Knowledge

Retrograde tracing

Source đź“ť

20: 73:
Retrograde tracing can be achieved through various means, including the use of viral strains as markers of a cell's connectivity to the injection site. The pseudorabies virus (PRV; Bartha strain), for example, may be used as a suitable tracer due to the propensity of the infection to spread upstream
161:
virus spreads through the CNS in both a retrograde and anterograde fashion, moving up the neural axon into the soma and dendrites in the retrograde application. Deletion of three key membrane protein genes in the PRV-Bartha strain of pseudorabies blocks anterograde spread of the virus and allows for
128:
rabies virus, the virus will continue to replicate and spread throughout the central nervous system until it has systemically infected the entire brain. Deletion of the gene encoding glycoprotein (G protein) in rabies limits the spread of the virus strictly to cells that were initially infected.
77:
Rabies has been shown to be effective for this system of circuit tracing because of its low level of damage to infected cells, specificity of infecting only neurons, and strict limitation of viral spread between neurons to synaptic regions. These factors allow for highly specific traces that can
582:
Naumann, T.; Härtig, W.; Frotscher, M. (2000-11-15). "Retrograde tracing with Fluoro-Gold: different methods of tracer detection at the ultrastructural level and neurodegenerative changes of back-filled neurons in long-term studies".
692:
Bácskai, Tímea; Rusznák, Zoltán; Paxinos, George; Watson, Charles (2014-01-01). "Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing".
61:, which is used to trace neural connections from their source to their point of termination (i.e. from cell body to synapse). Both the anterograde and retrograde tracing techniques are based on the visualization of 643:"Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex–Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices" 85:
nuclei of anaesthetized animals. The animals are allowed to survive for a few days and then euthanized. The cells in the origin of projection are visualized through an inverted
748:
Schwarz, Lindsay A.; Miyamichi, Kazunari; Gao, Xiaojing J.; Beier, Kevin T.; Weissbourd, Brandon; DeLoach, Katherine E.; Ren, Jing; Ibanes, Sandy; Malenka, Robert C. (2015).
174:, is a non-viral fluorescent retrograde tracer whose movement up the axon and across the dendritic tree can be visualized via fluorescent microscopy or immunohistochemistry. 365:
Katz, L. C.; Burkhalter, A.; Dreyer, W. J. (1984-08-09). "Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex".
96:
virus. This virus was capable of infecting a single cell and jumping across one synapse; this allowed the researchers to investigate the local connectivity of neurons.
45:). Retrograde tracing techniques allow for detailed assessment of neuronal connections between a target population of neurons and their inputs throughout the 129:
Transsynaptic spread of the virus can be limited to monosynaptic transmission to a neuron of origin by pseudotyping the G protein and putting the gene under
801:"Organization of Multisynaptic Inputs to the Dorsal and Ventral Dentate Gyrus: Retrograde Trans-Synaptic Tracing with Rabies Virus Vector in the Rat" 215:"Interconnected Parallel Circuits between Rat Nucleus Accumbens and Thalamus Revealed by Retrograde Transynaptic Transport of Pseudorabies Virus" 535:"Exploiting Circuit-Specific Spread of Pseudorabies Virus in the Central Nervous System: Insights to Pathogenesis and Circuit Tracers" 23: 636:
Retrograde tracing has been extensively used in a broad array of neuroscience studies, including the following examples:
19: 474: 162:
additional manipulations to the viral DNA such as fluorescence to be added, allowing for retrograde circuit tracing.
117: 133:-control. This viral spread can be visualized through methods including addition of a fluorescence gene such as 266:"Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway" 49:. These techniques allow the "mapping" of connections between neurons in a particular structure (e.g. the 134: 78:
reveal individual neuronal connections in a circuit without inflicting physical damage on the cells.
498:
