Knowledge

SQUID

Source đź“ť

1470:(MRI). While high-field MRI uses precession fields of one to several teslas, SQUID-detected MRI uses measurement fields that lie in the microtesla range. In a conventional MRI system, the signal scales as the square of the measurement frequency (and hence precession field): one power of frequency comes from the thermal polarization of the spins at ambient temperature, while the second power of field comes from the fact that the induced voltage in the pickup coil is proportional to the frequency of the precessing magnetization. In the case of untuned SQUID detection of prepolarized spins, however, the NMR signal strength is independent of precession field, allowing MRI signal detection in extremely weak fields, on the order of Earth's magnetic field. SQUID-detected MRI has advantages over high-field MRI systems, such as the low cost required to build such a system, and its compactness. The principle has been demonstrated by imaging human extremities, and its future application may include tumor screening. 1323:, even of extremely small signals, have been made using RF SQUIDS. The RF SQUID is inductively coupled to a resonant tank circuit. Depending on the external magnetic field, as the SQUID operates in the resistive mode, the effective inductance of the tank circuit changes, thus changing the resonant frequency of the tank circuit. These frequency measurements can be easily taken, and thus the losses which appear as the voltage across the load resistor in the circuit are a periodic function of the applied magnetic flux with a period of 1605:. These nanoparticles are paramagnetic; they have no magnetic moment until exposed to an external field where they become ferromagnetic. After removal of the magnetizing field, the nanoparticles decay from a ferromagnetic state to a paramagnetic state, with a time constant that depends upon the particle size and whether they are bound to an external surface. Measurement of the decaying magnetic field by SQUID sensors is used to detect and localize the nanoparticles. Applications for SPMR may include cancer detection. 1307: 1419: 29: 127: 229: 335: 1172:
The discussion in this section assumed perfect flux quantization in the loop. However, this is only true for big loops with a large self-inductance. According to the relations, given above, this implies also small current and voltage variations. In practice the self-inductance
1458:
systems, made by several manufacturers, that measure the magnetic properties of a material sample which typically has a temperature between 300 mK and 400 K. With the decreasing size of SQUID sensors since the last decade, such sensor can equip the tip of an
1434:
activity inside brains. Because SQUIDs can operate at acquisition rates much higher than the highest temporal frequency of interest in the signals emitted by the brain (kHz), MEG achieves good temporal resolution. Another area where SQUIDs are used is
511:, begins to circulate the loop that generates the magnetic field canceling the applied external flux, and creates an additional Josephson phase which is proportional to this external magnetic flux. The induced current is in the same direction as 2604:
A Squid-Based Microwave Cavity Search For Axions By ADMX; SJ Sztalos, G Carlos, C Hagman, D Kinion, K van Bibber, M Hotz, L Rosenberg, G Rybka, J Hoskins, J Hwang, P Sikivie, DB Tanner, R Bradley, J Clarke; Phys.Rev.Lett. 104:041301;
1318:
at Ford. It is based on the AC Josephson effect and uses only one Josephson junction. It is less sensitive compared to DC SQUID but is cheaper and easier to manufacture in smaller quantities. Most fundamental measurements in
2018:
Nisenoff, M.; Wolf, S. (1 September 1975). "Observation of a $ cos\ensuremath{\varphi}$ term in the current-phase relation for "Dayem"-type weak link contained in an rf-biased superconducting quantum interference device".
1098: 1167: 1246: 822:, and again reverses direction as the external field is further increased. Thus, the current changes direction periodically, every time the flux increases by additional half-integer multiple of 2697:
De Haro, Leyma P.; Karaulanov, Todor; Vreeland, Erika C.; Anderson, Bill; Hathaway, Helen J.; Huber, Dale L.; Matlashov, Andrei N.; Nettles, Christopher P.; Price, Andrew D. (1 October 2015).
1496:
surveying is becoming more widespread as superconductor technology develops; they are also used as precision movement sensors in a variety of scientific applications, such as the detection of
415: 2762:
Hathaway, Helen J.; Butler, Kimberly S.; Adolphi, Natalie L.; Lovato, Debbie M.; Belfon, Robert; Fegan, Danielle; Monson, Todd C.; Trujillo, Jason E.; Tessier, Trace E. (1 January 2011).
2580: 464:
in 1963. It has two Josephson junctions in parallel in a superconducting loop. It is based on the DC Josephson effect. In the absence of any external magnetic field, the input current
1042: 706:. Since the flux enclosed by the superconducting loop must be an integer number of flux quanta, instead of screening the flux the SQUID now energetically prefers to increase it to 369: 2261:
Portolés, Elías; Iwakiri, Shuichi; Zheng, Giulia; Rickhaus, Peter; Taniguchi, Takashi; Watanabe, Kenji; Ihn, Thomas; Ensslin, Klaus; de Vries, Folkert K. (24 October 2022).
978: 793: 700: 1810:"The Feynman Lectures on Physics Vol. III Ch. 21: The Schrödinger Equation in a Classical Context: A Seminar on Superconductivity, Section 21–9: The Josephson junction" 1348: 931: 874: 847: 820: 758: 731: 631: 590: 442: 1296: 1001: 1397:
which is cheaper and more easily handled than liquid helium. They are less sensitive than conventional low temperature SQUIDs but good enough for many applications.
1276: 904: 658: 509: 304: 284: 257: 222: 202: 175: 1374:, as pure lead is unstable when its temperature is repeatedly changed. To maintain superconductivity, the entire device needs to operate within a few degrees of 1191: 1118: 951: 549: 529: 482: 324: 148: 906:, then the SQUID always operates in the resistive mode. The voltage, in this case, is thus a function of the applied magnetic field and the period equal to 1683: 957:
the junction's own intrinsic resistance is usually sufficient). The screening current is the applied flux divided by the self-inductance of the ring. Thus
1865: 1665: 3194: 2569: 2360:
Kleiner, R.; Koelle, D.; Ludwig, F.; Clarke, J. (2004). "Superconducting quantum interference devices: State of the art and applications".
2334: 1601:(SPMR), a technology that utilizes the high magnetic field sensitivity of SQUID sensors and the superparamagnetic properties of magnetite 2864: 2927: 2140:
M.S. Colclough, C.E. Gough et al, Radiofrequency SQUID operation usinga ceramic high temperature superconductor, Nature 328, 47 (1987)
1050: 484:
splits into the two branches equally. If a small external magnetic field is applied to the superconducting loop, a screening current,
1897:
A.TH.A.M. de Waele & R. de Bruyn Ouboter (1969). "Quantum-interference phenomena in point contacts between two superconductors".
