Knowledge

Hilbert's twenty-first problem

Source đź“ť

222:) found a counterexample to Plemelj's statement. This is commonly viewed as providing a counterexample to the precise question Hilbert had in mind; Bolibrukh showed that for a given pole configuration certain monodromy groups can be realised by regular, but not by Fuchsian systems. (In 1990 he published the thorough study of the case of regular systems of size 3 exhibiting all situations when such counterexamples exists. In 1978 Dekkers had shown that for systems of size 2 Plemelj's claim is true. 88:. The problem requires the production of n functions of the variable z, regular throughout the complex z-plane except at the given singular points; at these points the functions may become infinite of only finite order, and when z describes circuits about these points the functions shall undergo the prescribed 124:
In fact it is more appropriate to speak not about differential equations but about linear systems of differential equations: in order to realise any monodromy by a differential equation one has to admit, in general, the presence of additional apparent singularities, i.e. singularities with trivial
210:
and others started raising doubts about Plemelj's work. In fact, Plemelj correctly proves that any monodromy group can be realised by a regular linear system which is Fuchsian at all but one of the singular points. Plemelj's claim that the system can be made Fuchsian at the last point as well is
194:, for flat algebraic connections with regular singularities and more generally regular holonomic D-modules or flat algebraic connections with regular singularities on principal G-bundles, in all dimensions. The history of proofs involving a single complex variable is complicated. 330:)).) Parallel to this the Grothendieck school of algebraic geometry had become interested in questions of 'integrable connections on algebraic varieties', generalising the theory of linear differential equations on 96:, but the rigorous proof has been obtained up to this time only in the particular case where the fundamental equations of the given substitutions have roots all of absolute magnitude unity. 481:
Deligne, Pierre (1970). Équations différentielles à points singuliers réguliers. (French) Lecture Notes in Mathematics, Vol. 163. Springer-Verlag, Berlin-New York, 1970. 133 pp. MR0417174
112:. The theory of linear differential equations would evidently have a more finished appearance if the problem here sketched could be disposed of by some perfectly general method. 238:) showed that for any size, an irreducible monodromy group can be realised by a Fuchsian system. The codimension of the variety of monodromy groups of regular systems of size 548:
Gérard, Raymond (1969). Le problème de Riemann-Hilbert sur une variété analytique complexe. (French) Ann. Inst. Fourier (Grenoble) 19 (1969), fasc. 2, 1--32. MR0281946
320: 580: 207: 323: 231: 109: 282: 256: 77: 709: 601:
Röhrl, Helmut (1957). Das Riemann-Hilbertsche Problem der Theorie der linearen Differentialgleichungen. (German) Math. Ann. 133, 1--25. MR0086958
491:, Interscience Tracts in Pure and Applied Mathematics, vol. 16, New York-London-Sydney: Interscience Publishers John Wiley & Sons Inc., 338:
proved a precise Riemann–Hilbert correspondence in this general context (a major point being to say what 'Fuchsian' means). With work by
672: 668: 872: 677: 413: 702: 845: 834: 189: 125:
local monodromy. In more modern language, the (systems of) differential equations in question are those defined in the
839: 653: 496: 809: 819: 814: 794: 789: 198:
published a solution in 1908. This work was for a long time accepted as a definitive solution; there was work of
867: 824: 804: 799: 695: 779: 513:
Bolibrukh, A.A. (1992), "Sufficient conditions for the positive solvability of the Riemann-Hilbert problem",
784: 759: 69: 764: 744: 734: 183: 774: 769: 754: 749: 739: 729: 877: 351: 81: 39: 142: 93: 72:
with one independent variable z, I wish to indicate an important problem one which very likely
718: 287: 76:
himself may have had in mind. This problem is as follows: To show that there always exists a
555: 60:
Proof of the existence of linear differential equations having a prescribed monodromic group
