: 1697: 1695: 1691: 1687: 1686:Doppler shift 1681: 1679: 1675: 1671: 1667: 1662: 1660: 1657:, angle, and 1656: 1652: 1648: 1644: 1640: 1636: 1635:Lord Rayleigh 1631: 1624: 1621: 1618: 1614: 1611: 1608: 1604: 1601: 1600: 1599: 1597: 1593: 1586: 1570: 1567: 1563: 1553: 1549: 1546: 1543: 1535: 1530: 1528: 1524: 1523:nanoparticles 1520: 1516: 1511: 1507: 1502: 1500: 1496: 1492: 1487: 1482: 1480: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1446: 1442: 1437: 1427: 1424: 1416: 1406: 1402: 1396: 1395: 1390:This section 1388: 1384: 1379: 1378: 1370: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1339: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1292:wave equation 1289: 1285: 1281: 1277: 1269: 1265: 1261: 1256: 1247: 1245: 1241: 1236: 1234: 1230: 1226: 1222: 1218: 1217:Hilbert space 1214: 1210: 1206: 1201: 1199: 1195: 1191: 1181: 1179: 1174: 1172: 1168: 1164: 1160: 1159:hydrogen atom 1156: 1151: 1146: 1137: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1106: 1104: 1103:ρ/τ 1100: 1096: 1092: 1088: 1087:cross-section 1084: 1077: 1073: 1066: 1047: 1040: 1036: 1030: 1024: 1020: 1014: 1010: 1006: 998: 992: 986: 983: 979: 973: 969: 965: 958: 954: 945: 941: 935: 931: 927: 922: 916: 913: 909: 903: 899: 895: 892: 885: 884: 883: 881: 876: 874: 870: 849: 846: 843: 840: 834: 831: 826: 823: 813: 812: 811: 810:), i.e. that 797: 783: 774: 772: 768: 763: 761: 757: 753: 749: 746: 742: 738: 734: 730: 726: 722: 718: 707: 704: 696: 685: 682: 678: 675: 671: 668: 664: 661: 657: 654: â€“  653: 649: 648:Find sources: 642: 638: 632: 631: 626:This section 624: 620: 615: 614: 606: 604: 599: 597: 591: 589: 583: 581: 577: 573: 569: 565: 561: 557: 553: 549: 543: 539: 537: 533: 529: 518: 515: 507: 497: 493: 489: 483: 482: 478: 473:This section 471: 467: 462: 461: 455: 451: 447: 443: 439: 435: 431: 427: 418: 416: 412: 408: 404: 400: 395: 393: 389: 385: 381: 377: 373: 369: 365: 361: 357: 353: 349: 344: 342: 338: 334: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 285: 283: 279: 275: 271: 267: 263: 258: 255: 251: 247: 243: 239: 235: 234: 229: 228: 223: 218: 214: 210: 206: 198: 194: 190: 179: 174: 172: 167: 165: 160: 159: 157: 156: 151: 148: 146: 143: 141: 138: 136: 133: 131: 128: 126: 123: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 90:Kikuchi lines 88: 86: 85:Dynamic light 83: 81: 78: 76: 73: 71: 68: 67: 66: 65: 60: 56: 50: 46: 45: 42: 39: 38: 33: 19: 3412:Radar theory 3085:Quantum mind 2997:Franck–Hertz 2859:Klein–Gordon 2808:Formulations 2801:Formulations 2730:Interference 2720:Entanglement 2698:Ground state 2693:Energy level 2666:Fundamentals 2630:Introduction 2517: 2508: 2499: 2490: 2457: 2451: 2441: 2422: 2405: 2399: 2393: 2370: 2364: 2341: 2335: 2320: 2315: 2300: 2295: 2276: 2270: 2247: 2241: 2218: 2212: 2200:. Retrieved 2192: 2183: 2164: 2158: 2135: 2129: 2110: 