Knowledge

SWEET transporters

Source 📝

435: 1420: 417:
11;12;15 triple mutant which lacked activity in each of the three genes. This triple mutant was shown to have delayed embryo development; that is, the seeds of the triple mutant were significantly smaller than that of the wild type at the same time during development. The starch content of the seed
442:
Many bacterial homologues have only 3 TMSs and are half sized, but they nevertheless are members of the SWEET family with a single 3 TMS repeat unit. Other bacterial homologues have 7 TMSs as do most eukaryotic proteins in this family. The SWEET family is large and diverse. Based on 3-D structural
446:
Bacterial SemiSWEETs, consist of a triple-helix bundle in a 1-3-2 conformation, with TM3 sandwiched between TM1 and TM2. The structures also show tryptophan and asparagine residues interacting with the sugar; point mutations of these residues to alanine destroys the hexose transport function of
403:
led to corresponding loss of and increase in nectar secretion, respectively. After showing that SWEET9 is involved in nectar secretion, the next step was to determine at which phase of the process SWEET9 has its function. The 3 options were: phloem unloading, or uptake or efflux from nectary
302:(ER). Glucose movement from the cytoplasm to the ER of the HEK293T cells was monitored by quantifying changes in FRET ratio. By using this assay, the first member of the SWEET family, AtSWEET1, was identified. Other potential family members were identified by sequence homology. 412:
Chen et al., 2015, asked what SWEETs are involved in providing nutrition to an embryo. The team noticed that mRNA and protein for SWEETs 11, 12, and 15 are each expressed at high levels during some stage of embryo development. Each gene was subsequently mutated to generate a
290:, in a screen for novel facilitators of transmembrane glucose transport. In this experiment, several previously uncharacterized membrane proteins were selected to be screened. These uncharacterized membrane proteins were assayed for glucose transport ability by expression in 398:
Lin et al., 2014, examined the role of SWEET9 in nectaries. SWEET9 is a member of clade 3. A homologue in petunias had been shown to have an inverse correlation between expression and starch content in nectaries. Mutation and overexpression of SWEET9 in
956:
Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB (December 2015). "Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport".
1035:
Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ, Carter CJ, Baldwin IT, Frommer WB (April 2014). "Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9".
850:
Hou BH, Takanaga H, Grossmann G, Chen LQ, Qu XQ, Jones AM, Lalonde S, Schweissgut O, Wiechert W, Frommer WB (October 2011). "Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells".
1284:
Hamada M, Wada S, Kobayashi K, Satoh N (September 2005). "Ci-Rga, a gene encoding an MtN3/saliva family transmembrane protein, is essential for tissue differentiation during embryogenesis of the ascidian Ciona intestinalis".
1439: 899:
Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (November 2010).
310:
Chen et al. (2010) reviewed evidence for a new class of sugar transporters, named SWEETs. Those that mediate glucose transport include at least six out of seventeen sugar homologues in
418:
coat was higher than the wild-type, and the starch content of the embryo was lower than the wild-type. Additionally, protein levels were shown to be maternally controlled: in a
664:
Bermejo C, Ewald JC, Lanquar V, Jones AM, Frommer WB (August 2011). "In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast".
154: 294:(human embryonic kidney) cells, which have negligible glucose transport ability in the normal state. These membrane proteins were co-expressed with a fluorescent 404:
parenchyma. A combination of localization studies and starch accumulation assays showed that SWEET9 is involved in sucrose efflux from the nectary parenchyma.
1443: 1000:
Feng CY, Han JX, Han XX, Jiang J (December 2015). "Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato".
1249:
Ge YX, Angenent GC, Wittich PE, Peters J, Franken J, Busscher M, Zhang LM, Dahlhaus E, Kater MM, Wullems GJ, Creemers-Molenaar T (December 2000).
110: 98: 438:
3.1 A resolution structure of a eukaryotic SWEET transporter in a homotrimer (5CTG, OsSWEET2). Each different color represents one subunit.
