Knowledge

Riemann–Hilbert correspondence

Source 📝

1162: 538:(as an algebraic vector bundle with flat connection), because its solutions do not have moderate growth at ∞. This shows the need to restrict to flat connections with regular singularities in the Riemann–Hilbert correspondence. On the other hand, if we work with holomorphic (rather than algebraic) vector bundles with flat connection on a noncompact complex manifold such as 75:, the Riemann-Hilbert correspondence provides a complex analytic isomorphism between two of the three natural algebraic structures on the moduli spaces, and so is naturally viewed as a nonabelian analogue of the comparison isomorphism between De Rham cohomology and singular/Betti cohomology. 225:
has dimension one (a complex algebraic curve) then there is a more general Riemann–Hilbert correspondence for algebraic connections with no regularity assumption (or for holonomic D-modules with no regularity assumption) described in Malgrange (1991), the
607:-sheaves and left (resp. right) modules with a Frobenius (resp. Cartier) action. This can be regarded as the positive characteristic analogue of the classical theory, where one can find a similar interplay of constructive vs. perverse t-structures. 546:, then the notion of regular singularities is not defined. A much more elementary theorem than the Riemann–Hilbert correspondence states that flat connections on holomorphic vector bundles are determined up to isomorphism by their monodromy. 31:
refers to the correspondence between regular singular flat connections on algebraic vector bundles and representations of the fundamental group, and more generally to one of several generalizations of this. The original setting appearing in
218:, and a local system on a subvariety is something like a description of possible monodromies, so this correspondence can be thought of as describing certain systems of differential equations in terms of the monodromies of their solutions. 510: 292: 406: 340:− {0}. That means that the equation has nontrivial monodromy. Explicitly, the monodromy of this equation is the 1-dimensional representation of the fundamental group 124:
The condition of regular singularities means that locally constant sections of the bundle (with respect to the flat connection) have moderate growth at points of
534:, the monodromy of this flat connection is trivial. But this flat connection is not isomorphic to the obvious flat connection on the trivial line bundle over 17: 1122: 121:. Thus such connections give a purely algebraic way to access the finite dimensional representations of the topological fundamental group. 435:, the equation does not have regular singularities at ∞. (This can also be seen by rewriting the equation in terms of the variable 942: 775:(1980), "Faisceaux constructibles et systèmes holonômes d'équations aux dérivées partielles linéaires à points singuliers réguliers", 977: 795: 982: 97:
called the local solutions functor, that is an equivalence from the category of flat connections on algebraic vector bundles on
714: 449: 179:
By considering the irreducible elements of each category, this gives a 1:1 correspondence between isomorphism classes of
63:(1970, generalizing existing work in the case of Riemann surfaces) and more generally for regular holonomic D-modules by 1087: 1072: 992: 694:(Gives explicit representation of Riemann–Hilbert correspondence for Milnor fiber of isolated hypersurface singularity) 244: 1132: 877: 844: 33: 1147: 1188: 431:. Since these solutions do not have polynomial growth on some sectors around the point ∞ in the projective line 1193: 1142: 1137: 1112: 967: 935: 747: 113:
connected, the category of local systems is also equivalent to the category of complex representations of the
56:(linear and having very special properties for their solutions) and possible monodromies of their solutions. 53: 37: 1077: 962: 1102: 616: 368: 1127: 1107: 515:
The pole of order 2 in the coefficients means that the equation does not have regular singularities at
1198: 1166: 928: 558: 642:
Bhatt, Bhargav; Lurie, Jacob (2019), "A Riemann-Hilbert correspondence in positive characteristic",
1117: 1007: 972: 599:
More generally, there are equivalences of categories between constructible (resp. perverse) étale
1027: 195: 72: 629:
Emerton, Matthew; Kisin, Mark (2004), "The Riemann-Hilbert correspondence for unit F-crystals",
362:
To see the need for the hypothesis of regular singularities, consider the differential equation
1042: 898: 589: 520: 313: 1067: 165: 102: 419:). This equation corresponds to a flat connection on the trivial algebraic line bundle over 914: 887: 854: 821: 784: 757: 724: 673: 8: 1092: 1002: 987: 866:
Complex analysis, microlocal calculus and relativistic quantum theory (Les Houches, 1979)
593: 573: 1012: 677: 651: 154: 1082: 1022: 873: 840: 828: 761: 743: 710: 681: 114: 1017: 997: 951: 894: 861: 807: 791: 772: 661: 169: 68: 64: 49: 36:
was for the Riemann sphere, where it was about the existence of systems of linear
1062: 1037: 910: 883: 869: 850: 817: 780: 753: 739: 720: 669: 59:
Such a result was proved for algebraic connections with regular singularities by
45: 105:
to the category of local systems of finite-dimensional complex vector spaces on
1052: 1047: 812: 731: 706: 302: 60: 665: 577: 1182: 572:) establish a Riemann-Hilbert correspondence that asserts in particular that 836: 355:
in which the generator (a loop around the origin) acts by multiplication by
1032: 698: 203: 52:
of dimension > 1. There is a correspondence between certain systems of
44:
representations. First the Riemann sphere may be replaced by an arbitrary
765: 1057: 153:
called the de Rham functor, that is an equivalence from the category of
41: 920: 656: 211: 157: 238:
An example where the theorem applies is the differential equation
48:
and then, in higher dimensions, Riemann surfaces are replaced by
800:
Publications of the Research Institute for Mathematical Sciences
568:(later developed further under less restrictive assumptions in 140:
is compact, the condition of regular singularities is vacuous.
