Knowledge

Superconducting tunnel junction

Source đź“ť

84: 92: 493:, which has a superconducting critical temperature in bulk form of 9.3 K. Niobium, however, does not form an oxide that is suitable for making tunnel junctions. To form an insulating oxide, the first layer of niobium can be coated with a very thin layer (approximately 5 nm) of aluminum, which is then oxidized to form a high quality aluminum oxide tunnel barrier before the final layer of niobium is deposited. The thin aluminum layer is 120: 694:
When a high frequency current is applied to a Josephson junction, the ac Josephson current will synchronize with the applied frequency giving rise to regions of constant voltage in the I–V curve of the device (Shapiro steps). For the purpose of voltage standards, these steps occur at the voltages
586:
source. Photons absorbed by the STJ allow quasiparticles to tunnel via the process of photon-assisted tunneling. This photon-assisted tunneling changes the current-voltage curve, creating a nonlinearity that produces an output at the difference frequency of the astronomical signal and the local
186:
exceeds twice the value of superconducting energy gap Î”. At finite temperature, a small quasiparticle tunneling current – called the subgap current – is present even for voltages less than twice the energy gap due to the thermal promotion of quasiparticles above the gap.
615:. The quasiparticles tunnel across the junction in the direction of the applied voltage, and the resulting tunneling current is proportional to the photon energy. STJ devices have been employed as single-photon detectors for photon frequencies ranging from 505:
has a superconducting critical temperature of 7.2 K in bulk form, but lead oxide tends to develop defects (sometimes called pinhole defects) that short-circuit the tunnel barrier when the device is thermally cycled between
846:. These steps provide an exact conversion from frequency to voltage. Because frequency can be measured with very high precision, this effect is used as the basis of the Josephson voltage standard, which implements the 587:
oscillator. This output is a frequency down-converted version of the astronomical signal. These receivers are so sensitive that an accurate description of the device performance must take into account the effects of
115:
states exist for energies greater than Δ from the Fermi energy, where Δ is the superconducting energy gap. Green and blue indicate empty and filled quasiparticle states, respectively, at zero temperature.
214:, the dc current-voltage curve will exhibit both Shapiro steps and steps due to photon-assisted tunneling. Shapiro steps arise from the response of the supercurrent and occur at voltages equal to 107:, indicated by the dashed lines. A bias voltage V is applied across the junction, shifting the Fermi energies of the two superconductors relative to each other by an energy eV, where e is the 1436:
Wu, Heng; Wang, Yaojia; Xu, Yuanfeng; Sivakumar, Pranava K.; Pasco, Chris; Filippozzi, Ulderico; Parkin, Stuart S. P.; Zeng, Yu-Jia; McQueen, Tyrel; Ali, Mazhar N. (2022-04-27).
451:. After the vacuum is restored, an overlapping layer of superconducting metal is deposited, completing the STJ. To create a well-defined overlap region, a procedure known as the 87:
Illustration of a thin-film superconducting tunnel junction (STJ). The superconducting material is light blue, the insulating tunnel barrier is black, and the substrate is green.
731: 580: 798: 255: 361: 844: 445: 419: 184: 771: 751: 323: 299: 275: 212: 1289:
Likharev, K.K.; Semenov, V.K. (1991). "RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems".
481:. For many applications, it is convenient to have a device that is superconducting at a higher temperature, in particular at a temperature above the 1348: 603:
detection, STJs can also be used as direct detectors. In this application, the STJ is biased with a dc voltage less than the gap voltage. A
895: 632: 465:
is widely used for making superconducting tunnel junctions because of its unique ability to form a very thin (2–3 nm) insulating
975:
Shapiro, Sidney (1963-07-15). "Josephson Currents in Superconducting Tunneling: The Effect of Microwaves and Other Observations".
497:
by the thicker niobium, and the resulting device has a superconducting critical temperature above 4.2 K. Early work used
1138:
Zmuidzinas, J.; Richards, P.L. (2004). "Superconducting detectors and mixers for millimeter and submillimeter astrophysics".