Huang, Z. Josh; Zeng, Hongkui (2013-07-10). "Genetic Approaches to Neural Circuits in the Mouse".
86: 862:"Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing" 74:
through a pathway of synaptically linked neurons, thus revealing the nature of their circuitry.
912: 193: 799:
Ohara, Shinya; Sato, Sho; Tsutsui, Ken-Ichiro; Witter, Menno P.; Iijima, Toshio (2013-11-06).
418:"Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons" 92:
A specialist technique was developed by Wickersham and colleagues, which employed a modified
812: 761: 750:"Viral-genetic tracing of the input–output organization of a central noradrenaline circuit" 374: 333: 142: 8: 183: 171: 58: 816: 765: 511: 378: 16:
Technique for mapping neural circuits in the "upstream" direction, from target to source
886: 861: 843: 800: 782: 749: 736: 675: 642: 616: 442: 417: 398: 342: 317: 290: 265: 241: 231: 214: 596: 891: 848: 830: 787: 728: 720: 680: 662: 608: 600: 564: 556: 515: 480: 470: 447: 390: 347: 295: 281: 246: 740: 620: 402: 881: 873: 838: 820: 777: 769: 710: 702: 670: 658: 654: 592: 546: 507: 437: 429: 382: 337: 329: 285: 277: 236: 226: 105: 62: 318:"Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask)" 825: 433: 130: 188: 46: 715: 706: 906: 834: 724: 666: 604: 560: 484: 154: 138: 213:
O'Donnell, P.; LavĂ­n, A.; Enquist, L. W.; Grace, A. A.; Card, J. P. (1997).
895: 860:
DeNardo, Laura A; Berns, Dominic S; DeLoach, Katherine; Luo, Liqun (2015).
852: 791: 732: 684: 612: 568: 519: 451: 351: 299: 158: 113: 34: 394: 250: 54: 773: 316:
Davis, Benjamin M.; Rall, Glenn F.; Schnell, Matthias J. (2015-11-06).
386: 125: 50: 42: 877: 551: 534: 641:
Song, Chenghui; Ehlers, Vanessa L.; Moyer, James R. (2015-09-30).
38: 37:
to trace neural connections from their point of termination (the
121: 93: 416:
Wickersham IR, Lyon DC, Barnard RJ, et al. (March 2007).
212: 81:
Another technique involves injecting special "beads" into the
82: 691: 109: 26:
of Long-Evans rat marked with retrograde tracer fluoro-gold
747: 859: 798: 581: 120:
which is transported towards the cell body via axonal
415: 364: 904: 315: 640: 263: 409: 464: 885: 842: 824: 781: 714: 674: 550: 497: 441: 341: 289: 240: 230: 18: 532: 905: 334:10.1146/annurev-virology-100114-055157 148: 311: 309: 264:Luo, A. H.; Aston-Jones, G. (2009). 512:10.1146/annurev-neuro-062012-170307 13: 631: 539:The Journal of Infectious Diseases 232:10.1523/jneurosci.17-06-02143.1997 14: 924: 306: 282:10.1111/j.1460-9568.2008.06606.x 270:European Journal of Neuroscience 53:) and the target neurons in the 585:Journal of Neuroscience Methods 99: 659:10.1523/JNEUROSCI.2329-15.2015 575: 526: 491: 458: 358: 257: 206: 165: 1: 597:10.1016/s0165-0270(00)00292-2 533:Enquist, L. W. (2002-12-01). 500:Annual Review of Neuroscience 465:TotalBoox; TBX (2011-01-01). 199: 68: 33:is a research method used in 826:10.1371/journal.pone.0078928 695:Brain Structure and Function 434:10.1016/j.neuron.2007.01.033 104:After being taken up at the 57:. The opposite technique is 7: 545:(Supplement_2): S209–S214. 467:Research Advances in Rabies 177: 170:Fluoro-Gold, also known as 10: 929: 112:of the target neuron, the 707:10.1007/s00429-012-0501-7 322:Annual Review of Virology 135:green fluorescent protein 647:Journal of Neuroscience 219:Journal of Neuroscience 87:fluorescence microscope 41:) to their source (the 194:Viral neuronal tracing 27: 22: 469:. Elsevier Science. 143:immunohistochemistry 866:Nature Neuroscience 817:2013PLoSO...878928O 774:10.1038/nature14600 766:2015Natur.524...88S 653:(39): 13511–13524. 379:1984Natur.310..498K 184:Anterograde tracing 172:hydroxystilbamidine 59:anterograde tracing 716:20.500.11937/26565 149:Pseudorabies virus 116:is enveloped in a 31:Retrograde tracing 28: 872:(11): 1687–1697. 373:(5977): 498–500. 106:synaptic terminal 920: 899: 889: 856: 846: 828: 795: 785: 744: 718: 688: 678: 625: 624: 579: 573: 572: 554: 530: 524: 523: 495: 489: 488: 462: 456: 455: 445: 413: 407: 406: 387:10.1038/310498a0 362: 356: 355: 345: 313: 304: 303: 293: 261: 255: 254: 244: 234: 225:(6): 2143–2167. 210: 153:A member of the 63:axonal transport 928: 927: 923: 922: 921: 919: 918: 917: 903: 902: 878:10.1038/nn.4131 760:(7563): 88–92. 634: 632:Further reading 629: 628: 580: 576: 531: 527: 496: 492: 477: 463: 459: 414: 410: 363: 359: 314: 307: 262: 258: 211: 207: 202: 180: 168: 151: 137:onto the viral 102: 71: 17: 12: 11: 5: 926: 916: 915: 901: 900: 857: 811:(11): e78928. 