Knowledge

Return loss

Source 📝

180:'Return Loss' will be infinite. Conversely if the line is terminated in an open circuit, the reflected power will be equal to the incident power; all of the incident power will be lost in the sense that none of it will be transferred to a load, and RL will be zero. Thus the numerical values of RL tend in the opposite sense to that expected of a 'loss'. 316:
In practice, the sign ascribed to RL is largely immaterial. If a transmission line includes several discontinuities along its length, the total return loss will be the sum of the RLs caused by each discontinuity, and provided all RLs are given the same sign, no error or ambiguity will result.
179:
From a certain perspective 'Return Loss' is a misnomer. The usual function of a transmission line is to convey power from a source to a load with minimal loss. If a transmission line is correctly matched to a load, the reflected power will be zero, no power will be lost due to reflection, and
663: 799: 710:
to transmit signals over optical fiber, and a low optical return loss (ORL) can cause the laser to stop transmitting correctly. The measurement of ORL is becoming more important in the characterization of optical networks as the use of
300: 138: 172:(Γ). Increasing return loss corresponds to lower SWR. Return loss is a measure of how well devices or lines are matched. A match is good if the return loss is high. A high return loss is desirable and results in a lower 520: 440: 202:. However, return loss has historically been expressed as a negative number, and this convention is still widely found in the literature. Strictly speaking, if a negative sign is ascribed to RL, the ratio of 864: 833: 533:. Thus, a large positive return loss indicates the reflected power is small relative to the incident power, which indicates good impedance match between transmission line and load. 572: 721: 382: 445:
Return loss is the negative of the magnitude of the reflection coefficient in dB. Since power is proportional to the square of the voltage, return loss is given by,
715:
increases. These systems use lasers that have a lower tolerance for ORL, and introduce elements into the network that are located in close proximity to the laser.
692:
such as a fiber endface. At those interfaces, a fraction of the optical signal is reflected back toward the source. This reflection phenomenon is also called "
216: 59: 451: 390: 927: 961: 895: 838: 807: 712: 45:. This discontinuity can be caused by a mismatch between the termination or load connected to the line and the 993: 988: 983: 890: 658:{\displaystyle RL(\mathrm {dB} )=P_{\mathrm {i} }(\mathrm {dB} )-P_{\mathrm {r} }(\mathrm {dB} )\,} 46: 978: 794:{\displaystyle {\text{ORL}}(\mathrm {dB} )=10\log _{10}{P_{\mathrm {i} } \over P_{\mathrm {r} }}} 530: 952: 362: 169: 998: 544:), then the return loss in dB can be calculated as the difference between the incident power 367: 344: 8: 165: 295:{\displaystyle RL'(\mathrm {dB} )=10\log _{10}{P_{\mathrm {r} } \over P_{\mathrm {i} }}} 694: 526: 133:{\displaystyle RL(\mathrm {dB} )=10\log _{10}{P_{\mathrm {i} } \over P_{\mathrm {r} }}} 22: 885: 38: 689: 682: 30: 875: 515:{\displaystyle RL(\mathrm {dB} )=-20\log _{10}\left|{\mathit {\Gamma }}\right|} 173: 972: 880: 678: 435:{\displaystyle {\mathit {\Gamma }}={V_{\mathrm {r} } \over V_{\mathrm {i} }}} 42: 536:
If the incident power and the reflected power are expressed in 'absolute'
956: 563: 552: 537: 50: 317:
Whichever convention is used, it will always be understood that
16:
Measure of power reflected by a discontinuity in a line or fiber