494: 329:. Photon-assisted tunneling arises from the response of the quasiparticles and gives rise to steps displaced in voltage by 1530: 456: 901: 655: 72: 95:
Energy diagram of a superconducting tunnel junction. The vertical axis is energy, and the horizontal axis shows the
372: 885: 1525: 912: 56: 1545: 639:
is based on a superconducting loop containing Josephson junctions. SQUIDs are the world's most sensitive
582:). A high frequency signal from an astronomical object of interest is focused onto the STJ, along with a 1515: 1520: 906: 698: 679: 60: 1276: 538: 1540: 452: 776: 163:
current, which, in the limit of zero temperature, arises when the energy from the bias voltage
156: 41: 391:
gas is then introduced into the chamber, resulting in the formation of an insulating layer of
217: 644: 152: 1459: 1382: 1298: 1243: 1102: 1047: 984: 941: 332: 818: 424: 398: 8: 1181:
Wengler, M.J. (1992). "Submillimeter-wave detection with superconducting tunnel diodes".
862:
In the case that the STJ shows asymmetric Josephson tunneling, the junction can become a
143:. There are two components to the tunneling current. The first is from the tunneling of 1463: 1386: 1302: 1247: 1106: 1051: 988: 945: 489:, which is 4.2 K at atmospheric pressure. One approach to achieving this is to use 166: 1491: 1449: 1406: 1322: 1216: 1163: 1071: 1032: 756: 736: 527:
receivers in the 100 GHz to 1000 GHz frequency range, and hence are used for
308: 284: 260: 197: 136: 49: 1423: 1495: 1483: 1475: 1398: 1314: 1259: 1220: 1208: 1155: 1120: 1063: 1000: 957: 953: 890: 875: 140: 96: 45: 1410: 1326: 1167: 1075: 123:
Sketch of the current–voltage (I–V) curve of a superconducting tunnel junction. The
1535: 1467: 1390: 1306: 1251: 1198: 1190: 1147: 1110: 1055: 992: 949: 880: 583: 148: 1340: 510:
temperatures and room temperature, so lead is no longer widely used to make STJs.
83: 52:, though not all the properties of the STJ are described by the Josephson effect. 863: 528: 474: 278: 37: 1437: 1471: 612: 466: 392: 384: 1151: 996: 932:
Josephson, B.D. (1962). "Possible new effects in superconductive tunnelling".
1509: 1479: 1402: 1318: 1263: 1255: 1212: 1159: 1124: 1067: 1059: 1004: 961: 588: 486: 482: 470: 160: 139:
flowing through the STJ pass through the insulating layer via the process of
128: 112: 1203: 1091:"Low-noise 115-GHz mixing in superconducting oxide-barrier tunnel junctions" 55:
These devices have a wide range of applications, including high-sensitivity
1487: 1394: 1242:(11). Institute of Electrical and Electronics Engineers (IEEE): 1234–1258. 1189:(11). Institute of Electrical and Electronics Engineers (IEEE): 1810–1826. 1146:(10). Institute of Electrical and Electronics Engineers (IEEE): 1597–1616. 659: 640: 608: 144: 104: 100: 1234:
Tucker, J. (1979). "Quantum limited detection in tunnel junction mixers".
1381:(12). Institute of Electrical and Electronics Engineers (IEEE): 623–625. 667: 124: 33: 1046:(2). Institute of Electrical and Electronics Engineers (IEEE): 106–109. 663: 600: 524: 1310: 1297:(1). Institute of Electrical and Electronics Engineers (IEEE): 3–28. 1194: 507: 448: 91: 1370: 1115: 1090: 1454: 1438:"The field-free Josephson diode in a van der Waals heterostructure" 620: 462: 376: 375:
by first depositing a thin film of a superconducting metal such as
302: 108: 532: 490: 380: 326: 191: 44:
material. Current passes through the junction via the process of
1369:
Hamilton, C.A.; Kautz, R.L.; Steiner, R.L.; Lloyd, F.L. (1985).
616: 604: 478: 388: 119: 1031:
Joseph, A.A.; Sese, J.; Flokstra, J.; Kerkhoff, H.G. (2005).