796: 745: 701:(1): 303–321. 689: 633: 630: 627: 626: 574: 552:10.1086/344278 525: 490: 475: 457: 408: 357: 305: 276:(4): 748–760. 256: 204: 203: 201: 198: 197: 196: 191: 189:Neural pathway 186: 179: 176: 167: 164: 150: 147: 101: 98: 70: 67: 47:nervous system 15: 9: 6: 4: 3: 2: 925: 914: 913:Neural coding 911: 910: 908: 897: 893: 888: 883: 879: 875: 871: 867: 863: 858: 854: 850: 845: 840: 836: 832: 827: 822: 818: 814: 810: 806: 802: 797: 793: 789: 784: 779: 775: 771: 767: 763: 759: 755: 751: 746: 742: 738: 734: 730: 726: 722: 717: 712: 708: 704: 700: 696: 690: 686: 682: 677: 672: 668: 664: 660: 656: 652: 648: 644: 639: 638: 637: 622: 618: 614: 610: 606: 602: 598: 594: 590: 586: 578: 570: 566: 562: 558: 553: 548: 544: 540: 536: 529: 521: 517: 513: 509: 505: 501: 494: 486: 482: 478: 476:9780123870414 472: 468: 461: 453: 449: 444: 439: 435: 431: 428:(5): 639–47. 427: 423: 419: 412: 404: 400: 396: 392: 388: 384: 380: 376: 372: 368: 361: 353: 349: 344: 339: 335: 331: 328:(1): 451–71. 327: 323: 319: 312: 310: 301: 297: 292: 287: 283: 279: 275: 271: 267: 260: 252: 248: 243: 238: 233: 228: 224: 220: 216: 209: 205: 195: 192: 190: 187: 185: 182: 181: 175: 173: 163: 160: 156: 155:herpesviridae 146: 144: 140: 136: 132: 127: 123: 119: 115: 111: 107: 97: 95: 90: 88: 84: 79: 75: 66: 64: 60: 56: 52: 48: 44: 40: 36: 32: 25: 21: 869: 865: 808: 804: 757: 753: 698: 694: 650: 646: 635: 591:(1): 11–21. 588: 584: 577: 542: 538: 528: 503: 499: 493: 466: 460: 425: 421: 411: 370: 366: 360: 325: 321: 273: 269: 259: 222: 218: 208: 169: 159:pseudorabies 157:family, the 152: 114:rabies virus 103: 100:Rabies virus 91: 80: 76: 72: 35:neuroscience 30: 29: 506:: 183–215. 166:Fluoro-Gold 141:or through 24:PVH neurons 200:References 69:Techniques 835:1932-6203 725:1863-2653 667:0270-6474 605:0165-0270 561:0022-1899 485:968996286 124:. In the 43:cell body 907:Category 896:26457553 853:24223172 805:PLOS ONE 792:26131933 741:17675285 733:23288256 685:26424895 621:24155326 613:11074092 569:12424699 520:23682658 452:17329205 403:36191957 352:26958924 300:19200068 178:See also 139:cassette 126:wildtype 887:4624522 844:3819259 813:Bibcode 783:4587569 762:Bibcode 676:4588614 443:2629495 395:6205278 375:Bibcode 343:6842493 291:3649071 251:9045740 242:6793770 118:vesicle 39:synapse 894:  884:  851:  841:  833:  790:  780:  754:Nature 739:  731:  723:  683:  673:  665:  619:  611:  603:  567:  559:  518:  483:  473:  450:  440:  422:Neuron 401:  393:  367:Nature 350:  340:  298:  288:  249:  239:  122:dynein 94:rabies 737:S2CID 617:S2CID 399:S2CID 83:brain 55:brain 892:PMID 849:PMID 831:ISSN 788:PMID 729:PMID 721:ISSN 681:PMID 663:ISSN 609:PMID 601:ISSN 565:PMID 557:ISSN 516:PMID 481:OCLC 471:ISBN 448:PMID 391:PMID 348:PMID 296:PMID 247:PMID 110:axon 882:PMC 874:doi 839:PMC 821:doi 778:PMC 770:doi 758:524 711:hdl 703:doi 699:219 671:PMC 655:doi 593:doi 589:103 547:doi 543:186 508:doi 438:PMC 430:doi 383:doi 371:310 338:PMC 330:doi 286:PMC 278:doi 237:PMC 227:doi 131:Cre 108:or 51:eye 909:: 890:. 880:. 870:18 868:. 864:. 847:. 837:. 829:. 819:. 807:. 803:. 786:. 776:. 768:. 756:. 752:. 735:. 727:. 719:. 709:. 697:. 679:. 669:. 661:. 651:35 649:. 645:. 615:. 607:. 599:. 587:. 563:. 555:. 541:. 537:. 514:. 504:36 502:. 479:. 446:. 436:. 426:53 424:. 420:. 397:. 389:. 381:. 369:. 346:. 336:. 324:. 320:. 308:^ 294:. 284:. 274:29 272:. 268:. 245:. 235:. 223:17 221:. 217:. 145:. 89:. 65:. 898:. 876:: 855:. 823:: 815:: 809:8 794:. 772:: 764:: 743:. 713:: 705:: 687:. 657:: 623:. 595:: 571:. 549:: 522:. 510:: 487:. 454:. 432:: 405:. 385:: 377:: 354:. 332:: 326:2 302:. 280:: 253:. 229::

Index


PVH neurons
neuroscience
synapse
cell body
nervous system
eye
brain
anterograde tracing
axonal transport
brain
fluorescence microscope
rabies
synaptic terminal
axon
rabies virus
vesicle
dynein
wildtype
Cre
green fluorescent protein
cassette
immunohistochemistry
herpesviridae
pseudorabies
hydroxystilbamidine
Anterograde tracing
Neural pathway
Viral neuronal tracing
"Interconnected Parallel Circuits between Rat Nucleus Accumbens and Thalamus Revealed by Retrograde Transynaptic Transport of Pseudorabies Virus"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