588:-coefficients can be computed in terms of the action of the 705:, Perspectives in Mathematics, vol. 2, Boston, MA: 214:
is something like a system of differential equations on
93:(for regular singular connections): there is a functor 736:Équations différentielles à points singuliers réguliers 505:{\displaystyle {\frac {df}{dw}}=-{\frac {1}{w^{2}}}f.} 320:. The local solutions of the equation are of the form 149:(for regular holonomic D-modules): there is a functor 452: 371: 247: 833:Équations différentielles à coefficients polynomiaux 796:"The Riemann-Hilbert problem for holonomic systems" 504: 400: 286: 1180: 777:Séminaire Goulaouic-Schwartz, 1979–80, Exposé 19 423:. The solutions of the equation are of the form 287:{\displaystyle {\frac {df}{dz}}={\frac {a}{z}}f} 198:complexes of irreducible closed subvarieties of 738:, Lecture Notes in Mathematics, vol. 163, 864:(1980), "Sur le problėme de Hilbert-Riemann", 71:(1980, 1984) independently. In the setting of 936: 312:is a fixed complex number. This equation has 978:Grothendieck–Hirzebruch–Riemann–Roch theorem 628: 565: 868:, Lecture Notes in Physics, vol. 126, 943: 929: 641: 569: 301: − {0} (that is, on the nonzero 1123:Riemann–Roch theorem for smooth manifolds 835:, Progress in Mathematics, vol. 96, 827: 811: 790: 771: 655: 893: 860: 730: 228:Riemann–Hilbert–Birkhoff correspondence 87:is a smooth complex algebraic variety. 14: 1181: 549: 336:cannot be made well-defined on all of 924: 899:"Une autre équivalence de catégories" 697: 530:are defined on the whole affine line 332:is not an integer, then the function 950: 132:is an algebraic compactification of 183:irreducible holonomic D-modules on 24: 1088:Riemannian connection on a surface 993:Measurable Riemann mapping theorem 779:, Palaiseau: École Polytechnique, 401:{\displaystyle {\frac {df}{dz}}=f} 316:at 0 and ∞ in the projective line 25: 1210: 687: 415:(that is, on the complex numbers 202:with coefficients in irreducible 1161: 1160: 644:Cambridge Journal of Mathematics 1073:Riemann's differential equation 983:Hirzebruch–Riemann–Roch theorem 1098:Riemann–Hilbert correspondence 968:Generalized Riemann hypothesis 147:Riemann–Hilbert correspondence 91:Riemann–Hilbert correspondence 54:partial differential equations 38:regular differential equations 34:Hilbert's twenty-first problem 29:Riemann–Hilbert correspondence 18:Riemann-Hilbert correspondence 13: 1: 1133:Riemann–Siegel theta function 622: 297:on the punctured affine line 1148:Riemann–von Mangoldt formula 143:More generally there is the 78: 7: 610: 233: 187:with regular singularities, 10: 1215: 1143:Riemann–Stieltjes integral 1138:Riemann–Silberstein vector 1113:Riemann–Liouville integral 566:Emerton & Kisin (2004) 1156: 1078:Riemann's minimal surface 958: 666:10.4310/CJM.2019.v7.n1.a3 351: − {0}) =  27:In mathematics, the term 1103:Riemann–Hilbert problems 1008:Riemann curvature tensor 973:Grand Riemann hypothesis 963:Cauchy–Riemann equations 813:10.2977/prims/1195181610 570:Bhatt & Lurie (2019) 1028:Riemann mapping theorem 617:Riemann–Hilbert problem 196:intersection cohomology 73:nonabelian Hodge theory 1189:Differential equations 1128:Riemann–Siegel formula 1108:Riemann–Lebesgue lemma 1043:Riemann series theorem 903:Compositio Mathematica 590:Frobenius endomorphism 506: 402: 288: 