Knowledge

Monodromy

Source šŸ“

22: 1334: 891: 1473:
we can consider its induced diffeomorphism on local transversal sections through the endpoints. Within a simply connected chart this diffeomorphism becomes unique and especially canonical between different transversal sections if we go over to the
549: 1478:
of the diffeomorphism around the endpoints. In this way it also becomes independent of the path (between fixed endpoints) within a simply connected chart and is therefore invariant under homotopy.
1123: 782: 787: 770: 338: 376: 1388: 172: 1443: 303: 1580:
theory enters and allows for the geometric interpretation given above. In the case that the extension is already Galois, the associated monodromy group is sometimes called a
274: 1748:"Group-groupoids and monodromy groupoids", O. Mucuk, B. KılıƧarslan, T. ĀøSahan, N. Alemdar, Topology and its Applications 158 (2011) 2034ā€“2042 doi:10.1016/j.topol.2011.06.048 1471: 1126: 611: 582: 465: 405: 991: 224: 1592: 1345:
it is possible to get rid of the choice of a base point and to define a monodromy groupoid. Here we consider (homotopy classes of) lifts of paths in the base space
933: 1152:
was the first to obtain results towards its resolution. An additive version of the problem about residua of Fuchsian systems has been formulated and explored by
470: 1153: 1337:
A path in the base has paths in the total space lifting it. Pushing along these paths gives the monodromy action from the fundamental groupoid.
105:
of transformations acting on the data that encodes what happens as we "run round" in one dimension. Lack of monodromy is sometimes called
33: \ {0} gives different answers along different paths. This leads to an infinite cyclic monodromy group and a covering of 1641: 1058:
For a regular (and in particular Fuchsian) linear system one usually chooses as generators of the monodromy group the operators
1076: 886:{\displaystyle {\begin{aligned}F(z)&=\log(z)\\E&=\{z\in \mathbb {C} \mid \operatorname {Re} (z)>0\}\end{aligned}}} 1073: + 1 when one circumvents the base point clockwise, then the only relation between the generators is the equality 1011:. The covering map is a vertical projection, in a sense collapsing the spiral in the obvious way to get a punctured plane. 1065:
corresponding to loops each of which circumvents just one of the poles of the system counterclockwise. If the indices
1651: 1000:
and the covering space is the universal cover of the punctured complex plane. This cover can be visualized as the
741: 1588: 1787: 1777: 308: 1742: 343: 1342: 97:
as we "run round" a path encircling a singularity. The failure of monodromy can be measured by defining a
1792: 1737: 1352: 1052: 136: 1412: 279: 408: 244: 86: 1782: 1177: 435: 238: 1452: 1797: 1276: 74: 587: 558: 441: 381: 955: 184: 1732: 90: 1032: 1024: 1020: 717: 70: 58: 1759: 1643:
Karl WeierstraƟ (1815ā€“1897): Aspekte seines Lebens und Werkes ā€“ Aspects of his Life and Work
1705: 902: 8: 1619: 1503: 1048: 179: 102: 1709: 1683: 1510: 1475: 1258: 653: 618: 66: 62: 21: 1713: 1647: 1614: 1495: 1243: 1225: 1144:
from these classes satisfying the above relation? The problem has been formulated by
1036: 721: 412: 126: 122: 26: 1764:
H. Å»ołądek, "The Monodromy Group", BirkhƤuser Basel 2006; doi: 10.1007/3-7643-7536-1
1697: 1693: 1609: 1262: 1156:. The problem has been considered by other authors for matrix groups other than GL( 713: 1129:
is the following realisation problem: For which tuples of conjugacy classes in GL(
1701: 1577: 1541: 1514: 1269: 997: 42: 544:{\displaystyle p_{*}\left(\pi _{1}\left({\tilde {X}},{\tilde {x}}\right)\right)} 1548: 1185: 1149: 1145: 1771: 1023:, where a single solution may give further linearly independent solutions by 407:. There are theorems which state that this construction gives a well-defined 1398:. The advantage is that we can drop the condition of connectedness of  1581: 1559: 175: 82: 1604: 1031:
in the complex plane have a monodromy group, which (more precisely) is a
50: 1752: 1688: 1406: 1173: 1172:
In the case of a covering map, we look at it as a special case of a
1391: 1333: 1293: 1001: 38: 1027:. Linear differential equations defined in an open, connected set 81:
comes from "running round singly". It is closely associated with
1043:, summarising all the analytic continuations round loops within 89:; the aspect giving rise to monodromy phenomena is that certain 1674:
V. P. Kostov (2004), "The Deligneā€“Simpson problem ā€” a survey",
1014: 1758:
P.J. Higgins, "Categories and groupoids", van Nostrand (1971)
1287:
to adjacent ones. The effect when applied to loops based at
896:
then analytic continuation anti-clockwise round the circle
555:
if and only if it is represented by the image of a loop in
1047:. The inverse problem, of constructing the equation (with 1257:
In differential geometry, an analogous role is played by
1562:
of the extension is called the monodromy group of 
1118:{\displaystyle M_{1}\cdots M_{p+1}=\operatorname {id} } 1069:
are chosen in such a way that they increase from 1 to
750: 1455: 1415: 1405:
Moreover the construction can also be generalized to
1355: 1188:
for simplicity) as they are lifted up into the cover
1079: 958: 905: 785: 744: 590: 561: 473: 444: 384: 346: 311: 282: 247: 187: 139: 1328: 1167: 1224:, and to code this one considers the action of the 1004:(as defined in the helicoid article) restricted to 77:. As the name implies, the fundamental meaning of 1465: 1437: 1382: 1117: 985: 927: 885: 764: 605: 576: 543: 459: 399: 370: 332: 297: 268: 218: 166: 1769: 1646:(in German). Springer-Verlag. pp. 200ā€“201. 1137:) do there exist irreducible tuples of matrices 1547:This extension is generally not Galois but has 1481: 1279:allows "horizontal" movement from fibers above 776:, but with different values. For example, take 1730: 1639: 1673: 1015:Differential equations in the complex domain 876: 838: 765:{\displaystyle \mathbb {C} \backslash \{0\}} 759: 753: 241:under the covering map, starting at a point 29:. Trying to define the complex logarithm on 1640:Kƶnig, Wolfgang; Sprekels, JĆ¼rgen (2015). 