2101: 2097: 2088: 2053: 2049: 2040: 2031: 2027: 2017: 1992: 1988: 1978: 1969: 1965: 1959: 1950: 1946: 1940: 1810:Kikuchi line 1717: 1710:which solve 1705: 1698: 1682: 1663: 1655:polarization 1646: 1642: 1628: 1622: 1612: 1602: 1595: 1591: 1584: 1533: 1531: 1503: 1485: 1483: 1473:, inelastic 1449: 1419: 1413:January 2020 1410: 1399:Please help 1394:verification 1391: 1340: 1279: 1273: 1237: 1229:bound states 1202: 1187: 1175: 1147: 1143: 1129: 1107: 1102: 1099:ησ 1098: 1094: 1090: 1075: 1071: 1064: 1062: 877: 872: 868: 866: 788: 766: 764: 714: 699: 690: 680: 673: 666: 659: 652:"Scattering" 647: 635:Please help 630:verification 627: 600: 592: 584: 567: 563: 559: 544: 540: 531: 527: 525: 510: 504:January 2017 501: 486:Please help 474: 454:Solar System 396: 376:astrophysics 354:inspection, 345: 317:crystallites 292: 288: 286: 259: 250:cathode rays 246:John Tyndall 238:Isaac Newton 231: 225: 204: 203:In physics, 202: 40: 3343:EPR paradox 3123:Quantum bus 2992:Double-slit 2970:Experiments 2936:Many-worlds 2874:Schrödinger 2838:Phase space 2828:Schrödinger 2818:Interaction 2775:Uncertainty 2745:Nonlocality 2740:Measurement 2735:Decoherence 2725:Hamiltonian 1920:Wolf effect 1341:In regular 1316:radio waves 1296:sound waves 1190:mathematics 1155:bound state 693:August 2023 145:Wolf effect 130:Small-angle 3387:Scattering 3381:Categories 3271:Extensions 3105:Technology 2951:Relational 2902:Copenhagen 2813:Heisenberg 2760:Tunnelling 2623:Background 2202:2 December 2034:(14): 217. 1932:References 1830:Mie theory 1800:Extinction 1678:ellipsoids 1666:Gustav Mie 1651:atmosphere 1639:wavelength 1365:, and the 1264:plane wave 1176:The term " 727:to form a 725:rain drops 663:newspapers 548:light beam 438:scattering 411:S-matrices 289:scatterers 270:cosmic ray 217:trajectory 205:scattering 193:Wine glass 125:Rutherford 41:Scattering 2977:Bell test 2847:Equations 2673:Born rule 1820:Linewidth 1674:spheroids 1659:coherence 1568:λ 1550:π 1544:α 1304:submarine 1300:sea water 1288:acoustics 1260:real part 1258:Top: the 1205:manifolds 1093:= 1/ 1041:τ 1034:Δ 1031:ρ 1025:− 996:Δ 993:η 987:σ 984:− 959:λ 952:Δ 946:− 920:Δ 914:− 844:− 721:particles 568:diffusers 564:diffusion 556:diffusion 475:does not 450:the plane 434:night sky 297:particles 266:electrons 75:Brillouin 3366:Category 3160:Timeline 2912:Ensemble 2892:Bayesian 2785:Collapse 2657:Glossary 2640:Timeline 2427:Seinfeld 2346:Springer 2252:Springer 2223:Springer 2140:Springer 2115:Seinfeld 1905:S-Matrix 1733:See also 1357:and the 1330:and the 1221:S matrix 1213:operator 1209:spectrum 596:speckles 442:sunlight 409:(BSDF), 384:S-Matrix 327:solids, 305:droplets 233:specular 120:Rayleigh 3319:Related 3298:History 3037:Science 2869:Rydberg 2635:History 2482:4393904 2462:Bibcode 2080:4023635 2058:Bibcode 1997:Bibcode 1995:: 221. 