136:. In particular, when 1194:Representation theory 1068:Riemann zeta function 507: 403: 314:regular singularities 289: 166:regular singularities 103:regular singularities 1118:Riemann–Roch theorem 526:Since the functions 450: 369: 245: 1093:Riemannian geometry 1003:Riemann Xi function 988:Local zeta function 872:, pp. 90–110, 703:Algebraic D-Modules 690:Sheaves in Topology 594:coherent cohomology 443:, where it becomes 411:on the affine line 168:to the category of 1013:Riemann hypothesis 829:Malgrange, Bernard 692:, pp. 206–207 688:Dimca, Alexandru, 550:In characteristic 519:= 0, according to 502: 398: 284: 1176: 1175: 1083:Riemannian circle 1023:Riemann invariant 895:Mebkhout, Zoghman 862:Mebkhout, Zoghman 792:Kashiwara, Masaki 773:Kashiwara, Masaki 716:978-0-12-117740-9 494: 471: 390: 279: 266: 115:fundamental group 67:(1980, 1984) and 50:complex manifolds 16:(Redirected from 1206: 1199:Bernhard Riemann 1164: 1163: 1018:Riemann integral 998:Riemann (crater) 952:Bernhard Riemann 945: 938: 931: 922: 921: 917: 890: 857: 824: 815: 787: 768: 727: 693: 684: 659: 638: 574:étale cohomology 511: 509: 508: 503: 495: 493: 492: 480: 472: 470: 462: 454: 439: := 1/ 407: 405: 404: 399: 391: 389: 381: 373: 343: 293: 291: 290: 285: 280: 272: 267: 265: 257: 249: 170:perverse sheaves 69:Zoghman Mebkhout 65:Masaki Kashiwara 40:with prescribed 21: 1214: 1213: 1209: 1208: 1207: 1205: 1204: 1203: 1179: 1178: 1177: 1172: 1152: 1063:Riemann surface 1038:Riemann problem 954: 949: 880: 870:Springer-Verlag 847: 750: 740:Springer-Verlag 732:Deligne, Pierre 717: 650:(1–2): 71–217, 625: 613: 557:For schemes in 555: 521:Fuchs's theorem 488: 484: 479: 463: 455: 453: 451: 448: 447: 382: 374: 372: 370: 367: 366: 346: 341: 303:complex numbers 271: 258: 250: 248: 246: 243: 242: 236: 81: 46:Riemann surface 23: 22: 15: 12: 11: 5: 1212: 1202: 1201: 1196: 1191: 1174: 1173: 1171: 1170: 1157: 1154: 1153: 1151: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1090: 1085: 1080: 1075: 1070: 1065: 1060: 1055: 1053:Riemann sphere 1050: 1048:Riemann solver 1045: 1040: 1035: 1030: 1025: 1020: 1015: 1010: 1005: 1000: 995: 990: 985: 980: 975: 970: 965: 959: 956: 955: 948: 947: 940: 933: 925: 919: 918: 891: 878: 858: 845: 825: 806:(2): 319–365, 788: 769: 748: 728: 715: 707:Academic Press 695: 685: 639: 624: 621: 620: 619: 612: 609: 559:characteristic 554: 548: 513: 512: 501: 498: 491: 487: 483: 478: 475: 469: 466: 461: 458: 427:for constants 409: 408: 397: 394: 388: 385: 380: 377: 344: 324:for constants 295: 294: 283: 278: 275: 270: 264: 261: 256: 253: 235: 232: 208: 207: 189: 188: 80: 77: 61:Pierre Deligne 9: 6: 4: 3: 2: 1211: 1200: 1197: 1195: 1192: 1190: 1187: 1186: 1184: 1169: 1168: 1159: 1158: 1155: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1046: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 960: 957: 953: 946: 941: 939: 934: 932: 927: 926: 923: 916: 912: 908: 904: 900: 896: 892: 889: 885: 881: 879:3-540-09996-4 875: 871: 867: 863: 859: 856: 852: 848: 846:0-8176-3556-4 842: 838: 834: 830: 826: 823: 819: 814: 809: 805: 801: 797: 793: 789: 786: 782: 778: 774: 770: 767: 763: 759: 755: 751: 745: 741: 737: 733: 729: 726: 722: 718: 712: 708: 704: 700: 699:Borel, Armand 696: 691: 686: 683: 679: 675: 671: 667: 663: 658: 653: 649: 645: 640: 636: 632: 627: 626: 618: 615: 614: 