448:
The DC SQUID was invented in 1964 by Robert Jaklevic, John J. Lambe, James Mercereau, and Arnold Silver of Ford Research Labs after
2473:"Superconducting Transducer for Gravitational-Wave Detectors" in "The SQUID Handbook: Applications of SQUIDs and SQUID Systems" 1127: 2833: 1404:
Josephson junction. The sensors are a few 100 nm in size and operate at 1K or below. Such sensors allow to count spins.
1739:
R. C. Jaklevic; J. Lambe; A. H. Silver & J. E. Mercereau (1964). "Quantum Interference Effects in Josephson Tunneling".
3286: 3024: 2902: 2616: 1551: 1542:. Hundreds of thousands of multiplexed SQUIDs coupled to transition-edge sensors are presently being deployed to study the 1199: 417:
respectively. Right: Periodic voltage response due to flux through a SQUID. The periodicity is equal to one flux quantum,
1463:
probe. Such device allows simultaneous measurement of roughness of the surface of a sample and the local magnetic flux.
3134: 1386: 3222: 374: 83:
produces 0.01 tesla (10 T), and some processes in animals produce very small magnetic fields between 10 T and 10 T.
2943: 2764:"Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors" 954: 204:. The thin barriers on each path are Josephson junctions, which together separate the two superconducting regions. 1439:, which is concerned with recording the weak magnetic fields of the stomach. A novel application of SQUIDs is the 3139: 2857: 115: 1722: 1454:
Probably the most common commercial use of SQUIDs is in magnetic property measurement systems (MPMS). These are
1443:
method, which is used to trace the path of orally applied drugs. In the clinical environment SQUIDs are used in
3322: 2922: 2892: 1009: 3263: 3115: 3059: 3034: 1629: 1598: 1400:
In 2006, A proof of concept was shown for CNT-SQUID sensors built with an aluminium loop and a single walled
94:
but are orders of magnitude larger in size (~1 cm) and must be operated in a near-zero magnetic field.
3317: 3165: 3094: 1774:
Anderson, P.; Rowell, J. (1963). "Probable Observation of the Josephson Superconducting Tunneling Effect".
1567: 3110: 3029: 1543: 1390: 2159:
Cleuziou, J.-P.; Wernsdorfer, W. (2006). "Carbon nanotube superconducting quantum interference device".
1652: 3327: 3217: 3212: 2897: 2850: 1467: 1440: 1836: 341: 3332: 3170: 2917: 1587: 1555: 1474: 733:. The current now flows in the opposite direction, opposing the difference between the admitted flux 87:
atomic magnetometers, invented in the early 2000s are potentially more sensitive and do not require
2953: 2048:"Theory of the RF biased Superconducting Quantum Interference Device for the non-hysteretic regime" 1614: 1591: 1512: 2508:
Wilson, C. M. (2011). "Observation of the Dynamical Casimir Effect in a Superconducting Circuit".
960: 3296: 3155: 3087: 3004: 1460: 763: 670: 953:
is connected across the junction to eliminate the hysteresis (in the case of copper oxide based
3337: 3207: 3180: 3160: 3082: 1975:
Sternickel, K.; Braginski, A. I. (2006). "Biomagnetism using SQUIDs: Status and perspectives".
1583: 1539: 1448: 1427: 1326: 1315: 909: 852: 825: 798: 736: 709: 595: 554: 457: 420: 20: 1858: 1281: 983: 933:. Since the current-voltage characteristic of the DC SQUID is hysteretic, a shunt resistance, 3077: 795:. The current decreases as the external field is increased, is zero when the flux is exactly 703: 2149:
LP Lee et al., Monolithic 77K DC SQUID magnetometer, Applied Physics Letters 59, 3051 (1991)
1451:(MFI), which detects the magnetic field of the heart for diagnosis and risk stratification. 3281: 3237: 2653: 2527: 2284: 2219: 2168: 2100: 2059: 1984: 1941: 1906: 1783: 1748: 1698: 1254: 882: 636: 487: 289: 262: 235: 207: 180: 153: 1193:
of the loop is not so large. The general case can be evaluated by introducing a parameter
8: 1682:
D. Drung; C. Assmann; J. Beyer; A. Kirste; M. Peters; F. Ruede & Th. Schurig (2007).
1489: 1436: 80: 64: 2657: 2531: 2288: 2223: 2172: 2104: 2063: 1988: 1945: 1910: 1787: 1752: 1702: 1314:
The RF SQUID was invented in 1967 by Robert Jaklevic, John J. Lambe, Arnold Silver, and
3268: 3019: 2979: 2798: 2763: 2744: 2674: 2641: 2551: 2517: 2453: 2377: 2316: 2274: 2243: 2192: 2116: 2000: 1846: 1714: 1505: 1497: 1430:(MEG), for example, uses measurements from an array of SQUIDs to make inferences about 1176: 1103: 936: 661: 534: 514: 467: 327: 309: 133: 111: 57: 2436:(2004). "GETMAG—A SQUID magnetic tensor gradiometer for mineral and oil exploration". 2395: 2112: 3044: 2873: 2829: 2803: 2785: 2736: 2728: 2720: 2679: 2665: 2543: 2320: 2308: 2300: 2262: 2247: 2235: 2184: 2004: 1996: 1957: 1932:
Romani, G. L.; Williamson, S. J.; Kaufman, L. (1982). "Biomagnetic instrumentation".
1918: 1493: 53: 2748: 2623: 2490: 2457: 2381: 1718: 1350:. For a precise mathematical description refer to the original paper by Erné et al. 633:
in the other. As soon as the current in either branch exceeds the critical current,
338:
Left: Plot of current vs. voltage for a SQUID. Upper and lower curves correspond to
3253: 3227: 2999: 2974: 2907: 2793: 2775: 2710: 2669: 2661: 2535: 2445: 2369: 2292: 2227: 2196: 2176: 2108: 2067: 2028: 1992: 1949: 1914: 1791: 1756: 1706: 1619: 1571: 1566:
Advanced SQUIDS called near quantum-limited SQUID amplifiers form the basis of the
1527: 453: 2555: 1809: 1385:
High-temperature SQUID sensors were developed in the late 1980s. They are made of
3276: 3009: 1738: 1547: 1501: 1401: 1394: 1359: 449: 107: 2699:"Magnetic relaxometry as applied to sensitive cancer detection and localization" 3014: 2958: 2948: 2912: 2296: 1837:
E. du Trémolet de Lacheisserie, D. Gignoux, and M. Schlenker (editors) (2005).
1795: 1760: 1523: 103: 49: 2373: 3311: 2789: 2724: 2304: 2032: 1710: 1379: 1375: 91: 71:
with a few days of averaged measurements. Their noise levels are as low as 3
3049: 3039: 2994: 2989: 2807: 2740: 2683: 2547: 2312: 2239: 2188: 1602: 1426:
The extreme sensitivity of SQUIDs makes them ideal for studies in biology.