674: 340: 34: 962:
Optical Return Loss Testing—Ensuring High-Quality Transmission
707: 686: 347:
mismatch. The ratio of the amplitude of the reflected wave
343:
traveling down a conductor can occur at a discontinuity or
541: 842: 811: 841: 810: 724: 575: 454: 393: 370: 219: 62: 188:
As defined above, RL will always be positive, since
49:
of the line. It is usually expressed as a ratio in
858: 827: 793: 657: 514: 434: 376: 294: 132: 970: 681:) a loss that takes place at discontinuities of 339:In metallic conductor systems, reflections of a 859:{\displaystyle \scriptstyle P_{\mathrm {i} }} 828:{\displaystyle \scriptstyle P_{\mathrm {r} }} 654: 932:IEEE Antennas & Propagation Magazine 971: 928:"Definition and Misuse of Return Loss" 354:to the amplitude of the incident wave 29:is a measure in relative terms of the 706:Fiber optic transmission systems use 920: 13: 866:is the incident, or input, power. 849: 818: 783: 771: 737: 734: 647: 644: 634: 618: 615: 605: 589: 586: 503: 468: 465: 424: 412: 396: 371: 284: 272: 238: 235: 122: 110: 76: 73: 37:reflected by a discontinuity in a 14: 1010: 938:, iss.2, pp. 166–167, April 2009. 896:Optical time domain reflectometer 713:wavelength-division multiplexing 555:units) and the reflected power 164:Return loss is related to both 146:(dB) is the return loss in dB, 741: 730: 651: 640: 622: 611: 593: 582: 472: 461: 242: 231: 80: 69: 1: 908: 334: 7: 869: 835:is the reflected power and 10: 1015: 964:EXFO Application note #044 668: 153:is the incident power and 891:Time-domain reflectometer 903: 308:(dB) is the negative of 47:characteristic impedance 685:, especially at an air- 377:{\displaystyle \Gamma } 183: 160:is the reflected power. 953:Federal Standard 1037C 860: 829: 795: 659: 516: 436: 378: 363:reflection coefficient 296: 170:reflection coefficient 134: 994:Electrical parameters 861: 830: 796: 660: 517: 437: 379: 297: 135: 839: 808: 722: 573: 452: 391: 368: 217: 60: 166:standing wave ratio 989:Engineering ratios 856: 855: 825: 824: 791: 695:Fresnel reflection 655: 562:(also in absolute 512: 432: 374: 292: 210:power is implied; 130: 23:telecommunications 984:Radio electronics 886:Signal reflection 789: 728: 677:(particularly in 430: 324:can never exceed 290: 195:can never exceed 128: 39:transmission line 1006: 939: 926:Trevor S. Bird, 924: 865: 863: 862: 857: 854: 853: 852: 834: 832: 831: 826: 823: 822: 821: 800: 798: 797: 792: 790: 788: 787: 786: 776: 775: 774: 764: 759: 758: 740: 729: 726: 683:refractive index 664: 662: 661: 656: 650: 639: 638: 637: 621: 610: 609: 608: 592: 521: 519: 518: 513: 511: 507: 506: 493: 492: 471: 441: 439: 438: 433: 431: 429: 428: 427: 417: 416: 415: 405: 400: 399: 383: 381: 380: 375: 361:is known as the 301: 299: 298: 293: 291: 289: 288: 287: 277: 276: 275: 265: 260: 259: 241: 230: 139: 137: 136: 131: 129: 127: 126: 125: 115: 114: 113: 103: 98: 97: 79: 1014: 1013: 1009: 1008: 1007: 1005: 1004: 1003: 969: 968: 967: 943: 942: 925: 921: 911: 906: 872: 848: 847: 843: 840: 837: 836: 817: 816: 812: 809: 806: 805: 782: 781: 777: 770: 769: 765: 763: 754: 750: 733: 725: 723: 720: 719: 671: 643: 633: 632: 628: 614: 604: 603: 599: 585: 574: 571: 570: 561: 550: 502: 501: 497: 488: 484: 464: 453: 450: 449: 423: 422: 418: 411: 410: 406: 404: 395: 394: 392: 389: 388: 369: 366: 365: 359: 352: 337: 330: 323: 283: 282: 278: 271: 270: 266: 264: 255: 251: 234: 223: 218: 215: 214: 201: 194: 186: 159: 152: 121: 120: 116: 109: 108: 104: 102: 93: 89: 72: 61: 58: 57: 17: 12: 11: 5: 1012: 1002: 1001: 996: 991: 986: 981: 979:Wave mechanics 966: 965: 