636: 64: 455:
is commonly used. This technique uses a suspended bridge of
851: 683: 502: 498: 477:
critical temperature of aluminum is approximately 1.2 
131:
tunneling current is seen for V > 2Δ/e and V < -2Δ/e.
68: 1030: 1368: 1345:
The NIST Reference on Constants, Units, and Uncertainty
847: 459:
with a double-angle deposition to define the junction.
26:
superconductor–insulator–superconductor tunnel junction
531:
at these frequencies. In this application, the STJ is
821: 779: 759: 739: 701: 541: 427: 401: 335: 311: 287: 263: 220: 200: 169: 155:
in 1962. For this prediction, Josephson received the
1089:
Dolan, G. J.; Phillips, T. G.; Woody, D. P. (1979).
773:
is the applied frequency and the Josephson constant
1137: 1088: 1033:"Structural Testing of the HYPRES Niobium Process" 838: 792: 765: 745: 725: 574: 439: 413: 355: 317: 293: 269: 249: 206: 178: 147:. This supercurrent is described by the ac and dc 1435: 1507: 1371:"A practical Josephson voltage standard at 1 V" 1288: 1291:IEEE Transactions on Applied Superconductivity 1040:IEEE Transactions on Applied Superconductivity 127:tunneling current is seen at V = 0, while the 983:(2). American Physical Society (APS): 80–82. 689: 1333: 1277:STJ detectors from the European Space Agency 896:Superconducting quantum interference device 633:superconducting quantum interference device 594: 1453: 1202: 1114: 931: 678:The STJ is the primary active element in 535:at a voltage just below the gap voltage ( 118: 90: 82: 1341:"2022 CODATA Value: Josephson constant" 1180: 1021:, 2nd edition, Dover Publications, 1996 974: 658:utilizes STJ-based circuits, including 383:. The deposition is performed inside a 1508: 1233: 607:absorbed in the superconductor breaks 447:) with a typical thickness of several 366: 650: 78: 1236:IEEE Journal of Quantum Electronics 501:-lead oxide-lead tunnel junctions. 379:on an insulating substrate such as 13: 857: 561: 518: 40:separated by a very thin layer of 14: 1557: 1424:Quantum voltage metrology at NIST 1019:Introduction to Superconductivity 902:Superconducting quantum computing 656:Superconducting quantum computing 643:, capable of measuring a single 1429: 1417: 1362: 1282: 815:is a constant that is equal to 726:{\displaystyle nf/K_{\text{J}}} 513: 18:superconducting tunnel junction 1270: 1227: 1174: 1131: 1101:(5). AIP Publishing: 347–349. 1082: 1024: 1011: 968: 925: 575:{\displaystyle |V|=2\Delta /e} 551: 543: 244: 235: 190:If the STJ is irradiated with 1: 918: 886:Macroscopic quantum phenomena 363:relative to the gap voltage. 1375:IEEE Electron Device Letters 954:10.1016/0031-9163(62)91369-0 913:Cryogenic particle detectors 793:{\displaystyle K_{\text{J}}} 523:STJs are the most sensitive 7: 940:(7). Elsevier BV: 251–253. 