258:
Proteins of the SWEET family appear to catalyze facilitated diffusion (entry or export) of sugars across the plant plasma membrane or the
1089:"A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo" 74: 174: 295: 1434: 480: 372:
SWEET8 (TC# 2.A.123.1.5), pollen is not viable. The corn homolog ZmSWEET4c was shown to be involved in seed filling.
458: 1462: 434: 582:
Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M (October 2016).
162: 79: 1410: 158: 1316:"Novel genes involved in Ciona intestinalis embryogenesis: characterization of gene knockdown embryos" 1467: 815:
Okumoto S, Jones A, Frommer WB (1 January 2012). "Quantitative imaging with fluorescent biosensors".
1087:
Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londoño A, Samuels AL, Frommer WB (March 2015).
639: 513: 346: 470: 299: 259: 1357:
Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, Perry K, Frommer WB, Feng L (November 2015).
1370: 1152: 1139:
Xu Y, Tao Y, Cheung LS, Fan C, Chen LQ, Xu S, Perry K, Frommer WB, Feng L (November 2014).
1045: 912: 720: 595: 247: 141: 828: 443:
analyses, it is likely that these paired 3 TMS SWEET family members function as carriers.
8: 485: 1374: 1156: 1141:"Structures of bacterial homologues of SWEET transporters in two distinct conformations" 1049: 916: 724: 599: 351: 341: 329: 1391: 1358: 1345: 1222: 1197: 1196:
Yee DC, Shlykov MA, Västermark A, Reddy VS, Arora S, Sun EI, Saier MH (November 2013).
1173: 1140: 1113: 1088: 1069: 982: 933: 900: 876: 792: 765: 741: 708: 689: 616: 583: 559: 532: 365: 337: 325: 321: 317: 103: 707:
Jones AM, Grossmann G, Danielson JÅ, Sosso D, Chen LQ, Ho CH, Frommer WB (June 2013).
1438:. The copyright holder has licensed the content in a manner that permits reuse under 1396: 1337: 1302: 1298: 1272: 1267: 1250: 1227: 1178: 1118: 1061: 1017: 974: 938: 868: 832: 797: 746: 681: 621: 564: 490: 376: 149: 1349: 880: 693: 42: 1447: 1386: 1378: 1327: 1294: 1262: 1217: 1209: 1168: 1160: 1108: 1100: 1073: 1053: 1009: 986: 966: 928: 920: 860: 824: 787: 777: 736: 728: 709:"In vivo biochemistry: applications for small molecule biosensors in plant biology" 673: 611: 603: 554: 544: 223: 137: 91: 55: 115: 475: 448: 375:
Currently classified members of the SWEET transporter family can be found in the
227: 67: 1424: 1013: 584:"AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes" 422:
mutant crossed with a wild-type plant, the mutant phenotype was only seen when
732: 1456: 291: 782: 1400: 1341: 1306: 1276: 1251:"NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida" 1231: 1182: 1122: 1104: 1065: 1021: 978: 942: 872: 864: 836: 801: 750: 685: 625: 568: 360: 333: 901:"Sugar transporters for intercellular exchange and nutrition of pathogens" 273:
The generalized reaction catalyzed by known proteins of this family is:
549: 312: 1432:
As of 2 February 2016, this article is derived in whole or in part from
1382: 1164: 1057: 924: 607: 1359:"Structure of a eukaryotic SWEET transporter in a homotrimeric complex" 1332: 1315: 1213: 677: 387: 533:"Facilitative plasma membrane transporters function during ER transit" 454:
2 TMSs --> 4 TMSs --> 8 TMSs --> 7 TMSs --> 3 + 3 TMSs.
1446:. All relevant terms must be followed. The original text was at 1198:"The transporter-opsin-G protein-coupled receptor (TOG) superfamily" 970: 298:(Förster resonance energy transfer) glucose sensor localized to the 1419: 265:
They also seem to transport other metabolites, like gibberellins.