959: 949: 948: 947: 941: 940: 918: 917: 916: 915: 910: 907: 905: 902: 901: 900: 899: 898: 888: 883: 878: 876:Hybrid balance 871: 868: 851: 846: 820: 815: 802: 801: 785: 780: 773: 768: 762: 757: 753: 749: 746: 743: 739: 736: 732: 699:," or simply " 670: 667: 666: 665: 653: 649: 646: 642: 636: 631: 627: 624: 620: 617: 613: 607: 602: 598: 595: 591: 588: 584: 581: 578: 559: 548: 540:units, (e.g., 529:bars indicate 523: 522: 510: 505: 500: 496: 491: 487: 483: 480: 477: 474: 470: 467: 463: 460: 457: 443: 442: 426: 421: 414: 409: 403: 398: 373: 357: 350: 336: 333: 328: 321: 314: 313: 302: 286: 281: 274: 269: 263: 258: 254: 250: 247: 244: 240: 237: 233: 229: 226: 222: 199: 192: 185: 182: 174:insertion loss 162: 161: 157: 150: 140: 124: 119: 112: 107: 101: 96: 92: 88: 85: 82: 78: 75: 71: 68: 65: 15: 9: 6: 4: 3: 2: 1011: 1000: 997: 995: 992: 990: 987: 985: 982: 980: 977: 976: 974: 963: 960: 958: 954: 951: 950: 945: 944: 937: 933: 929: 923: 919: 913: 912: 897: 894: 893: 892: 889: 887: 884: 882: 881:Mismatch loss 879: 877: 874: 873: 867: 844: 813: 778: 766: 760: 755: 751: 747: 744: 718: 717: 716: 714: 709: 704: 702: 698: 696: 691: 688: 684: 680: 676: 629: 625: 600: 596: 579: 576: 569: 568: 567: 565: 558: 554: 551:(in absolute 547: 543: 539: 534: 532: 528: 508: 498: 494: 489: 485: 481: 478: 475: 458: 455: 448: 447: 446: 419: 407: 401: 387: 386: 385: 364: 360: 353: 346: 342: 332: 327: 320: 311: 307: 303: 279: 267: 261: 256: 252: 248: 245: 227: 224: 220: 213: 212: 211: 209: 205: 198: 191: 181: 177: 175: 171: 167: 156: 149: 145: 141: 117: 105: 99: 94: 90: 86: 83: 66: 63: 56: 55: 54: 52: 48: 44: 43:optical fiber 40: 36: 32: 28: 24: 19: 999:Fiber optics 946:Bibliography 935: 931: 922: 803: 705: 701:Fresnel loss 700: 693: 679:fiber optics 672: 556: 545: 535: 524: 444: 355: 348: 338: 325: 318: 315: 309: 305: 207: 203: 196: 189: 187: 178: 163: 154: 147: 143: 26: 20: 18: 957:MIL-STD-188 27:return loss 973:Categories 909:References 525:where the 335:Electrical 168:(SWR) and 955:and from 761:⁡ 690:interface 626:− 531:magnitude 504:Γ 495:⁡ 479:− 397:Γ 372:Γ 345:impedance 262:⁡ 204:reflected 100:⁡ 870:See also 566:units), 527:vertical 228:′ 208:incident 51:decibels 669:Optical 564:decibel 553:decibel 538:decibel 33:of the 936:vol.51 804:where 708:lasers 675:optics 341:signal 304:where 142:where 53:(dB); 35:signal 914:Notes 904:Notes 687:glass 312:(dB). 31:power 697:loss 184:Sign 752:log 727:ORL 703:." 673:In 542:dBm 486:log 306:RL' 253:log 206:to 91:log 41:or 21:In 975:: 934:, 930:, 756:10 748:10 490:10 482:20 384:. 331:. 310:RL 257:10 249:10 176:. 144:RL 95:10 87:10 25:, 850:i 845:P 819:r 814:P 784:r 779:P 772:i 767:P 745:= 742:) 738:B 735:d 731:( 652:) 648:B 645:d 641:( 635:r 630:P 623:) 619:B 616:d 612:( 606:i 601:P 597:= 594:) 590:B 587:d 583:( 580:L 577:R 560:r 557:P 549:i 546:P 509:| 499:| 476:= 473:) 469:B 466:d 462:( 459:L 456:R 425:i 420:V 413:r 408:V 402:= 358:i 356:V 351:r 349:V 329:i 326:P 322:r 319:P 285:i 280:P 273:r 268:P 246:= 243:) 239:B 236:d 232:( 225:L 221:R 200:i 197:P 193:r 190:P 158:r 155:P 151:i 148:P 123:r 118:P 111:i 106:P 84:= 81:) 77:B 74:d 70:( 67:L 64:R

Index

telecommunications
power
signal
transmission line
optical fiber
characteristic impedance
decibels
standing wave ratio
reflection coefficient
insertion loss
signal
impedance
reflection coefficient
vertical
magnitude
decibel
dBm
decibel
decibel
optics
fiber optics
refractive index
glass
interface
Fresnel reflection
lasers
wavelength-division multiplexing
Hybrid balance
Mismatch loss
Signal reflection

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.