1687: 848: 746: 333:{\displaystyle {\tilde {x}}\cdot \gamma } 1633: 1332: 712:These ideas were first made explicit in 664:. The image of this homomorphism is the 551:, that is, an element fixes a point in 20: 18:Mathematical behavior near singularities 1770: 1297:group of translations of the fiber at 1390:. The result has the structure of a 1192:. If we follow round a loop based at 371:{\displaystyle {\tilde {\gamma }}(1)} 1449:. Then for every path in a leaf of 1180:to "follow" paths on the base space 996:In this case the monodromy group is 378:, which is generally different from 1445:a (possibly singular) foliation of 1383:{\displaystyle p:{\tilde {X}}\to X} 167:{\displaystyle p:{\tilde {X}}\to X} 13: 1458: 1438:{\displaystyle (M,{\mathcal {F}})} 1427: 938:will result in the return, not to 298:{\displaystyle {\tilde {\gamma }}} 14: 1809: 1329:Monodromy groupoid and foliations 1168:Topological and geometric aspects 269:{\displaystyle {\tilde {x}}\in F} 93:we may wish to define fail to be 57:is the study of how objects from 1589:Galois theory of covering spaces 1051:), given a representation, is a 1019:One important application is to 1313:that measures the deviation of 738:of the punctured complex plane 1698:10.1016/j.jalgebra.2004.07.013 1667: 1587:This has connections with the 1466:{\displaystyle {\mathcal {F}}} 1432: 1416: 1374: 1368: 968: 962: 915: 907: 867: 861: 821: 815: 799: 793: 597: 568: 525: 510: 451: 391: 365: 359: 353: 318: 289: 254: 213: 207: 158: 152: 1: 1724: 1582:group of deck transformations 1317:from the product bundle  112: 73:behave as they "run round" a 1482:Definition via Galois theory 1301:; if the structure group of 1216:; it is quite possible that 1200:, which we lift to start at 613:. This action is called the 606:{\displaystyle {\tilde {x}}} 577:{\displaystyle {\tilde {X}}} 460:{\displaystyle {\tilde {x}}} 400:{\displaystyle {\tilde {x}}} 85:and their degeneration into 7: 1738:Encyclopedia of Mathematics 1717:and the references therein. 1598: 986:{\displaystyle F(z)+2\pi i} 772:may be continued back into 702:topological monodromy group 219:{\displaystyle F=p^{-1}(x)} 10: 1814: 1494:) denote the field of the 707: 700:whose image is called the 25:The imaginary part of the 1593:Riemann existence theorem 1178:homotopy lifting property 1626: 720:, a function that is an 305:. Finally, we denote by 1731:V. I. Danilov (2001) , 1246:on the set of all  1127:Deligneā€“Simpson problem 1053:Riemannā€“Hilbert problem 668:. There is another map 1753:Topology and Groupoids 1540:) determines a finite 1467: 1439: 1384: 1338: 1309:, it is a subgroup of 1119: 1021:differential equations 987: 929: 887: 766: 617:and the corresponding 607: 578: 545: 461: 401: 372: 334: 299: 270: 220: 168: 46: 37: \ {0} by a 1788:Differential geometry 1778:Mathematical analysis 1622:(of a punctured disk) 1468: 1440: 1385: 1336: 1120: 1049:regular singularities 1033:linear representation 1025:analytic continuation 988: 930: 928:{\displaystyle |z|=1} 888: 767: 718:analytic continuation 608: 579: 546: 462: 402: 373: 335: 300: 271: 221: 169: 71:differential geometry 59:mathematical analysis 24: 1453: 1413: 1394:over the base space 1353: 1343:fundamental groupoid 1208:, we'll end at some 1077: 956: 903: 783: 742: 734:in some open subset 716:. In the process of 588: 559: 471: 442: 382: 344: 309: 280: 245: 185: 137: 1620:Mapping class group 684:) ā†’ Diff( 662:algebraic monodromy 121:be a connected and 1793:Algebraic topology 1558:). The associated 1511:field of fractions 1496:rational functions 1463: 1435: 1380: 1339: 1259:parallel transport 1115: 983: 925: 883: 881: 762: 654:automorphism group 636:) ā†’ Aut( 603: 574: 541: 457: 397: 368: 330: 295: 266: 216: 164: 67:algebraic geometry 63:algebraic topology 47: 1615:Monodromy theorem 1371: 1341:Analogous to the 1254:in this context. 