1320: 68: 45: 2715: 2231: 2180: 1961: 3175: 2984: 2433: 1570:(ADMX) at the University of Washington. Axions are a prime candidate for 1485: 1408: 2539: 2415:
Nuclear Magnetic and Quadrupole Resonance and Magnetic Resonance Imaging
2120: 2088: 849:, with a change at maximum amperage every half-plus-integer multiple of 2887: 1624: 1444: 531:
in one of the branches of the superconducting loop, and is opposite to
2732: 2698: 1953: 456:
in 1962, and the first Josephson junction was made by John Rowell and
2072: 2047: 1896: 1482: 461: 118:), which might make them cheaper to produce, but are less sensitive. 88: 2842: 2780: 2449: 1881: 667:
Now suppose the external flux is further increased until it exceeds
3202: 2279: 1681: 1500:. A SQUID is the sensor in each of the four gyroscopes employed on 1306: 2522: 2431: 1418: 28: 2696: 1538:
One of the largest uses of SQUIDs is to read out superconducting
1519: 1455: 1363: 2045: 1093:{\displaystyle 2\cdot \Delta I=2\cdot {\frac {\Delta \Phi }{L}}} 2413:
Clarke, J.; Lee, A.T.; MĂĽck, M.; Richards, P.L. "Chapter 8.3".
1478: 1431: 1371: 72: 1654:
Gravity Probe B: Exploring Einstein's Universe with Gyroscopes
326:
is the voltage response to that flux. The X-symbols represent
3258: 1367: 76: 2826:
The SQUID Handbook: Applications of SQUIDs and SQUID Systems
2432:
P. Schmidt; D. Clark; K. Leslie; M. Bick; D. Tilbrook &
2260: 3291: 2761: 1661: 1466:
For example, SQUIDs are being used as detectors to perform
334: 228: 126: 84: 2359: 1162:{\displaystyle \Delta V={\frac {R}{L}}\cdot \Delta \Phi } 224:
represents the magnetic flux threading the DC SQUID loop.
150:
enters and splits into the two paths, each with currents
2263:"A tunable monolithic SQUID in twisted bilayer graphene" 2210:
Aprili, Marco (2006). "The nanoSQUID makes its debut".
1931: 2622:. The Industrial Physicist. p. 22. Archived from 1329: 1284: 1257: 1202: 1179: 1130: 1106: 1053: 1012: 986: 963: 939: 912: 885: 855: 828: 801: 766: 739: 712: 673: 639: 598: 557: 537: 517: 490: 470: 423: 377: 344: 312: 292: 265: 238: 210: 183: 156: 136: 1241:{\displaystyle \lambda ={\frac {i_{c}L}{\Phi _{0}}}} 2491:"First Observation of the Dynamical Casimir Effect" 2158: 1974: 1582:A potential military application exists for use in 1342: 1290: 1270: 1240: 1185: 1161: 1120:is the self inductance of the superconducting ring 1112: 1092: 1036: 995: 972: 945: 925: 898: 868: 841: 814: 787: 752: 725: 694: 652: 625: 584: 543: 523: 503: 476: 436: 409: 363: 318: 298: 278: 251: 216: 196: 169: 142: 2642:"A biomagnetic system for in vivo cancer imaging" 2412: 3309: 2703:Biomedical Engineering / Biomedizinische Technik 1684:"Highly sensitive and easy-to-use SQUID sensors" 1422:The inner workings of an early SQUID, circa 1990 2824:Clarke, John; Braginski, Alex I., eds. (2006). 2823: 2478: 2420: 551:in the other branch; the total current becomes 410:{\displaystyle n+{\frac {1}{2}}\cdot \Phi _{0}} 1773: 1691:IEEE Transactions on Applied Superconductivity 1278:is the critical current of the SQUID. Usually 2858: 2046:S.N. ErnĂ©; H.-D. Hahlbohm; H. LĂĽbbig (1976). 1882:J. Clarke and A. I. Braginski (Eds.) (2004). 1504:in order to test the limits of the theory of 2335:"A new quantum component made from graphene" 2017: 1511:A modified RF SQUID was used to observe the 1409:magic angle twisted bilayer graphene (MATBG) 2639: 42:superconducting quantum interference device 2865: 2851: 2396:"Microscopie Ă  microsquid - Institut NÉEL" 1533: 2797: 2779: 2714: 2673: 2521: 2278: 2071: 1864:CS1 maint: multiple names: authors list ( 1732: 876:and at zero amps every integer multiple. 664:, a voltage appears across the junction. 1877: 1875: 1477:, which uses a SQUID immersed in liquid 1417: 1305: 1037:{\displaystyle \Delta V=R\cdot \Delta I} 1003:(flux to voltage converter) as follows: 333: 227: 125: 27: 1646: 1644: 1550:, to search for dark matter made up of 110:(RF). RF SQUIDs can work with only one 63:SQUIDs are sensitive enough to measure 3310: 2507: 2209: 2086: 286:is the critical current of the SQUID, 232:Electrical schematic of a SQUID where 2872: 2846: 2617:"SQUID Sensors Penetrate New Markets" 2614: 1977:Superconductor Science and Technology 1872: 1839:Magnetism: Materials and Applications 1522:wire loops are used as the basis for 1518:SQUIDs constructed from super-cooled 97: 1832: 1830: 1641: 1552:Weakly interacting massive particles 980:can be estimated as the function of 760:and the external field of just over 306:is the flux threading the SQUID and 1650: 1561: 1481:as the probe. The use of SQUIDs in 1407:In 2022 a SQUID was constructed on 130:Diagram of a DC SQUID. The current 102:There are two main types of SQUID: 13: 1331: 1227: 1156: 1153: 1131: 1081: 1078: 1060: 1028: 1013: 987: 967: 964: 914: 879:If the input current is more than 857: 830: 803: 768: 741: 714: 675: 425: 398: 352: 293: 211: 14: 3349: 2586:from the original on 29 July 2016 2113:10.1038/scientificamerican0894-46 1827: 1671:from the original on 16 May 2008. 