608: 606: 602: 597: 595: 591: 587: 583: 579: 578:étale sheaves 575: 571: 567: 563: 560: 553: 547: 545: 541: 537: 533: 529: 524: 522: 518: 499: 496: 489: 485: 481: 476: 473: 467: 464: 459: 456: 446: 445: 444: 442: 438: 434: 430: 426: 422: 418: 414: 395: 392: 386: 383: 378: 375: 365: 364: 363: 360: 358: 354: 350: 339: 335: 331: 327: 323: 319: 315: 311: 308:− {0}). Here 307: 304: 300: 281: 276: 273: 268: 262: 259: 254: 251: 241: 240: 239: 231: 229: 224: 219: 217: 213: 205: 204:local systems 201: 197: 194: 193: 192: 186: 182: 181: 180: 177: 175: 171: 167: 163: 159: 156: 152: 148: 144: 141: 139: 135: 131: 127: 122: 120: 116: 112: 108: 104: 100: 96: 92: 88: 86: 83:Suppose that 76: 74: 70: 66: 62: 57: 55: 51: 47: 43: 39: 35: 30: 19: 1165: 1097: 1033:Riemann form 909:(1): 63–88, 906: 902: 865: 832: 803: 799: 776: 735: 702: 689: 647: 643: 634: 630: 604: 600: 598: 585: 581: 561: 556: 551: 543: 539: 535: 531: 527: 525: 516: 514: 440: 436: 432: 428: 424: 420: 416: 412: 410: 361: 356: 352: 348: 337: 333: 329: 325: 321: 317: 309: 305: 298: 296: 237: 227: 222: 221:In the case 220: 215: 209: 199: 190: 184: 178: 173: 161: 150: 146: 145: 142: 137: 133: 129: 125: 123: 118: 110: 106: 98: 94: 90: 89: 84: 82: 58: 28: 26: 1058:Riemann sum 1183:Categories 837:Birkhäuser 749:3540051902 657:1711.04148 631:Astérisque 623:References 682:119147066 477:− 158:D-modules 155:holonomic 79:Statement 42:monodromy 1167:Category 897:(1984), 831:(1991), 794:(1984), 734:(1970), 701:(1987), 611:See also 234:Examples 212:D-module 128:, where 915:0734785 888:0579742 855:1117227 822:0743382 785:0600704 758:0417174 725:0882000 674:3922360 637:: 1–268 564:>0, 913:  886:  876:  853:  843:  820:  783:  766:169357 764:  756:  746:  723:  713:  680:  672:  109:. For 678:S2CID 652:arXiv 580:with 328:. If 164:with 126:Y − X 101:with 874:ISBN 841:ISBN 762:OCLC 744:ISBN 711:ISBN 191:and 808:doi 662:doi 635:293 592:on 576:of 523:.) 172:on 160:on 117:of 95:Sol 1185:: 911:MR 907:51 905:, 901:, 884:MR 882:, 851:MR 849:, 839:, 818:MR 816:, 804:20 802:, 798:, 781:MR 760:, 754:MR 752:, 742:, 721:MR 719:, 709:, 676:, 670:MR 668:, 660:, 646:, 633:, 596:. 542:= 528:ce 425:ce 359:. 322:cz 230:. 210:A 176:. 151:DR 944:e 937:t 930:v 810:: 664:: 654:: 648:7 605:p 603:/ 601:Z 586:p 584:/ 582:Z 562:p 552:p 544:C 540:A 536:A 532:A 517:w 500:. 497:f 490:2 486:w 482:1 474:= 468:w 465:d 460:f 457:d 441:z 437:w 433:P 429:c 421:A 417:C 413:A 396:f 393:= 387:z 384:d 379:f 376:d 357:e 353:Z 349:A 347:( 345:1 342:π 338:C 334:z 330:a 326:c 318:P 310:a 306:C 299:A 282:f 277:z 274:a 269:= 263:z 260:d 255:f 252:d 223:X 216:X 206:. 200:X 185:X 174:X 162:X 138:X 134:X 130:Y 119:X 111:X 107:X 99:X 85:X 20:)

Index

Riemann-Hilbert correspondence
Hilbert's twenty-first problem
regular differential equations
monodromy
Riemann surface
complex manifolds
partial differential equations
Pierre Deligne
Masaki Kashiwara
Zoghman Mebkhout
nonabelian Hodge theory
regular singularities
fundamental group
holonomic
D-modules
regular singularities
perverse sheaves
intersection cohomology
local systems
D-module
complex numbers
regular singularities
Fuchs's theorem
characteristic
Emerton & Kisin (2004)
Bhatt & Lurie (2019)
étale cohomology
étale sheaves
Frobenius endomorphism
coherent cohomology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.