1244:permutation group 1226:fundamental group 1037:fundamental group 722:analytic function 600: 571: 528: 513: 454: 413:fundamental group 394: 356: 321: 292: 257: 155: 127:topological space 123:locally connected 41:(an example of a 27:complex logarithm 1805: 1783:Complex analysis 1745: 1718: 1716: 1691: 1671: 1665: 1664: 1662: 1660: 1637: 1610:Monodromy matrix 1498:in the variable 1472: 1470: 1469: 1464: 1462: 1461: 1444: 1442: 1441: 1436: 1431: 1430: 1389: 1387: 1386: 1381: 1373: 1372: 1364: 1263:principal bundle 1230: 1124: 1122: 1121: 1116: 1108: 1107: 1089: 1088: 1010: 992: 990: 989: 984: 948: 934: 932: 931: 926: 918: 910: 892: 890: 889: 884: 882: 851: 775: 771: 769: 768: 763: 749: 737: 733: 714:complex analysis 699: 672: 659: 651: 624: 615:monodromy action 612: 610: 609: 604: 602: 601: 593: 583: 581: 580: 575: 573: 572: 564: 554: 550: 548: 547: 542: 540: 536: 535: 531: 530: 529: 521: 515: 514: 506: 498: 497: 483: 482: 466: 464: 463: 458: 456: 455: 447: 433: 429: 406: 404: 403: 398: 396: 395: 387: 377: 375: 374: 369: 358: 357: 349: 339: 337: 336: 331: 323: 322: 314: 304: 302: 301: 296: 294: 293: 285: 275: 273: 272: 267: 259: 258: 250: 236: 232: 225: 223: 222: 217: 206: 205: 173: 171: 170: 165: 157: 156: 148: 132: 129:with base point 120: 1813: 1812: 1808: 1807: 1806: 1804: 1803: 1802: 1798:Homotopy theory 1768: 1767: 1727: 1722: 1721: 1672: 1668: 1658: 1656: 1654: 1638: 1634: 1629: 1601: 1591:leading to the 1578:Riemann surface 1569:In the case of 1542:field extension 1515:polynomial ring 1509:, which is the 1484: 1457: 1456: 1454: 1451: 1450: 1426: 1425: 1414: 1411: 1410: 1363: 1362: 1354: 1351: 1350: 1349:of a fibration 1331: 1291:is to define a 1270:smooth manifold 1252:monodromy group 1233: 1228: 1170: 1154:Vladimir Kostov 1142: 1097: 1093: 1084: 1080: 1078: 1075: 1074: 1063: 1017: 1005: 998:infinite cyclic 957: 954: 953: 939: 914: 906: 904: 901: 900: 880: 879: 847: 831: 825: 824: 802: 786: 784: 781: 780: 773: 745: 743: 740: 739: 735: 724: 710: 696: 689: 675: 670: 669: 666:monodromy group 657: 648: 642: 627: 622: 621: 592: 591: 589: 586: 585: 563: 562: 560: 557: 556: 552: 520: 519: 505: 504: 503: 499: 493: 489: 488: 484: 478: 474: 472: 469: 468: 446: 445: 443: 440: 439: 434:, and that the 431: 419: 415: 386: 385: 383: 380: 379: 348: 347: 345: 342: 341: 313: 312: 310: 307: 306: 284: 283: 281: 278: 277: 249: 248: 246: 243: 242: 234: 227: 198: 194: 186: 183: 182: 147: 146: 138: 135: 134: 130: 118: 115: 99:monodromy group 43:Riemann surface 19: 12: 11: 5: 1811: 1801: 1800: 1795: 1790: 1785: 1780: 1766: 1765: 1762: 1756: 1749: 1746: 1726: 1723: 1720: 1719: 1666: 1652: 1631: 1630: 1628: 1625: 1624: 1623: 1617: 1612: 1607: 1600: 1597: 1549:Galois closure 1483: 1480: 1460: 1434: 1429: 1424: 1421: 1418: 1379: 1376: 1370: 1367: 1361: 1358: 1330: 1327: 1231: 1186:path-connected 1184:(we assume it 1176:, and use the 1169: 1166: 1150:Carlos