1353: 2640:Flynn, E R; Bryant, H C (2005). 2470: 1934:Review of Scientific Instruments 1577: 1387:high-temperature superconductors 955:high-temperature superconductors 364:{\displaystyle n\cdot \Phi _{0}} 32:Sensing element of a SQUID, 2008 2755: 2690: 2646:Physics in Medicine and Biology 2633: 2608: 2598: 2562: 2501: 2483: 2464: 2425: 2406: 2388: 2353: 2327: 2254: 2203: 2152: 2143: 2134: 2080: 2039: 2011: 1968: 116:superconducting tunnel junction 48:used to measure extremely weak 1925: 1890: 1802: 1767: 1675: 1362:materials for SQUIDs are pure 1: 2817: 1630:Macroscopic quantum phenomena 1599:superparamagnetic relaxometry 2471:Paik, Ho J. "Chapter 15.2". 2087:Clarke, John (August 1994). 1919:10.1016/0031-8914(69)90116-5 1651:Ran, Shannon K’doah (2004). 1568:Axion Dark Matter Experiment 1492:, earthquake prediction and 973:{\displaystyle \Delta \Phi } 79:. For comparison, a typical 7: 2479:Clarke & Braginski 2006 2421:Clarke & Braginski 2006 1814:feynmanlectures.caltech.edu 1608: 1544:Cosmic microwave background 1473:Another application is the 1301: 788:{\displaystyle \Phi _{0}/2} 695:{\displaystyle \Phi _{0}/2} 121: 10: 3354: 3195:Technological applications 2828:. Vol. 2. Wiley-VCH. 2666:10.1088/0031-9155/50/6/016 2297:10.1038/s41565-022-01222-0 1997:10.1088/0953-2048/19/3/024 1796:10.1103/PhysRevLett.10.230 1761:10.1103/PhysRevLett.12.159 1554:, and for spectroscopy at 1468:magnetic resonance imaging 1441:magnetic marker monitoring 18: 3246: 3193: 3148: 3124: 3103: 3067: 3058: 2967: 2937:Characteristic parameters 2936: 2880: 2374:10.1109/JPROC.2004.833655 1886:. Vol. 1. Wiley-Vch. 1588:magnetic anomaly detector 1556:Synchrotron light sources 1475:scanning SQUID microscope 1343:{\displaystyle \Phi _{0}} 926:{\displaystyle \Phi _{0}} 869:{\displaystyle \Phi _{0}} 842:{\displaystyle \Phi _{0}} 815:{\displaystyle \Phi _{0}} 753:{\displaystyle \Phi _{0}} 726:{\displaystyle \Phi _{0}} 626:{\displaystyle I/2-I_{s}} 585:{\displaystyle I/2+I_{s}} 437:{\displaystyle \Phi _{0}} 2954:London penetration depth 2033:10.1103/PhysRevB.12.1712 1841:. Vol. 2. Springer. 1711:10.1109/TASC.2007.897403 1635: 1592:maritime patrol aircraft 1513:dynamical Casimir effect 1291:{\displaystyle \lambda } 996:{\displaystyle \Delta V} 3247:List of superconductors 3125:By critical temperature 2362:Proceedings of the IEEE 1776:Physical Review Letters 1741:Physical Review Letters 1540:Transition-edge sensors 1534:Transition-edge sensors 1413: 2768:Breast Cancer Research 2438:Exploration Geophysics 1584:anti-submarine warfare 1449:magnetic field imaging 1428:Magnetoencephalography 1423: 1344: 1316:James Edward Zimmerman 1311: 1292: 1272: 1242: 1187: 1163: 1114: 1094: 1038: 997: 974: 947: 927: 900: 870: 843: 816: 789: 754: 727: 696: 654: 627: 586: 545: 525: 505: 478: 445: 438: 411: 365: 331: 320: 300: 280: 253: 225: 218: 198: 171: 144: 44:) is a very sensitive 33: 21:Squid (disambiguation) 3323:Measuring instruments 2893:Bean's critical state 2716:10.1515/bmt-2015-0053 2615:Ouellette, Jennifer. 2267:Nature Nanotechnology 2232:10.1038/nnano.2006.78 2212:Nature Nanotechnology 2181:10.1038/nnano.2006.54 2161:Nature Nanotechnology 1421: 1345: 1309: 1293: 1273: 1271:{\displaystyle i_{c}} 1243: 1188: 1164: 1115: 1095: 1039: 998: 975: 948: 928: 901: 899:{\displaystyle I_{c}} 871: 844: 817: 790: 755: 728: 704:magnetic flux quantum 697: 655: 653:{\displaystyle I_{c}} 628: 587: 546: 526: 506: 504:{\displaystyle I_{s}} 479: 439: 412: 366: 337: 321: 301: 299:{\displaystyle \Phi } 281: 279:{\displaystyle I_{0}} 259:is the bias current, 254: 252:{\displaystyle I_{b}} 231: 219: 217:{\displaystyle \Phi } 199: 197:{\displaystyle I_{b}} 172: 170:{\displaystyle I_{a}} 145: 129: 31: 3068:By magnetic response 1615:Aharonov–Bohm effect 1515:for the first time. 1393:, and are cooled by 1327: 1282: 1255: 1200: 1177: 1128: 1104: 1051: 1010: 984: 961: 937: 910: 883: 853: 826: 799: 764: 737: 710: 671: 637: 596: 555: 535: 515: 488: 468: 421: 375: 342: 310: 290: 263: 236: 208: 181: 154: 134: 19:For other uses, see 16:Type of magnetometer 3318:American inventions 3020:persistent currents 3005:Little–Parks effect 2658:2005PMB....50.1273F 2570:"Not Magic Quantum" 2540:10.1038/nature10561 2532:2011Natur.479..376W 2475:. pp. 548–554. 