38:, concerns the existence of a certain class of linear differential equations with specified 622: 595: 534: 506: 467: 439: 432:
Akademiya Nauk SSSR I Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk
423: 380: 8: 261: 130: 114: 20: 443: 538: 471: 241: 97: 649: 542: 492: 475: 455: 409: 154: 146: 451: 206:
wrote a monograph summing up his work. A few years later the Soviet mathematician
161:, on 'circuits' going once round each missing point, starting and ending at a given 105: 675: 641: 522: 447: 401: 393: 223: 215: 85: 43: 31: 133:
at those. A more strict version of the problem requires these singularities to be
681: 645: 618: 607:
Handbuch der Theorie der linearen Differentialgleichungen vol. 2, part 2, No. 366
591: 530: 502: 486: 463: 419: 376: 331: 138: 89: 339: 92:. The existence of such differential equations has been shown to be probable by 335: 199: 150: 687: 405: 861: 459: 195: 126: 35: 54:
The original problem was stated as follows (English translation from 1902):
632:(1976), "An Overview of Deligne's work on Hilbert's Twenty-First Problem", 137:, i.e. poles of first order (logarithmic poles), including at infinity. A 400:, Aspects of Mathematics, E22, Braunschweig: Friedr. Vieweg & Sohn, 526: 170: 162: 158: 629: 19:
For Riemann–Hilbert factorization problems on the complex plane, see
134: 617:: 307–312, Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 375:: 307–312, Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 73: 552:
Kostov, Vladimir Petrov (1992), "Fuchsian linear systems on
613:
Treibich Kohn, Armando. (1983), "Un résultat de Plemelj.",
284:
poles which cannot be realised by Fuchsian systems equals
187:. It led to several bijective correspondences known as ' 157:, up to equivalence. The fundamental group is actually a 430:
Bolibrukh, A. A. (1990), "The Riemann-Hilbert problem",
16:
On linear differential equations with certain properties
342:, the case in one complex dimension was again covered. 558: 290: 264: 244: 211:
wrong, unless the monodromy is diagonalizable there.
371:
Treibich Kohn, Armando., "Un résultat de Plemelj.",
584:Comptes Rendus de l'AcadĂ©mie des Sciences, SĂ©rie I 574: 314: 276: 250: 78:linear differential equation of the Fuchsian class 165:. The question is whether the mapping from these 859: 141:is prescribed, by means of a finite-dimensional 34:, from the celebrated list put forth in 1900 by 717: 485:Plemelj, Josip (1964), Radok., J. R. M. (ed.), 391: 703: 612: 634:Proceedings of Symposia in Pure Mathematics 604: 169:equations to classes of representations is 101: 710: 696: 615:Mathematics and Physics (Paris, 1979/1982) 488:Problems in the sense of Riemann and Klein 373:Mathematics and Physics (Paris, 1979/1982) 512: 429: 370: 227: 219: 181:This problem is more commonly called the 484: 203: 860: 551: 327: 235: 691: 628: 104:) has given this proof, based upon 13: 582:and the Riemann-Hilbert problem", 14: 889: 662: 129:, less a few points, and with a 873:Ordinary differential equations 452:10.1070/RM1990v045n02ABEH002350 190:Riemann–Hilbert correspondences 669:On the Riemann–Hilbert Problem 364: 306: 294: 119: 1: 357: 70:linear differential equations 49: 7: 398:The Riemann-Hilbert problem 345: 10: 894: 176: 153:of those points, plus the 18: 725: 406:10.1007/978-3-322-92909-9 352:Isomonodromic deformation 149:of the complement in the 646:10.1090/pspum/028.2/9904 605:Schlesinger, L. (1895), 515:Matematicheskie Zametki 315:{\displaystyle 2(n-1)p} 224:Andrey A. Bolibrukh 216:Andrey A. Bolibrukh 184:Riemann–Hilbert problem 110:Fuchsian zeta-functions 576: 575:{\displaystyle CP^{1}} 316: 278: 252: 143:complex representation 94:counting the constants 577: 317: 279: 253: 556: 288: 262: 242: 230:) and independently 208:Yuliy S. Il'yashenko 90:linear substitutions 28:twenty-first problem 444:1990RuMaS..45Q...1B 324:Vladimir Kostov 277:{\displaystyle p+1} 232:Vladimir Kostov 131:regular singularity 868:Hilbert's problems 719:Hilbert's problems 680:2011-07-18 at the 572: 527:10.1007/BF02102113 312: 274: 248: 98:L. Schlesinger 855: 854: 415:978-3-528-06496-9 251:{\displaystyle n} 155:point at infinity 147:fundamental group 108:'s theory of the 68:In the theory of 885: 878:Algebraic curves 