243: 239: 62: 355: 766:"A never ending race for new and improved fluorescent proteins" 461:
for members of the SWEET/SemiSWEET/PQ-loop/Saliva/MtN3 family.
235: 169: 231: 706: 407: 131: 86: 49: 37: 1448:"2.A.123 The Sweet; PQ-loop; Saliva; MtN3 (Sweet) Family" 1195: 514:"2.A.123 The Sweet; PQ-loop; Saliva; MtN3 (Sweet) Family" 226:), is a family of sugar transporters and a member of the 1313: 1283: 849: 663: 581: 1248: 898: 230:. The proteins of the SWEET family have been found in 1408: 1314:
Hamada M, Wada S, Kobayashi K, Satoh N (July 2007).
763: 814: 451:which is believed to have arisen via the pathway: 1287:Differentiation; Research in Biological Diversity 1454: 1034: 999: 955: 530: 447:SemiSWEET. The SWEET family is a member of the 1356: 1138: 1086: 764:Jones AM, Ehrhardt DW, Frommer WB (May 2012). 393: 457:Several crystal structures are available on 640:"Nanosensors | Department of Plant Biology" 1390: 1331: 1266: 1221: 1172: 1112: 932: 791: 781: 740: 615: 558: 548: 408:SWEETs 11, 12, and 15 in Embryo Nutrition 520:. Saier Lab Bioinformatics Group / SDSC. 433: 390:. The tomato genome encodes 29 SWEETs. 1455: 531:Takanaga H, Frommer WB (August 2010). 250:(TMSs) in a 3+1+3 repeat arrangement. 1134: 1132: 894: 892: 890: 829:10.1146/annurev-arplant-042110-103745 354:) and the single copy human protein ( 332:), two out of over twenty porters in 286:SWEETs were originally identified in 268: 507: 505: 377:Transporter Classification Database. 1435:Transporter Classification Database 518:Transporter Classification Database 481:Transporter Classification Database 381: 246:. Eukaryotic family members have 7 13: 1241: 1129: 887: 344:), two out of seven homologues in 14: 1479: 511: 502: 1418: 1299:10.1111/j.1432-0436.2005.00037.x 1268:10.1111/j.1365-313X.2000.00926.x 713:Current Opinion in Plant Biology 426:was used as the maternal plant. 1189: 1080: 1028: 993: 949: 210:ransporter), also known as the 843: 817:Annual Review of Plant Biology 808: 757: 700: 657: 632: 575: 524: 1: 496: 305: 126:Available protein structures: 429: 386:Plant SWEETs fall into four 281: 7: 464: 253: 10: 1484: 1014:10.1016/j.gene.2015.07.055 394:SWEET9 in Nectar Secretion 277:sugars (in) ⇌ sugars (out) 733:10.1016/j.pbi.2013.02.010 168: 148: 130: 125: 121: 109: 97: 85: 73: 61: 48: 36: 28: 23: 18: 783:10.1186/1741-7007-10-39 666:The Biochemical Journal 644:dpb.carnegiescience.edu 1320:Developmental Dynamics 1105:10.1105/tpc.114.134585 865:10.1038/nprot.2011.392 439: 347:Caenorhabditis elegans 248:transmembrane segments 1463:Solute carrier family 471:Solute carrier family 437: 300:endoplasmic reticulum 260:endoplasmic reticulum 550:10.1096/fj.09-146472 288:Arabidopsis thaliana 1383:10.1038/nature15391 1375:2015Natur.527..259T 1165:10.1038/nature13670 1157:2014Natur.515..448X 1058:10.1038/nature13082 1050:2014Natur.508..546L 925:10.1038/nature09606 917:2010Natur.468..527C 725:2013COPB...16..389J 608:10.1038/ncomms13245 600:2016NatCo...713245K 486:Glucose transporter 1333:10.1002/dvdy.21181 1214:10.1111/febs.12499 678:10.1042/BJ20110428 440: 269:Transport Reaction 1369:(7577): 259–263. 