2289:2022NatNa..17.1159P 2224:2006NatNa...1...15A 2173:2006NatNa...1...53C 2105:1994SciAm.271b..46C 2093:Scientific American 2064:1976JAP....47.5440E 1989:2006SuScT..19S.160S 1946:1982RScI...53.1815R 1911:1969Phy....41..225D 1788:1963PhRvL..10..230A 1753:1964PhRvL..12..159J 1703:2007ITAS...17..699D 1597:SQUIDs are used in 1498:gravitational waves 1490:mineral exploration 1437:magnetogastrography 328:Josephson junctions 81:refrigerator magnet 58:Josephson junctions 2980:Andreev reflection 2975:Abrikosov vortices 2218:(October): 15–16. 2167:(October): 53–59. 1884:The SQUID handbook 1857:has generic name ( 1506:general relativity 1424: 1340: 1312: 1288: 1268: 1238: 1183: 1159: 1110: 1090: 1034: 993: 970: 943: 923: 896: 866: 839: 812: 785: 750: 723: 692: 662:Josephson junction 650: 623: 592:in one branch and 582: 541: 521: 501: 474: 446: 434: 407: 361: 332: 316: 296: 276: 249: 226: 214: 194: 167: 140: 112:Josephson junction 98:History and design 34: 3328:Superconductivity 3305: 3304: 3223:quantum computing 3189: 3188: 3045:superdiamagnetism 2874:Superconductivity 2835:978-3-527-40408-7 2516:(7373): 376–379. 2495:Technology Review 2417:. pp. 56–81. 2368:(10): 1534–1548. 2341:. 3 November 2022 2273:(11): 1159–1164. 2058:(12): 5440–5442. 2021:Physical Review B 1954:10.1063/1.1136907 1940:(12): 1815–1845. 1494:geothermal energy 1370:with 10% gold or 1310:A prototype SQUID 1298:is of order one. 1236: 1186:{\displaystyle L} 1148: 1113:{\displaystyle L} 1088: 946:{\displaystyle R} 544:{\displaystyle I} 524:{\displaystyle I} 477:{\displaystyle I} 392: 319:{\displaystyle V} 143:{\displaystyle I} 56:loops containing 3345: 3333:Josephson effect 3254:bilayer graphene 3228:Rutherford cable 3140:room temperature 3135:high temperature 3065: 3064: 3025:proximity effect 3000:Josephson effect 2944:coherence length 2867: 2860: 2853: 2844: 2843: 2839: 2812: 2811: 2801: 2783: 2759: 2753: 2752: 2718: 2694: 2688: 2687: 2677: 2652:(6): 1273–1293. 2637: 2631: 2630: 2628: 2621: 2612: 2606: 2602: 2596: 2595: 2593: 2591: 2585: 2574: 2566: 2560: 2559: 2525: 2505: 2499: 2498: 2487: 2481: 2476: 2468: 2462: 2461: 2429: 2423: 2418: 2410: 2404: 2403: 2392: 2386: 2385: 2357: 2351: 2350: 2348: 2346: 2331: 2325: 2324: 2282: 2258: 2252: 2251: 2207: 2201: 2200: 2156: 2150: 2147: 2141: 2138: 2132: 2131: 2129: 2127: 2084: 2078: 2077: 2075: 2073:10.1063/1.322574 2043: 2037: 2036: 2027:(5): 1712–1714. 2015: 2009: 2008: 1972: 1966: 1965: 1929: 1923: 1922: 1894: 1888: 1887: 1879: 1870: 1869: 1862: 1856: 1852: 1850: 1842: 1834: 1825: 1824: 1822: 1820: 1806: 1800: 1799: 1771: 1765: 1764: 1736: 1730: 1729: 1728:on 19 July 2011. 1727: 1721:. Archived from 1688: 1679: 1673: 1672: 1670: 1659: 1648: 1620:Electromagnetism 1590:(MAD) fitted to 1572:cold dark matter 1562:Cold dark matter 1528:quantum computer 1358:The traditional 1349: 1347: 1346: 1341: 1339: 1338: 1297: 1295: 1294: 1289: 1277: 1275: 1274: 1269: 1267: 1266: 1247: 1245: 1244: 1239: 1237: 1235: 1234: 1225: 1221: 1220: 1210: 1192: 1190: 1189: 1184: 1168: 1166: 1165: 1160: 1149: 1141: 1119: 1117: 1116: 1111: 1099: 1097: 1096: 1091: 1089: 1084: 1076: 1043: 1041: 1040: 1035: 1002: 1000: 999: 994: 979: 977: 976: 971: 952: 950: 949: 944: 932: 930: 929: 924: 922: 921: 905: 903: 902: 897: 895: 894: 875: 873: 872: 867: 865: 864: 848: 846: 845: 840: 838: 837: 821: 819: 818: 813: 811: 810: 794: 792: 791: 786: 781: 776: 775: 759: 757: 756: 751: 749: 748: 732: 730: 729: 724: 722: 721: 701: 699: 698: 693: 688: 683: 682: 659: 657: 656: 651: 649: 648: 632: 630: 629: 624: 622: 621: 606: 591: 589: 588: 583: 581: 580: 565: 550: 548: 547: 542: 530: 528: 527: 522: 510: 508: 507: 502: 500: 499: 483: 481: 480: 475: 454:Josephson effect 443: 441: 440: 435: 433: 432: 416: 414: 413: 408: 406: 405: 393: 385: 370: 368: 367: 362: 360: 359: 325: 323: 322: 317: 305: 303: 302: 297: 285: 283: 282: 277: 275: 274: 258: 256: 255: 250: 248: 247: 223: 221: 220: 215: 203: 201: 200: 195: 193: 192: 176: 174: 173: 168: 166: 165: 149: 147: 146: 141: 3353: 3352: 3348: 3347: 3346: 3344: 3343: 3342: 3308: 3307: 3306: 3301: 3272: 3242: 3185: 3144: 3131:low temperature 3120: 3099: 3054: 3010:Meissner effect 2963: 2959:Silsbee current 2932: 2898:Ginzburg–Landau 2876: 2871: 2836: 2820: 2815: 2781:10.1186/bcr3050 2760: 2756: 2695: 2691: 2638: 2634: 2629:on 18 May 2008. 