869: 469:layer with no defects that 159:in 1973. The second is the 10: 1562: 1472:10.1038/s41586-022-04504-8 690:Josephson voltage standard 473:the insulating layer. The 69:high speed digital circuit 1531:Superconducting detectors 1152:10.1109/jproc.2004.833670 997:10.1103/physrevlett.11.80 907:Rapid single flux quantum 680:rapid single flux quantum 626: 61:electromagnetic radiation 36:device consisting of two 1256:10.1109/jqe.1979.1069931 1060:10.1109/tasc.2005.849705 453:Niemeyer-Dolan technique 371:The device is typically 250:{\displaystyle nhf/(2e)} 1183:Proceedings of the IEEE 1140:Proceedings of the IEEE 1095:Applied Physics Letters 977:Physical Review Letters 673: 595:Single-photon detection 48:. The STJ is a type of 1395:10.1109/edl.1985.26253 840: 794: 767: 747: 727: 576: 441: 415: 357: 319: 295: 271: 251: 208: 180: 157:Nobel prize in physics 132: 116: 88: 841: 795: 768: 748: 728: 686:fast logic circuits. 645:magnetic flux quantum 577: 442: 416: 358: 356:{\displaystyle nhf/e} 320: 296: 272: 252: 209: 181: 153:Brian David Josephson 151:, first predicted by 122: 94: 86: 839:{\displaystyle 2e/h} 819: 777: 757: 737: 699: 539: 440:{\displaystyle _{3}} 425: 414:{\displaystyle _{2}} 399: 333: 309: 285: 261: 218: 198: 167: 24:) – also known as a 1526:Quantum electronics 1464:2022Natur.604..653W 1387:1985IEDL....6..623H 1303:1991ITAS....1....3L 1248:1979IJQE...15.1234T 1107:1979ApPhL..34..347D 1052:2005ITAS...15..106J 989:1963PhRvL..11...80S 946:1962PhL.....1..251J 149:Josephson relations 1546:Mesoscopic physics 1426:, accessed 11-5-11 1279:, accessed 8-17-11 850:definition of the 836: 790: 763: 743: 723: 572: 437: 411: 367:Device fabrication 353: 315: 291: 267: 247: 204: 179:{\displaystyle eV} 176: 133: 117: 89: 50:Josephson junction 1516:Superconductivity 1448:(7907): 653–656. 891:Quantum tunneling 876:Superconductivity 787: 766:{\displaystyle f} 746:{\displaystyle n} 720: 651:Quantum computing 318:{\displaystyle n} 294:{\displaystyle e} 270:{\displaystyle h} 207:{\displaystyle f} 141:quantum tunneling 97:density of states 79:Quantum tunneling 73:quantum computing 46:quantum tunneling 1553: 1521:Josephson effect 1500: 1499: 1457: 1433: 1427: 1421: 1415: 1414: 1366: 1360: 1359: 1357: 1356: 1337: 1331: 1330: 1311:10.1109/77.80745 1286: 1280: 1274: 1268: 1267: 1231: 1225: 1224: 1206: 1204:2060/19930018580 1195:10.1109/5.175257 1178: 1172: 1171: 1135: 1129: 1128: 1118: 1086: 1080: 1079: 1037: 1028: 1022: 1015: 1009: 1008: 972: 966: 965: 929: 881:Josephson effect 845: 843: 842: 837: 832: 814: 811: 809: 805: 799: 797: 796: 791: 789: 788: 785: 772: 770: 769: 764: 752: 750: 749: 744: 732: 730: 729: 724: 722: 721: 718: 712: 584:local oscillator 581: 579: 578: 573: 568: 554: 546: 446: 444: 443: 438: 436: 435: 420: 418: 417: 412: 410: 409: 362: 360: 359: 354: 349: 324: 322: 321: 316: 300: 298: 297: 292: 276: 274: 273: 268: 256: 254: 253: 248: 234: 213: 211: 210: 205: 185: 183: 182: 177: 1561: 1560: 1556: 1555: 1554: 1552: 1551: 1550: 1541:Radio astronomy 1506: 1505: 1504: 1503: 1434: 1430: 1422: 1418: 1367: 1363: 1354: 1352: 1339: 1338: 1334: 1287: 1283: 1275: 1271: 1232: 1228: 1179: 1175: 1136: 1132: 1116:10.1063/1.90783 1087: 1083: 1035: 1029: 1025: 1016: 1012: 973: 969: 934:Physics Letters 930: 926: 921: 872: 864:Josephson diode 860: 858:Josephson diode 828: 820: 817: 816: 812: 807: 803: 801: 784: 780: 778: 775: 774: 758: 755: 754: 753:is an integer, 738: 735: 734: 717: 713: 708: 700: 697: 696: 692: 676: 653: 629: 599:In addition to 597: 564: 550: 542: 540: 