1255:The Plant Journal 1151:(7527): 448–452. 491:Transport protein 184: 183: 180: 179: 175:structure summary 19:SemiSWEET PQ-loop 1475: 1468:Protein families 1423: 1422: 1414: 1404: 1394: 1353: 1335: 1310: 1280: 1270: 1236: 1235: 1225: 1208:(22): 5780–800. 1202:The FEBS Journal 1193: 1187: 1186: 1176: 1136: 1127: 1126: 1116: 1084: 1078: 1077: 1032: 1026: 1025: 997: 991: 990: 953: 947: 946: 936: 911:(7323): 527–32. 896: 885: 884: 853:Nature Protocols 847: 841: 840: 812: 806: 805: 795: 785: 761: 755: 754: 744: 704: 698: 697: 661: 655: 654: 652: 650: 636: 630: 629: 619: 594:(13245): 13245. 579: 573: 572: 562: 552: 528: 522: 521: 509: 382:SWEETs in plants 123: 122: 16: 15: 1483: 1482: 1478: 1477: 1476: 1474: 1473: 1472: 1453: 1452: 1429: 1417: 1409: 1407: 1244: 1242:Further reading 1239: 1194: 1190: 1137: 1130: 1085: 1081: 1044:(7497): 546–9. 1033: 1029: 998: 994: 971:10.1038/ng.3422 965:(12): 1489–93. 959:Nature Genetics 954: 950: 897: 888: 859:(11): 1818–33. 848: 844: 813: 809: 762: 758: 705: 701: 662: 658: 648: 646: 638: 637: 633: 580: 576: 529: 525: 510: 503: 499: 476:TOG Superfamily 467: 449:TOG superfamily 432: 410: 396: 384: 366:TC# 2.A.123.1.4 308: 284: 271: 256: 228:TOG superfamily 99:OPM superfamily 12: 11: 5: 1481: 1471: 1470: 1465: 1428: 1427: 1406: 1405: 1354: 1326:(7): 1820–31. 1311: 1281: 1245: 1243: 1240: 1238: 1237: 1188: 1128: 1093:The Plant Cell 1079: 1027: 992: 948: 886: 842: 807: 756: 699: 656: 631: 574: 543:(8): 2849–58. 523: 512:Saier, MH Jr. 500: 498: 495: 494: 493: 488: 483: 478: 473: 466: 463: 431: 428: 409: 406: 395: 392: 383: 380: 307: 304: 283: 280: 279: 278: 270: 267: 255: 252: 182: 181: 178: 177: 172: 166: 165: 152: 146: 145: 135: 128: 127: 119: 118: 113: 107: 106: 101: 95: 94: 89: 83: 82: 77: 71: 70: 65: 59: 58: 53: 46: 45: 40: 34: 33: 30: 26: 25: 21: 20: 9: 6: 4: 3: 2: 1480: 1469: 1466: 1464: 1461: 1460: 1458: 1451: 1450: 1449: 1445: 1441: 1436: 1433: 1426: 1421: 1416: 1415: 1412: 1402: 1398: 1393: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1355: 1351: 1347: 1343: 1339: 1334: 1329: 1325: 1321: 1317: 1312: 1308: 1304: 1300: 1296: 1293:(7): 364–76. 1292: 1288: 1282: 1278: 1274: 1269: 1264: 1261:(6): 725–34. 1260: 1256: 1252: 1247: 1246: 1233: 1229: 1224: 1219: 1215: 1211: 1207: 1203: 1199: 1192: 1184: 1180: 1175: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1135: 1133: 1124: 1120: 1115: 1110: 1106: 1102: 1099:(3): 607–19. 