2626: 2619: 2613: 2609: 2603: 2599: 2589: 2587: 2583: 2572: 2568: 2567: 2563: 2506: 2502: 2489: 2488: 2484: 2469: 2465: 2450:10.1071/eg04297 2430: 2426: 2411: 2407: 2394: 2393: 2389: 2358: 2354: 2344: 2342: 2333: 2332: 2328: 2259: 2255: 2208: 2204: 2157: 2153: 2148: 2144: 2139: 2135: 2125: 2123: 2085: 2081: 2044: 2040: 2016: 2012: 1973: 1969: 1930: 1926: 1895: 1891: 1880: 1873: 1863: 1854: 1853: 1844: 1843: 1835: 1828: 1818: 1816: 1808: 1807: 1803: 1772: 1768: 1737: 1733: 1725: 1686: 1680: 1676: 1668: 1657: 1649: 1642: 1638: 1611: 1580: 1564: 1548:X-ray astronomy 1536: 1502:Gravity Probe B 1416: 1402:carbon nanotube 1395:liquid nitrogen 1389:, particularly 1360:superconducting 1356: 1334: 1330: 1328: 1325: 1324: 1304: 1283: 1280: 1279: 1262: 1258: 1256: 1253: 1252: 1230: 1226: 1216: 1212: 1211: 1209: 1201: 1198: 1197: 1178: 1175: 1174: 1140: 1129: 1126: 1125: 1105: 1102: 1101: 1077: 1075: 1052: 1049: 1048: 1011: 1008: 1007: 985: 982: 981: 962: 959: 958: 938: 935: 934: 917: 913: 911: 908: 907: 890: 886: 884: 881: 880: 860: 856: 854: 851: 850: 833: 829: 827: 824: 823: 806: 802: 800: 797: 796: 777: 771: 767: 765: 762: 761: 744: 740: 738: 735: 734: 717: 713: 711: 708: 707: 684: 678: 674: 672: 669: 668: 644: 640: 638: 635: 634: 617: 613: 602: 597: 594: 593: 576: 572: 561: 556: 553: 552: 536: 533: 532: 516: 513: 512: 495: 491: 489: 486: 485: 469: 466: 465: 458:Philip Anderson 452:postulated the 450:Brian Josephson 428: 424: 422: 419: 418: 401: 397: 384: 376: 373: 372: 355: 351: 343: 340: 339: 311: 308: 307: 291: 288: 287: 270: 266: 264: 261: 260: 243: 239: 237: 234: 233: 209: 206: 205: 188: 184: 182: 179: 178: 161: 157: 155: 152: 151: 135: 132: 131: 124: 108:radio frequency 100: 67:as low as 5Ă—10 54:superconducting 50:magnetic fields 24: 17: 12: 11: 5: 3351: 3341: 3340: 3335: 3330: 3325: 3320: 3303: 3302: 3300: 3299: 3294: 3289: 3284: 3279: 3274: 3270: 3266: 3261: 3256: 3250: 3248: 3244: 3243: 3241: 3240: 3235: 3230: 3225: 3220: 3215: 3210: 3208:electromagnets 3205: 3199: 3197: 3191: 3190: 3187: 3186: 3184: 3183: 3178: 3173: 3168: 3163: 3158: 3152: 3150: 3149:By composition 3146: 3145: 3143: 3142: 3137: 3132: 3128: 3126: 3122: 3121: 3119: 3118: 3116:unconventional 3113: 3107: 3105: 3104:By explanation 3101: 3100: 3098: 3097: 3092: 3091: 3090: 3085: 3080: 3071: 3069: 3062: 3060:Classification 3056: 3055: 3053: 3052: 3047: 3042: 3037: 3032: 3027: 3022: 3017: 3012: 3007: 3002: 2997: 2992: 2987: 2982: 2977: 2971: 2969: 2965: 2964: 2962: 2961: 2956: 2951: 2949:critical field 2946: 2940: 2938: 2934: 2933: 2931: 2930: 2925: 2920: 2918:Mattis–Bardeen 2915: 2910: 2905: 2903:Kohn–Luttinger 2900: 2895: 2890: 2884: 2882: 2878: 2877: 2870: 2869: 2862: 2855: 2847: 2841: 2840: 2834: 2819: 2816: 2814: 2813: 2754: 2709:(5): 445–455. 2689: 2632: 2607: 2597: 2561: 2500: 2482: 2463: 2444:(4): 297–305. 2424: 2405: 2387: 2352: 2326: 2253: 2202: 2151: 2142: 2133: 2079: 2038: 2010: 1967: 1924: 1905:(2): 225–254. 1889: 1871: 1826: 1801: 1782:(6): 230–232. 1766: 1747:(7): 159–160. 1731: 1697:(2): 699–704. 1674: 1664:. p. 26. 1639: 1637: 1634: 1633: 1632: 1627: 1622: 1617: 1610: 1607: 1579: 1576: 1563: 1560: 1535: 1532: 1524:D-Wave Systems 1415: 1412: 1378:, cooled with 1355: 1354:Materials used 1352: 1337: 1333: 1303: 1300: 1287: 1265: 1261: 1249: 1248: 1233: 1229: 1224: 1219: 1215: 1208: 1205: 1182: 1170: 1169: 1158: 1155: 1152: 1147: 1144: 1139: 1136: 1133: 1122: 1121: 1109: 1087: 1083: 1080: 1074: 1071: 1068: 1065: 1062: 1059: 1056: 1045: 1044: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 992: 989: 969: 966: 942: 920: 916: 893: 889: 863: 859: 836: 832: 809: 805: 784: 780: 774: 770: 747: 743: 720: 716: 691: 687: 681: 677: 647: 643: 620: 616: 612: 609: 605: 601: 579: 575: 571: 568: 564: 560: 540: 520: 498: 494: 473: 431: 427: 404: 400: 396: 391: 388: 383: 380: 358: 354: 350: 347: 315: 295: 273: 269: 246: 242: 213: 191: 187: 164: 160: 139: 123: 120: 104:direct current 99: 96: 15: 9: 6: 4: 3: 2: 3350: 3339: 3338:Magnetometers 3336: 3334: 3331: 3329: 3326: 3324: 3321: 3319: 3316: 3315: 3313: 3298: 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3278: 3275: 3273: 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3251: 3249: 3245: 3239: 3236: 3234: 3231: 3229: 3226: 3224: 3221: 3219: 3216: 3214: 3211: 3209: 3206: 3204: 3201: 3200: 3198: 3196: 3192: 3182: 3179: 3177: 3174: 3172: 3169: 3167: 3166:heavy fermion 3164: 3162: 3159: 3157: 3154: 