712: 705: 698: 689: 688: 673:archive.org copy 658: 625: 609: 598: 581: 579: 578: 573: 571: 570: 545: 509: 478: 426: 394:Bolibruch, A. A. 384: 383: 368: 332:Riemann surfaces 321: 319: 318: 313: 283: 281: 280: 275: 257: 255: 254: 249: 86:monodromic group 44:monodromic group 32:Hilbert problems 893: 892: 888: 887: 886: 884: 883: 882: 858: 857: 856: 851: 721: 716: 682:Wayback Machine 665: 656: 566: 562: 557: 554: 553: 499: 416: 392:Anosov, D. V.; 388: 387: 369: 365: 360: 348: 289: 286: 285: 263: 260: 259: 243: 240: 239: 179: 139:monodromy group 122: 82:singular points 52: 40:singular points 24: 21:Riemann–Hilbert 17: 12: 11: 5: 891: 881: 880: 875: 870: 853: 852: 850: 849: 842: 837: 832: 827: 822: 817: 812: 807: 802: 797: 792: 787: 782: 777: 772: 767: 762: 757: 752: 747: 742: 737: 732: 726: 723: 722: 715: 714: 707: 700: 692: 686: 685: 664: 663:External links 661: 660: 659: 654: 626: 610: 602: 599: 590:(2): 143–148, 569: 565: 561: 549: 546: 521:(2): 110–117, 517:(in Russian), 510: 497: 482: 479: 434:(in Russian), 427: 414: 386: 385: 362: 361: 359: 356: 355: 354: 347: 344: 336:Pierre Deligne 311: 308: 305: 302: 299: 296: 293: 273: 270: 267: 247: 204:Plemelj (1964) 202:in 1913 also. 200:G. D. Birkhoff 178: 175: 151:Riemann sphere 121: 118: 117: 116: 64: 63: 51: 48: 15: 9: 6: 4: 3: 2: 890: 879: 876: 874: 871: 869: 866: 865: 863: 847: 843: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 731: 728: 727: 724: 720: 713: 708: 706: 701: 699: 694: 693: 690: 683: 679: 676: 674: 670: 667: 666: 657: 655:9780821814284 651: 647: 643: 639: 635: 631: 627: 624: 620: 616: 611: 608: 603: 600: 597: 593: 589: 585: 567: 563: 559: 550: 547: 544: 540: 536: 532: 528: 524: 520: 516: 511: 508: 504: 500: 498:9780470691250 494: 490: 489: 483: 480: 477: 473: 469: 465: 461: 457: 453: 449: 445: 441: 437: 433: 428: 425: 421: 417: 411: 407: 403: 399: 395: 390: 389: 382: 378: 374: 367: 363: 353: 350: 349: 343: 341: 337: 333: 329: 325: 309: 303: 300: 297: 291: 271: 268: 265: 245: 237: 233: 229: 225: 221: 217: 212: 209: 205: 201: 197: 196:Josip Plemelj 193: 191: 186: 185: 174: 172: 168: 164: 160: 156: 152: 148: 144: 140: 136: 132: 128: 127:complex plane 115: 113: 111: 107: 103: 99: 95: 91: 87: 83: 80:, with given 79: 75: 71: 66: 65: 62: 61: 57: 56: 55: 47: 45: 41: 37: 36:David Hilbert 33: 29: 22: 829: 637: 633: 614: 606: 587: 583: 518: 514: 487: 435: 431: 397: 372: 366: 340:Helmut Röhrl 213: 188: 182: 180: 166: 123: 67: 59: 58: 53: 27: 25: 640:: 537–557, 438:(2): 3–47, 120:Definitions 862:Categories 630:Katz, N.M. 358:References 171:surjective 163:base point 159:free group 30:of the 23 543:121743184 476:250853546 460:0042-1316 301:− 50:Statement 678:Archived 396:(1994), 346:See also 167:Fuchsian 135:Fuchsian 106:PoincarĂ© 623:0728426 596:1197226 535:1165460 507:0174815 468:1069347 440:Bibcode 424:1276272 381:0728426 326: ( 234: ( 226: ( 218: ( 214:Indeed 177:History 145:of the 100: ( 74:Riemann 652:  621:  594:  541:  533:  505:  495:  474:  466:  458:  422:  412:  379:  539:S2CID 472:S2CID 258:with 650:ISBN 493:ISBN 456:ISSN 410:ISBN 328:1992 236:1992 228:1992 220:1990 102:1895 84:and 42:and 26:The 642:doi 588:315 523:doi 448:doi 402:doi 864:: 846:24 840:23 835:22 830:21 825:20 820:19 815:18 810:17 805:16 800:15 795:14 790:13 785:12 780:11 775:10 648:, 638:28 636:, 619:MR 592:MR 586:, 537:, 531:MR 529:, 519:51 503:MR 501:, 470:, 464:MR 462:, 454:, 446:, 436:45 420:MR 418:, 408:, 377:MR 334:. 173:. 46:. 848:) 844:( 770:9 765:8 760:7 755:6 750:5 745:4 740:3 735:2 730:1 711:e 704:t 697:v 684:) 671:( 644:: 568:1 564:P 560:C 525:: 450:: 442:: 404:: 322:( 310:p 307:) 304:1 298:n 295:( 292:2 272:1 269:+ 266:p 246:n 192:' 23:.

Index

Riemann–Hilbert
Hilbert problems
David Hilbert
singular points
monodromic group
linear differential equations
Riemann
linear differential equation of the Fuchsian class
singular points
monodromic group
linear substitutions
counting the constants
L. Schlesinger
1895
Poincaré
Fuchsian zeta-functions

complex plane
regular singularity
Fuchsian
monodromy group
complex representation
fundamental group
Riemann sphere
point at infinity
free group
base point
surjective
Riemann–Hilbert problem
Riemann–Hilbert correspondences

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