537: 536: 529:radio astronomy 521: 519:Radio astronomy 516: 475:superconducting 431: 428: 426: 423: 422: 405: 402: 400: 397: 396: 369: 345: 334: 331: 330: 310: 307: 306: 286: 283: 282: 279:Planck constant 262: 259: 258: 230: 219: 216: 215: 199: 196: 195: 168: 165: 164: 81: 38:superconductors 12: 11: 5: 1559: 1549: 1548: 1543: 1538: 1533: 1528: 1523: 1518: 1502: 1501: 1428: 1416: 1361: 1332: 1281: 1269: 1226: 1173: 1130: 1081: 1023: 1010: 967: 923: 922: 920: 917: 916: 915: 910: 904: 899: 893: 888: 883: 878: 871: 868: 859: 856: 835: 831: 827: 824: 783: 762: 742: 716: 711: 707: 704: 691: 688: 675: 672: 652: 649: 628: 625: 613:quasiparticles 596: 593: 571: 567: 563: 560: 557: 553: 549: 545: 520: 517: 515: 512: 434: 430: 408: 404: 393:aluminum oxide 385:vacuum chamber 368: 365: 352: 348: 344: 341: 338: 314: 290: 266: 246: 243: 240: 237: 233: 229: 226: 223: 203: 175: 172: 80: 77: 71:elements, and 9: 6: 4: 3: 2: 1558: 1547: 1544: 1542: 1539: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1513: 1511: 1497: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1456: 1451: 1447: 1443: 1439: 1432: 1425: 1420: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1365: 1350: 1346: 1342: 1336: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1285: 1278: 1273: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1230: 1222: 1218: 1214: 1210: 1205: 1200: 1196: 1192: 1188: 1184: 1177: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1134: 1126: 1122: 1117: 1112: 1108: 1104: 1100: 1096: 1092: 1085: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1034: 1027: 1020: 1014: 1006: 1002: 998: 994: 990: 986: 982: 978: 971: 963: 959: 955: 951: 947: 943: 939: 935: 928: 924: 914: 911: 908: 905: 903: 900: 897: 894: 892: 889: 887: 884: 882: 879: 877: 874: 873: 867: 865: 855: 853: 849: 833: 829: 825: 822: 781: 760: 740: 714: 709: 705: 702: 687: 685: 681: 671: 669: 665: 661: 660:charge qubits 657: 648: 646: 642: 641:magnetometers 638: 634: 624: 622: 618: 614: 610: 606: 602: 592: 590: 589:quantum noise 585: 569: 565: 558: 555: 547: 534: 530: 526: 511: 509: 504: 500: 496: 492: 488: 487:liquid helium 484: 483:boiling point 480: 476: 472: 471:short-circuit 468: 464: 460: 458: 454: 450: 432: 429: 406: 403: 394: 390: 386: 382: 378: 374: 364: 350: 346: 342: 339: 336: 328: 312: 304: 288: 280: 264: 241: 238: 231: 227: 224: 221: 201: 194:of frequency 193: 188: 173: 170: 162: 161:quasiparticle 158: 154: 150: 146: 142: 138: 130: 129:quasiparticle 126: 121: 114: 113:Quasiparticle 110: 106: 103:exist at the 102: 98: 93: 85: 76: 74: 70: 66: 65:magnetometers 62: 58: 53: 51: 47: 43: 39: 35: 31: 27: 23: 19: 1445: 1441: 1431: 1419: 1378: 1374: 1364: 1353:. Retrieved 1344: 1335: 1294: 1290: 1284: 1272: 1239: 1235: 1229: 1186: 1182: 1176: 1143: 1139: 1133: 1098: 1094: 1084: 1043: 1039: 1026: 1018: 1017:M. Tinkham, 1013: 980: 976: 970: 937: 933: 927: 861: 810:10 Hzâ‹…V 693: 677: 668:phase qubits 654: 630: 611:and creates 609:Cooper pairs 598: 522: 514:Applications 495:proximitized 461: 370: 305:charge, and 189: 145:Cooper pairs 134: 105:Fermi energy 101:Cooper pairs 54: 29: 25: 21: 17: 15: 664:flux qubits 125:Cooper pair 1510:Categories 1455:2103.15809 1355:2024-05-18 1351:. May 2024 919:References 601:heterodyne 525:heterodyne 449:nanometres 373:fabricated 75:circuits. 