3153: 3151: 3147: 3141: 3138: 3136: 3133: 3130: 3129: 3127: 3123: 3117: 3114: 3112: 3109: 3108: 3106: 3102: 3096: 3095:ferromagnetic 3093: 3089: 3086: 3084: 3081: 3079: 3076: 3075: 3073: 3072: 3070: 3066: 3063: 3061: 3057: 3051: 3048: 3046: 3043: 3041: 3040:supercurrents 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3001: 2998: 2996: 2993: 2991: 2988: 2986: 2983: 2981: 2978: 2976: 2973: 2972: 2970: 2966: 2960: 2957: 2955: 2952: 2950: 2947: 2945: 2942: 2941: 2939: 2935: 2929: 2926: 2924: 2921: 2919: 2916: 2914: 2911: 2909: 2906: 2904: 2901: 2899: 2896: 2894: 2891: 2889: 2886: 2885: 2883: 2879: 2875: 2868: 2863: 2861: 2856: 2854: 2849: 2848: 2845: 2837: 2831: 2827: 2822: 2821: 2809: 2805: 2800: 2795: 2791: 2787: 2782: 2777: 2773: 2769: 2765: 2758: 2750: 2746: 2742: 2738: 2734: 2730: 2726: 2722: 2717: 2712: 2708: 2704: 2700: 2693: 2685: 2681: 2676: 2671: 2667: 2663: 2659: 2655: 2651: 2647: 2643: 2636: 2625: 2618: 2611: 2601: 2582: 2579:. July 2016. 2578: 2571: 2565: 2557: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2524: 2519: 2515: 2511: 2504: 2496: 2492: 2486: 2480: 2474: 2467: 2459: 2455: 2451: 2447: 2443: 2439: 2435: 2428: 2422: 2416: 2409: 2401: 2397: 2391: 2383: 2379: 2375: 2371: 2367: 2363: 2356: 2340: 2336: 2330: 2322: 2318: 2314: 2310: 2306: 2302: 2298: 2294: 2290: 2286: 2281: 2276: 2272: 2268: 2264: 2257: 2249: 2245: 2241: 2237: 2233: 2229: 2225: 2221: 2217: 2213: 2206: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2155: 2146: 2137: 2122: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2090: 2083: 2074: 2069: 2065: 2061: 2057: 2053: 2052:J. Appl. Phys 2049: 2042: 2034: 2030: 2026: 2022: 2014: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1971: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1935: 1928: 1920: 1916: 1912: 1908: 1904: 1900: 1893: 1885: 1878: 1876: 1867: 1860: 1855:|author= 1848: 1840: 1833: 1831: 1815: 1811: 1805: 1797: 1793: 1789: 1785: 1781: 1777: 1770: 1762: 1758: 1754: 1750: 1746: 1742: 1735: 1724: 1720: 1716: 1712: 1708: 1704: 1700: 1696: 1692: 1685: 1678: 1667: 1663: 1656: 1655: 1647: 1645: 1640: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1612: 1606: 1604: 1603:nanoparticles 1600: 1595: 1593: 1589: 1585: 1578:Proposed uses 1575: 1573: 1569: 1559: 1557: 1553: 1549: 1545: 1541: 1531: 1529: 1525: 1521: 1516: 1514: 1509: 1507: 1503: 1499: 1495: 1491: 1487: 1484: 1480: 1476: 1471: 1469: 1464: 1462: 1457: 1452: 1450: 1446: 1442: 1438: 1433: 1429: 1420: 1411: 1410: 1405: 1403: 1398: 1396: 1392: 1388: 1383: 1381: 1380:liquid helium 1377: 1376:absolute zero 1373: 1369: 1365: 1361: 1351: 1335: 1322: 1317: 1308: 1299: 1285: 1263: 1259: 1231: 1222: 1217: 1213: 1206: 1203: 1196: 1195: 1194: 1180: 1150: 1145: 1142: 1137: 1134: 1124: 1123: 1107: 1085: 1072: 1069: 1066: 1063: 1057: 1054: 1047: 1046: 1031: 1025: 1022: 1019: 1016: 1006: 1005: 1004: 990: 956: 940: 918: 891: 887: 877: 861: 834: 807: 782: 778: 772: 745: 718: 705: 689: 685: 679: 665: 663: 645: 641: 618: 614: 610: 607: 603: 599: 577: 573: 569: 566: 562: 558: 538: 518: 496: 492: 471: 463: 459: 455: 451: 429: 402: 394: 389: 386: 381: 378: 356: 348: 345: 336: 329: 313: 271: 267: 244: 240: 230: 189: 185: 162: 158: 137: 128: 119: 117: 113: 109: 105: 95: 93: 92:refrigeration 90: 86: 82: 78: 74: 70: 66: 61: 59: 55: 51: 47: 43: 39: 30: 26: 22: 3232: 3176:oxypnictides 3111:conventional 3050:superstripes 2995:flux pumping 2990:flux pinning 2985:Cooper pairs 2825: 2771: 2767: 2757: 2706: 2702: 2692: 2649: 2645: 2635: 2624:the original 2610: 2600: 2588:. Retrieved 2576: 2564: 2513: 2509: 2503: 2494: 2485: 2472: 2466: 2441: 2437: 2427: 2414: 2408: 2400:neel.cnrs.fr 2399: 2390: 2365: 2361: 2355: 2343:. Retrieved 2338: 2329: 2270: 2266: 2256: 2215: 2211: 2205: 2164: 2160: 2154: 2145: 2136: 2124:. Retrieved 2099:(2): 46–53. 2096: 2092: 2082: 2055: 2051: 2041: 2024: 2020: 2013: 1980: 1976: 1970: 1937: 1933: 1927: 1902: 1898: 1892: 1883: 1838: 1817:. Retrieved 1813: 1804: 1779: 1775: 1769: 1744: 1740: 1734: 1723:the original 1694: 1690: 1677: 1653: 1596: 1581: 1565: 1537: 1517: 1510: 1472: 1465: 1453: 1425: 1406: 1399: 1384: 1357: 1321:biomagnetism 1313: 1250: 1171: 878: 666: 447: 101: 62: 46:magnetometer 41: 37: 35: 25: 3035:SU(2) color 3015:Homes's law 2774:(5): R108. 2345:15 November 1983:(3): S160. 