1098: 1094: 1090: 1083: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1031: 1023: 1019: 1015: 1011: 1008:(2): 261–72. 1007: 1003: 996: 988: 984: 980: 976: 972: 968: 964: 960: 952: 944: 940: 935: 930: 926: 922: 918: 914: 910: 906: 902: 895: 893: 891: 882: 878: 874: 870: 866: 862: 858: 854: 846: 838: 834: 830: 826: 822: 818: 811: 803: 799: 794: 789: 784: 779: 775: 771: 767: 760: 752: 748: 743: 738: 734: 730: 726: 722: 719:(3): 389–95. 718: 714: 710: 703: 695: 691: 687: 683: 679: 675: 671: 667: 660: 645: 641: 635: 627: 623: 618: 613: 609: 605: 601: 597: 593: 589: 585: 578: 570: 566: 561: 556: 551: 546: 542: 538: 537:FASEB Journal 534: 527: 519: 515: 508: 506: 501: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 468: 462: 460: 455: 452: 450: 444: 436: 427: 425: 424:sweet11;12;15 421: 420:sweet11;12;15 416: 405: 402: 391: 389: 379: 378: 373: 371: 367: 364: 362: 357: 353: 349: 348: 343: 339: 335: 331: 327: 323: 319: 315: 314: 303: 301: 297: 293: 289: 276: 275: 274: 266: 263: 261: 251: 249: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 205: 202:ventually Be 201: 197: 193: 189: 176: 173: 171: 167: 164: 160: 156: 153: 151: 147: 143: 139: 136: 133: 129: 124: 120: 117: 114: 112: 108: 105: 102: 100: 96: 93: 90: 88: 84: 81: 78: 76: 72: 69: 66: 64: 60: 57: 54: 51: 47: 44: 41: 39: 35: 31: 27: 22: 17: 1440:CC BY-SA 3.0 1437: 1431: 1430: 1366: 1362: 1323: 1319: 1290: 1286: 1258: 1254: 1205: 1201: 1191: 1148: 1144: 1096: 1092: 1082: 1041: 1037: 1030: 1005: 1001: 995: 962: 958: 951: 908: 904: 856: 852: 845: 820: 816: 810: 773: 769: 759: 716: 712: 702: 669: 665: 659: 647:. Retrieved 643: 634: 591: 587: 577: 540: 536: 526: 517: 456: 453: 445: 441: 423: 419: 414: 411: 400: 397: 385: 374: 369: 361:Homo sapiens 359: 352:2.A.123.1.10 345: 342:2.A.123.1.18 330:2.A.123.1.13 316:(i.e., TC#s 311: 309: 287: 285: 272: 264: 257: 219: 215: 211: 207: 203: 199: 195: 191: 188:SWEET family 187: 185: 823:: 663–706. 770:BMC Biology 672:(1): 1–10. 401:Arabidopsis 370:Arabidopsis 368:). Without 350:(i.e., TC# 338:2.A.123.1.6 326:2.A.123.1.9 322:2.A.123.1.5 318:2.A.123.1.3 313:Arabidopsis 224:TC# 2.A.123 220:MtN3 family 111:OPM protein 24:Identifiers 1457:Categories 588:Nat Commun 497:References 306:Homologues 262:membrane. 240:protozoans 138:structures 430:Structure 388:subclades 282:Discovery 68:IPR006603 1401:26479032 1350:41944938 1342:17557306 1307:16219040 1277:11135107 1232:23981446 1183:25186729 1123:25794936 1066:24670640 1022:26190159 979:26523777 943:21107422 881:21852318 873:22036884 837:22404462 802:22554191 751:23587939 694:26944897 686:21793803 626:27782132 569:20354141 465:See also 254:Function 244:bacteria 206:xported 