Simpson 1146:Pierre Deligne 1140: 1114: 1111: 1106: 1103: 1100: 1096: 1092: 1087: 1083: 1061: 1016: 1013: 994: 993: 982: 979: 976: 973: 970: 967: 964: 961: 936: 935: 924: 921: 917: 913: 909: 894: 893: 878: 875: 872: 869: 866: 863: 860: 857: 854: 850: 846: 843: 840: 837: 834: 832: 830: 827: 826: 823: 820: 817: 814: 811: 808: 805: 803: 801: 798: 795: 792: 789: 788: 761: 758: 755: 752: 748: 709: 706: 694: 687: 673: 646: 640: 625: 599: 596: 570: 567: 539: 534: 527: 524: 518: 512: 509: 502: 496: 492: 487: 481: 477: 453: 450: 417: 393: 390: 367: 364: 361: 355: 352: 329: 326: 320: 317: 291: 288: 265: 262: 256: 253: 215: 212: 209: 204: 201: 197: 193: 190: 163: 160: 154: 151: 145: 142: 114: 111: 17: 9: 6: 4: 3: 2: 1810: 1799: 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1775: 1773: 1763: 1761: 1757: 1754: 1750: 1747: 1744: 1740: 1739: 1734: 1729: 1728: 1715: 1711: 1707: 1703: 1699: 1695: 1690: 1685: 1682:(1): 83ā€“108, 1681: 1677: 1670: 1655: 1653:9783658106195 1649: 1645: 1644: 1636: 1632: 1621: 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1602: 1596: 1594: 1590: 1585: 1583: 1579: 1576: 1573: =  1572: 1567: 1565: 1561: 1557: 1553: 1550: 1545: 1543: 1539: 1535: 1531: 1527: 1523: 1520:. An element 1519: 1516: 1512: 1508: 1505: 1501: 1497: 1493: 1489: 1479: 1477: 1448: 1422: 1419: 1408: 1403: 1401: 1397: 1393: 1377: 1365: 1359: 1356: 1348: 1344: 1335: 1326: 1324: 1321: Ć—  1320: 1316: 1312: 1308: 1304: 1300: 1296: 1295: 1290: 1286: 1282: 1278: 1274: 1271: 1267: 1264: 1260: 1255: 1253: 1249: 1245: 1241: 1237: 1227: 1223: 1220: ā‰   1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1165: 1163: 1159: 1155: 1151: 1147: 1143: 1136: 1132: 1128: 1112: 1109: 1104: 1101: 1098: 1094: 1090: 1085: 1081: 1072: 1068: 1064: 1056: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1012: 1008: 1003: 999: 980: 977: 974: 971: 965: 959: 952: 951: 950: 946: 942: 922: 919: 911: 899: 898: 897: 873: 870: 864: 858: 855: 852: 844: 841: 835: 833: 828: 818: 812: 809: 806: 804: 796: 790: 779: 778: 777: 756: 731: 727: 723: 719: 715: 705: 703: 697: 690: 683: 679: 667: 663: 655: 649: 639: 635: 631: 620: 616: 594: 565: 537: 532: 522: 516: 507: 500: 494: 490: 485: 479: 475: 448: 437: 427: 423: 414: 410: 388: 362: 350: 340:the endpoint 327: 324: 315: 286: 263: 260: 251: 240: 231: 226:. For a loop 210: 202: 199: 195: 191: 188: 181: 177: 161: 149: 143: 140: 128: 124: 110: 108: 104: 100: 96: 95:single-valued 92: 88: 84: 83:covering maps 80: 76: 72: 68: 64: 60: 56: 52: 44: 40: 36: 32: 28: 23: 16: 1736: 1689:math/0206298 1679: 1675: 1669: 1657:. Retrieved 1642: 1635: 1586: 1574: 1570: 1568: 1563: 1560:Galois group 1555: 1551: 1546: 1537: 1533: 1529: 1525: 1521: 1517: 1506: 1499: 1491: 1487: 1485: 1446: 1409:: Consider 1404: 1399: 1395: 1346: 1340: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1292: 1288: 1284: 1280: 1272: 1265: 1256: 1251: 1247: 1239: 1235: 1221: 1217: 1213: 1212:again above 1209: 1205: 1201: 1197: 1193: 1189: 1181: 1171: 1161: 1157: 1138: 1134: 1130: 1070: 1066: 1059: 1057: 1044: 1040: 1028: 1018: 1006: 995: 944: 940: 937: 895: 729: 725: 711: 701: 692: 685: 681: 677: 665: 661: 644: 637: 633: 629: 619:homomorphism 614: 425: 421: 409:group action 229: 