42:insulating 34:electronic 32:) – is an 1496:248414862 1480:0028-0836 1403:0741-3106 1319:1051-8223 1264:0018-9197 1221:110082517 1213:0018-9219 1160:0018-9219 1125:0003-6951 1068:1051-8223 1005:0031-9007 962:0031-9163 562:Δ 533:dc biased 508:cryogenic 57:detectors 1488:35478238 1411:19200552 1327:21221319 1168:18546230 1076:22001764 870:See also 806:.8484... 621:infrared 463:Aluminum 377:aluminum 303:electron 257:, where 137:currents 111:charge. 109:electron 1536:Sensors 1460:Bibcode 1383:Bibcode 1299:Bibcode 1244:Bibcode 1103:Bibcode 1048:Bibcode 985:Bibcode 942:Bibcode 898:(SQUID) 813:‍ 619:to the 491:niobium 381:silicon 327:integer 301:is the 277:is the 192:photons 1494:  1486:  1478:  1442:Nature 1409:  1401:  1325:  1317:  1262:  1219:  1211:  1166:  1158:  1123:  1074:  1066:  1003:  960:  909:(RSFQ) 733:where 627:SQUIDs 617:X-rays 605:photon 457:resist 389:Oxygen 325:is an 1492:S2CID 1450:arXiv 1407:S2CID 1323:S2CID 1217:S2CID 1164:S2CID 1072:S2CID 1036:(PDF) 637:SQUID 467:oxide 1484:PMID 1476:ISSN 1399:ISSN 1349:NIST 1315:ISSN 1260:ISSN 1209:ISSN 1156:ISSN 1121:ISSN 1064:ISSN 1001:ISSN 958:ISSN 852:volt 684:RSFQ 674:RSFQ 666:and 631:The 503:Lead 499:lead 135:All 16:The 1468:doi 1446:604 1391:doi 1307:doi 1252:doi 1199:hdl 1191:doi 1148:doi 1111:doi 1056:doi 993:doi 950:doi 866:. 804:597 802:483 682:or 635:or 485:of 395:(Al 59:of 30:SIS 22:STJ 1512:: 1490:. 1482:. 1474:. 1466:. 1458:. 1444:. 1440:. 1405:. 1397:. 1389:. 1377:. 1373:. 1347:. 1343:. 1321:. 1313:. 1305:. 1293:. 1258:. 1250:. 1240:15 1238:. 1215:. 1207:. 1197:. 1187:80 1185:. 1162:. 1154:. 1144:92 1142:. 1119:. 1109:. 1099:34 1097:. 1093:. 1070:. 1062:. 1054:. 1044:15 1042:. 1038:. 999:. 991:. 981:11 979:. 956:. 948:. 936:. 854:. 848:SI 800:= 670:. 662:, 647:. 623:. 591:. 387:. 281:, 99:. 67:, 63:, 1498:. 1470:: 1462:: 1452:: 1413:. 1393:: 1385:: 1379:6 1358:. 1329:. 1309:: 1301:: 1295:1 1266:. 1254:: 1246:: 1223:. 1201:: 1193:: 1170:. 1150:: 1127:. 1113:: 1105:: 1078:. 1058:: 1050:: 1007:. 995:: 987:: 964:. 952:: 944:: 938:1 834:h 830:/ 826:e 823:2 808:Ă— 786:J 782:K 761:f 741:n 719:J 715:K 710:/ 706:f 703:n 570:e 566:/ 559:2 556:= 552:| 548:V 544:| 479:K 433:3 421:O 407:2 351:e 347:/ 343:f 340:h 337:n 313:n 289:e 265:h 245:) 242:e 239:2 236:( 232:/ 228:f 225:h 222:n 202:f 174:V 171:e 28:( 20:(

Index

electronic
superconductors
insulating
quantum tunneling
Josephson junction
detectors
electromagnetic radiation
magnetometers
high speed digital circuit
quantum computing
Illustration of a thin-film superconducting tunnel junction.
Energy diagram of a superconducting tunnel junction.
density of states
Cooper pairs
Fermi energy
electron
Quasiparticle
Sketch of the current-voltage curve of a superconducting tunnel junction.
Cooper pair
quasiparticle
currents
quantum tunneling
Cooper pairs
Josephson relations
Brian David Josephson
Nobel prize in physics
quasiparticle
photons
Planck constant
electron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