1486:prospecting 702:, half the 52:, based on 3312:Categories 3171:iron-based 3030:reentrance 2818:References 2590:26 October 2280:2201.13276 1625:Geophysics 1445:cardiology 1366:or a lead 2968:Phenomena 2790:1465-542X 2725:1862-278X 2523:1105.4714 2321:246430218 2305:1748-3395 2248:205441987 2126:18 August 2005:122140082 1847:cite book 1819:8 January 1332:Φ 1286:λ 1228:Φ 1204:λ 1157:Φ 1154:Δ 1151:⋅ 1132:Δ 1082:Φ 1079:Δ 1073:⋅ 1061:Δ 1058:⋅ 1029:Δ 1026:⋅ 1014:Δ 988:Δ 968:Φ 965:Δ 915:Φ 858:Φ 831:Φ 804:Φ 769:Φ 742:Φ 715:Φ 676:Φ 660:, of the 611:− 462:Bell Labs 426:Φ 399:Φ 395:⋅ 353:Φ 349:⋅ 294:Φ 212:Φ 106:(DC) and 89:cryogenic 3203:cryotron 3161:cuprates 3156:covalent 2913:Matthias 2881:Theories 2808:22035507 2749:13867059 2741:26035107 2684:15798322 2581:Archived 2577:Lanl.gov 2548:22094697 2458:14994533 2434:C. Foley 2382:20573644 2313:36280761 2240:18654132 2189:18654142 2121:24942801 2089:"SQUIDs" 1719:19682964 1666:Archived 1609:See also 1456:turn-key 1302:RF SQUID 1100:, where 122:DC SQUID 3297:more... 3181:organic 2799:3262221 2733:1227725 2675:2041897 2654:Bibcode 2528:Bibcode 2339:ethz.ch 2285:Bibcode 2220:Bibcode 2197:1942814 2169:Bibcode 2101:Bibcode 2060:Bibcode 1985:Bibcode 1962:6760371 1942:Bibcode 1907:Bibcode 1899:Physica 1784:Bibcode 1749:Bibcode 1699:Bibcode 1520:niobium 1364:niobium 3074:Types 2908:London 2832:  2806:  2796:  2788:  2747:  2739:  2731:  2723:  2682:  2672:  2556:219735 2554:  2546:  2510:Nature 2456:  2380:  2319:  2311:  2303:  2246:  2238:  2195:  2187:  2119:  2003:  1960:  1717:  1546:, for 1526:2000Q 1479:helium 1432:neural 1372:indium 1251:where 65:fields 3287:TBCCO 3259:BSCCO 3238:wires 3233:SQUID 2745:S2CID 2627:(PDF) 2620:(PDF) 2584:(PDF) 2573:(PDF) 2552:S2CID 2518:arXiv 2454:S2CID 2378:S2CID 2317:S2CID 2275:arXiv 2244:S2CID 2193:S2CID 2117:JSTOR 2001:S2CID 1726:(PDF) 1715:S2CID 1687:(PDF) 1669:(PDF) 1658:(PDF) 1636:Notes 1586:as a 1368:alloy 38:SQUID 3292:YBCO 3282:NbTi 3277:NbSn 3264:LBCO 2830:ISBN 2804:PMID 2786:ISSN 2737:PMID 2729:OSTI 2721:ISSN 2680:PMID 2605:2010 2592:2021 2544:PMID 2347:2022 2309:PMID 2301:ISSN 2236:PMID 2185:PMID 2128:2022 1958:PMID 1866:link 1859:help 1821:2020 1662:NASA 1447:for 1414:Uses 1391:YBCO 371:and 177:and 85:SERF 3269:MgB 3218:NMR 3213:MRI 3088:1.5 2928:WHH 2923:RVB 2888:BCS 2794:PMC 2776:doi 2711:doi 2670:PMC 2662:doi 2536:doi 2514:479 2477:in 2446:doi 2419:in 2370:doi 2293:doi 2228:doi 2177:doi 2109:doi 2097:271 2068:doi 2029:doi 1993:doi 1950:doi 1915:doi 1792:doi 1757:doi 1707:doi 1483:oil 1461:AFM 460:at 3314:: 3083:II 2802:. 2792:. 2784:. 2772:13 2770:. 2766:. 2743:. 2735:. 2727:. 2719:. 2707:60 2705:. 2701:. 2678:. 2668:. 2660:. 2650:50 2648:. 2644:. 2575:. 2550:. 2542:. 2534:. 2526:. 2512:. 2493:. 2452:. 2442:35 2440:. 2398:. 2376:. 2366:92 2364:. 2337:. 2315:. 2307:. 2299:. 2291:. 2283:. 2271:17 2269:. 2265:. 2242:. 2234:. 2226:. 2214:. 2191:. 2183:. 2175:. 2163:. 2115:. 2107:. 2095:. 2091:. 2066:. 2056:47 2054:. 2050:. 2025:12 2023:. 1999:. 1991:. 1981:19 1979:. 1956:. 1948:. 1938:53 1936:. 1913:. 1903:41 1901:. 1874:^ 1851:: 1849:}} 1845:{{ 1829:^ 1812:. 1790:. 1780:10 1778:. 1755:. 1745:12 1743:. 1713:. 1705:. 1695:17 1693:. 1689:. 1660:. 1643:^ 1594:. 1574:. 1558:. 1530:. 1508:. 1488:, 1382:. 77:Hz 75:T· 60:. 36:A 3271:2 3078:I 2866:e 2859:t 2852:v 2838:. 2810:. 2778:: 2751:. 2713:: 2686:. 2664:: 2656:: 2594:. 2558:. 2538:: 2530:: 2520:: 2497:. 2460:. 2448:: 2402:. 2384:. 2372:: 2349:. 2323:. 2295:: 2287:: 2277:: 2250:. 2230:: 2222:: 2216:1 2199:. 2179:: 2171:: 2165:1 2130:. 2111:: 2103:: 2076:. 2070:: 2062:: 2035:. 2031:: 2007:. 1995:: 1987:: 1964:. 1952:: 1944:: 1921:. 1917:: 1909:: 1868:) 1861:) 1823:. 1798:. 1794:: 1786:: 1763:. 1759:: 1751:: 1709:: 1701:: 1336:0 1264:c 1260:i 1232:0 1223:L 1218:c 1214:i 1207:= 1181:L 1146:L 1143:R 1138:= 1135:V 1108:L 1086:L 1070:2 1067:= 1064:I 1055:2 1032:I 1023:R 1020:= 1017:V 991:V 941:R 919:0 892:c 888:I 862:0 835:0 808:0 783:2 779:/ 773:0 746:0 719:0 690:2 686:/ 680:0 646:c 642:I 619:s 615:I 608:2 604:/ 600:I 578:s 574:I 570:+ 567:2 563:/ 559:I 539:I 519:I 497:s 493:I 472:I 444:. 430:0 403:0 390:2 387:1 382:+ 379:n 357:0 346:n 330:. 314:V 272:0 268:I 245:b 241:I 190:b 186:I 163:a 159:I 138:I 114:( 73:f 69:T 40:( 23:.

Index

Squid (disambiguation)

magnetometer
magnetic fields
superconducting
Josephson junctions
fields
T
f
Hz
refrigerator magnet
SERF
cryogenic
refrigeration
direct current
radio frequency
Josephson junction
superconducting tunnel junction


Josephson junctions

Brian Josephson
Josephson effect
Philip Anderson
Bell Labs
Josephson junction
magnetic flux quantum
high-temperature superconductors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