1171:ionized 1110:opacity 1101:=  1097:=  729:rainbow 677:scholar 496:removed 481:sources 452:of the 309:density 301:bubbles 280:inside 140:Thomson 135:Tyndall 105:Neutron 80:Compton 3012:Popper 2571:, 1997 2480:  2453:Nature 2433:  2381:  2352:  2327:  2307:  2283:  2258:  2229:  2171:  2146:  2121:  2078:  2050:Nature 2009:109101 2007:  1583:where 1495:lustre 1445:photon 1211:of an 1116:, and 1095:λ 1063:where 867:where 748:nuclei 679:  672:  665:  658:  650:  609:Theory 413:, and 405:, the 337:fibers 313:fluids 59:photon 2922:Local 2864:Pauli 2854:Dirac 2478:S2CID 2375:Wiley 2104:: 21. 2076:S2CID 2005:JSTOR 1694:radar 1690:lidar 1615:≈ 1: 1605:â‰Ș 1: 1510:veins 1499:sheen 1491:gloss 1486:white 1475:X-ray 1455:radar 1312:light 1286:. In 1262:of a 1122:barns 717:waves 684:JSTOR 670:books 588:radar 401:(σ), 378:. In 333:cells 213:sound 209:light 115:Raman 2431:ISBN 2379:ISBN 2350:ISBN 2325:ISBN 2305:ISBN 2281:ISBN 2256:ISBN 2227:ISBN 2204:2013 2169:ISBN 2144:ISBN 2119:ISBN 1692:and 1676:and 1519:iris 1493:(or 1461:and 1198:time 765:The 745:gold 719:and 656:news 562:and 479:any 477:cite 390:and 374:and 2470:doi 2458:396 2410:doi 2066:doi 1993:164 1497:or 1403:by 1314:or 1274:In 1188:In 743:by 639:by 552:fog 490:by 444:by 440:of 319:in 291:or 211:or 195:in 100:Mie 3383:: 2567:, 2516:. 2498:. 2476:. 2468:. 2456:. 2406:26 2404:. 2377:. 2373:. 2348:. 2344:. 2254:. 2250:. 2225:. 2221:. 2195:. 2191:. 2142:. 2138:. 2100:. 2074:. 2064:. 2054:53 2052:. 2048:. 2032:33 2030:. 2026:. 2003:. 1991:. 1987:. 1970:XC 1968:. 1949:. 1661:. 1585:πD 1481:. 1469:, 1439:A 1369:. 1338:. 1326:, 1278:, 1246:. 1112:, 605:. 582:. 570:. 538:. 417:. 394:. 370:, 366:, 350:, 343:. 331:, 315:, 307:, 303:, 299:, 284:. 2608:e 2601:t 2594:v 2520:. 2502:. 2484:. 2472:: 2464:: 2416:. 2412:: 2387:. 2358:. 2289:. 2264:. 2235:. 2206:. 2177:. 2152:. 2102:6 2082:. 2068:: 2060:: 2011:. 1999:: 1951:6 1647:λ 1643:λ 1641:( 1623:α 1613:α 1603:α 1596:α 1592:λ 1588:p 1571:, 1564:/ 1558:p 1554:D 1547:= 1534:α 1513:( 1426:) 1420:( 1415:) 1411:( 1397:. 1091:Q 1079:o 1076:x 1072:x 1068:o 1065:I 1048:, 1037:x 1021:e 1015:o 1011:I 1007:= 1002:) 999:x 990:( 980:e 974:o 970:I 966:= 955:x 942:e 936:o 932:I 928:= 923:x 917:Q 910:e 904:o 900:I 896:= 893:I 873:x 869:Q 850:I 847:Q 841:= 835:x 832:d 827:I 824:d 798:I 706:) 700:( 695:) 691:( 681:· 674:· 667:· 660:· 633:. 517:) 511:( 506:) 502:( 498:. 484:. 456:. 177:e 170:t 163:v 34:. 20:)

Index

Scatter (physics)
Scattering (disambiguation)
Scattering
Electron scattering
Feynman diagram
photon
Bragg diffraction
Brillouin
Compton
Dynamic light
Kikuchi lines
Light scattering by particles
Mie
Neutron
Powder diffraction
Raman
Rayleigh
Rutherford
Small-angle
Tyndall
Thomson
Wolf effect
X-ray crystallography
v
t
e

Wine glass
LCD projectors
light

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