116: 106: 98: 94: 87:ramification 78: 54: 48: 34: 30: 15: 1760:TAC Reprint 1733:"Monodromy" 1605:Braid group 1204:above  1164:) as well. 467:is exactly 237:, denote a 75:singularity 51:mathematics 1772:Categories 1725:References 1676:J. Algebra 1407:foliations 1277:connection 436:stabilizer 133:, and let 113:Definition 1751:R. Brown 1743:EMS Press 1714:119634752 1659:5 October 1502:over the 1375:→ 1369:~ 1174:fibration 1091:⋯ 978:π 859:⁡ 853:∣ 845:∈ 813:⁡ 751:∖ 652:into the 598:~ 584:based at 569:~ 526:~ 511:~ 491:π 480:∗ 452:~ 392:~ 354:~ 351:γ 328:γ 325:⋅ 319:~ 290:~ 287:γ 261:∈ 255:~ 233:based at 200:− 159:→ 153:~ 107:polydromy 91:functions 79:monodromy 55:monodromy 1599:See also 1392:groupoid 1294:holonomy 1002:helicoid 176:covering 39:helicoid 1755:(2006). 1706:2091962 1513:of the 1268:over a 1261:. In a 1250:, as a 1242:) as a 1238:,  1160:,  1133:,  1035:of the 708:Example 680:,  660:is the 632:,  411:of the 1712:  1704:  1650:  1125:. The 1009:> 0 228:Ī³: ā†’ 125:based 1710:S2CID 1684:arXiv 1627:Notes 1532:) of 1504:field 691:)/Is( 276:, by 180:fiber 178:with 174:be a 103:group 1661:2017 1648:ISBN 1486:Let 1476:germ 1275:, a 1148:and 949:but 871:> 239:lift 117:Let 101:: a 69:and 1694:doi 1680:281 1305:is 1283:in 1196:in 1039:of 810:log 656:on 438:of 430:on 49:In 1774:: 1741:, 1735:, 1708:, 1702:MR 1700:, 1692:, 1678:, 1595:. 1584:. 1566:. 1544:. 1524:= 1402:. 1325:. 1222:c* 1210:c* 1113:id 1055:. 856:Re 704:. 650:)) 424:, 109:. 65:, 61:, 53:, 45:). 1696:: 1686:: 1663:. 1575:C 1571:F 1564:f 1556:f 1554:( 1552:L 1538:x 1536:( 1534:F 1530:x 1528:( 1526:f 1522:y 1518:F 1507:F 1500:x 1492:x 1490:( 1488:F 1459:F 1447:M 1433:) 1428:F 1423:, 1420:M 1417:( 1400:X 1396:X 1378:X 1366:X 1360:: 1357:p 1347:X 1323:G 1319:M 1315:B 1311:G 1307:G 1303:B 1299:m 1289:m 1285:M 1281:m 1273:M 1266:B 1248:c 1240:x 1236:X 1234:( 1232:1 1229:Ļ€ 1218:c 1214:x 1206:x 1202:c 1198:X 1194:x 1190:C 1182:X 1162:C 1158:n 1141:j 1139:M 1135:C 1131:n 1110:= 1105:1 1102:+ 1099:p 1095:M 1086:1 1082:M 1071:p 1067:j 1062:j 1060:M 1045:S 1041:S 1029:S 1007:Ļ 981:i 975:2 972:+ 969:) 966:z 963:( 960:F 947:) 945:z 943:( 941:F 923:1 920:= 916:| 912:z 908:| 877:} 874:0 868:) 865:z 862:( 849:C 842:z 839:{ 836:= 829:E 822:) 819:z 816:( 807:= 800:) 797:z 794:( 791:F 774:E 760:} 757:0 754:{ 747:C 736:E 732:) 730:z 728:( 726:F 698:) 695:x 693:F 688:x 686:F 682:x 678:X 676:( 674:1 671:Ļ€ 658:F 647:x 645:F 643:( 641:* 638:H 634:x 630:X 628:( 626:1 623:Ļ€ 595:x 566:X 553:F 538:) 533:) 523:x 517:, 508:X 501:( 495:1 486:( 476:p 449:x 432:F 428:) 426:x 422:X 420:( 418:1 416:Ļ€ 389:x 366:) 363:1 360:( 316:x 264:F 252:x 235:x 230:X 214:) 211:x 208:( 203:1 196:p 192:= 189:F 162:X 150:X 144:: 141:p 131:x 119:X 35:C 31:C

Index


complex logarithm
helicoid
Riemann surface
mathematics
mathematical analysis
algebraic topology
algebraic geometry
differential geometry
singularity
covering maps
ramification
functions
group
locally connected
topological space
covering
fiber
lift
group action
fundamental group
stabilizer
homomorphism
automorphism group
complex analysis
analytic continuation
analytic function
infinite cyclic
helicoid
differential equations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