155:RCSB PDB 63:InterPro 1425:Biology 1392:4734654 1371:Bibcode 1223:3832197 1174:4300204 1153:Bibcode 1114:4558658 1074:4384123 1046:Bibcode 987:6985808 934:3000469 913:Bibcode 793:3342923 742:3679211 721:Bibcode 649:1 March 617:5095183 596:Bibcode 560:3230527 356:SLC50A1 292:HEK293T 236:animals 212:PQ-loop 92:2.A.123 80:SM00679 56:PQ-loop 43:PF03083 32:PQ-loop 1411:Portal 1399:  1389:  1363:Nature 1348:  1340:  1305:  1275:  1230:  1220:  1181:  1171:  1145:Nature 1121:  1111:  1072:  1064:  1038:Nature 1020:  985:  977:  941:  931:  905:Nature 879:  871:  835:  800:  790:  776:: 39. 749:  739:  692:  684:  624:  614:  567:  557:  336:(TC#s 242:, and 232:plants 216:Saliva 194:ugars 170:PDBsum 144:  134:  29:Symbol 1346:S2CID 1070:S2CID 983:S2CID 877:S2CID 690:S2CID 415:sweet 75:SMART 1444:GFDL 1442:and 1397:PMID 1338:PMID 1303:PMID 1273:PMID 1228:PMID 1179:PMID 1119:PMID 1062:PMID 1018:PMID 1002:Gene 975:PMID 939:PMID 869:PMID 833:PMID 798:PMID 747:PMID 682:PMID 651:2016 622:PMID 565:PMID 459:RCSB 340:and 334:rice 296:FRET 198:ill 186:The 163:PDBj 159:PDBe 142:ECOD 132:Pfam 116:5ctg 87:TCDB 52:clan 50:Pfam 38:Pfam 1387:PMC 1379:doi 1367:527 1328:doi 1324:236 1295:doi 1263:doi 1218:PMC 1210:doi 1206:280 1169:PMC 1161:doi 1149:515 1109:PMC 1101:doi 1054:doi 1042:508 1010:doi 1006:573 967:doi 929:PMC 921:doi 909:468 861:doi 825:doi 788:PMC 778:doi 737:PMC 729:doi 674:doi 670:438 612:PMC 604:doi 555:PMC 545:doi 358:of 218:or 150:PDB 104:415 1459:: 1395:. 1385:. 1377:. 1365:. 1361:. 1344:. 1336:. 1322:. 1318:. 1301:. 1291:73 1289:. 1271:. 1259:24 1257:. 1253:. 1226:. 1216:. 1204:. 1200:. 1177:. 1167:. 1159:. 1147:. 1143:. 1131:^ 1117:. 1107:. 1097:27 1095:. 1091:. 1068:. 1060:. 1052:. 1040:. 1016:. 1004:. 981:. 973:. 963:47 961:. 937:. 927:. 919:. 907:. 903:. 889:^ 875:. 867:. 855:. 831:. 821:63 819:. 796:. 786:. 774:10 772:. 768:. 745:. 735:. 727:. 717:16 715:. 711:. 688:. 680:. 668:. 642:. 620:. 610:. 602:. 590:. 586:. 563:. 553:. 541:24 539:. 535:. 516:. 504:^ 328:, 324:, 320:, 238:, 234:, 214:, 161:; 157:; 140:/ 1413:: 1403:. 1381:: 1373:: 1352:. 1330:: 1309:. 1297:: 1279:. 1265:: 1234:. 1212:: 1185:. 1163:: 1155:: 1125:. 1103:: 1076:. 1056:: 1048:: 1024:. 1012:: 989:. 969:: 945:. 923:: 915:: 883:. 863:: 857:6 839:. 827:: 804:. 780:: 753:. 731:: 723:: 696:. 676:: 653:. 628:. 606:: 598:: 592:7 571:. 547:: 363:, 222:( 208:T 204:E 200:E 196:W 192:S 190:(

Index

Pfam
PF03083
Pfam
PQ-loop
InterPro
IPR006603
SMART
SM00679
TCDB
2.A.123
OPM superfamily
415
OPM protein
5ctg
Pfam
structures
ECOD
PDB
RCSB PDB
PDBe
PDBj
PDBsum
structure summary
TC# 2.A.123
TOG superfamily
plants
animals
protozoans
bacteria
transmembrane segments

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.