Knowledge

Reduction-sensitive nanoparticles

Source đź“ť

263:
backbone, side chains, on the surface, etc. Research has been conducted with reduction sensitivity mechanisms using polymeric, lipid-polymer hybrids, and micelles nanoparticles. The production methods would be dependent on the delivery method design for the nanoparticle. Polymeric nanoparticle synthesis occurs from the addition of electrolyte-saturated or a nonelectrolyte-saturated solution with a water-miscible solvent; additionally, the mixture should be constantly stirred. Lipid micelles are formed by amphiphilic molecules through self-assembly. Lipid-polymer hybrids have multiple synthesis methods which consist of the single-step method, the two-step method, nanoprecipitation, emulsification-solvent evaporation, and a non-conventional two-step method.
272:
the cytosol and cell nucleus. Furthermore, drug release in the cytosol and cell nucleus has shown the potential to effectively administer treatment of more potent and poorly soluble anticancer drugs. The quick-release of RSNPs has the potential to offer an effective treatment for multidrug-resistant tumors. This addresses an important limitation of nanoparticles. Nanoparticle drug delivery often exhibits slow drug release. The slow release can lead the nanomedicine to be released at low concentrations; moreover, these limited concentrations inhibit the cell death of the tumor cells. Polymeric RSNPs have shown improved solubility, stability, biocompatibility, and decreased drug toxicity; for example, carbohydrate polymers.
92:(TME). Nanoparticles can be synthesized to activate when exposed to selective characteristics of the tumor microenvironments. TMEs depict unique characteristics that create a differing microenvironment in comparison to healthy tissue. Thus, nanoparticles can be designed to react to the unique elements of TMEs such as the formation of a reducing environment. The reducing abilities of the TMEs are due to the expression of reducing agents. RSNPs are formulated to express reduction-sensitive bonds that are cleaved when exposed to reducing agents. After the reduction occurs the degradation of the nanoparticles commences and the loaded drugs begin to release. 156: 312: 281:
RSNPs are designed to be receptive to higher concentrations of reducing agents for the ability to distinguish between cancer cells and healthy cells. Furthermore, the other limitations are dependent on other characterizations, such as the type of nanoparticle; For example, micelles nanoparticles' lower levels of physical stability which can lead to drug loss and release in unwanted locations. Additionally, polymeric nanoparticles cannot effectively target the tumor and often undergo drug release too early.
211:
cleaved. Following the activation process, the degradation of the drug carrier results in the drug release. These linkages are commonly used between hydrophilic and hydrophobic segments in copolymers. Moreover, RSNP's hydrophilic shells will degrade in response to the reducing environment. The disulfide bonds are used as linkers and cross-linking agents. Disulfide bonds can be expressed attached to the side chains, the backbone, on the surface, and as linkages between moieties.
106:
as a polymeric, micelle, or lipid-polymeric hybrid. The reduction sensitivity of nanoparticles is reliant on the reduction-responsive chemical structures infused into the nanoparticle. Reduction occurs when the number of electrons increases in a chemical species. Reduction sensitive nanoparticles depict high plasma stability and quick responsiveness/activation. The reducing environment of tumor cells is greatly impacted by the oxidation and reduction states of
199: 304:
conducted to evaluate the potential of RSNP as a therapeutic for inflammatory bowel disease. The activation mechanism consisted of pH and redox sensitivity. The outcomes of the experiment demonstrated higher selectivity to the reducing potential; therefore establishing the promising potential of RSNPs for the treatment of inflammatory bowel disease. Other studies have demonstrated potential applications as activatable magnetic resonance
224: 77: 20: 85:
could result in undertreatment of tumor cells with little to no effect. Concentration thresholds must be met to initiate cell death amongst tumor cells. However, the uncontrolled release of treatment could also permit adverse side effects. RSNPs have improved rates of drug release which improves the medication concentrations that can be administered to a specific area.
38:. Drug delivery systems using RSNP can be loaded with different drugs that are designed to be released within a concentrated reducing environment, such as the tumor-targeted microenvironment. Reduction-Sensitive Nanoparticles provide an efficient method of targeted drug delivery for the improved controlled release of medication within localized areas of the body. 295:
RSNPS can also increase the penetration of cancer treatment to the cancer cells. Specific applications include, but are not limited to Breast Cancer, Liver Cancer (hepatoma), Melanoma, Lung Cancer, Malignant Glioma, Ovarian Cancer, Cervical Cancer, Subcutaneous EAT, Pancreatic Cancer, Colon Cancer, Prostate Cancer, etc.
236:
and disulfide bonds have estimated bond energy of 268 kJ/mol; the lower bond energy holds a higher potential to design an increased sensitive redox-responsive delivery. Diselenide bonds have been observed to be attached to hydrophobic parts of amphiphilic triblocks or hyperbranched copolymers to create micelles.
175:
that is naturally produced in the liver and takes part in tissue building, tissue repair, immune responses, chemical production, and protein production. GSH is also a significant signaler of cell differentiation, proliferation, apoptosis, and ferroptosis. Furthermore, the glutathione concentration in
58:
in the localized area. The cleavage/degradation of chemical bonds will enable the drugs loaded within the nanoparticle to be released into the body. Depending on the activation mechanism, Redox-Sensitive Nanoparticles can be associated with Reduction-Sensitive Nanoparticles if the chemical activation
49:
are small in size with maximized surface area and have an enhanced level of solubility; these elements result in an improved bioavailability. Reduction-Sensitive Nanoparticles are nanoparticles that are responsive to reduction signaling environments. Redox-Sensitive Nanoparticles can be responsive to
271:
Reduction Sensitive Nanoparticles provide a mode of localized drug delivery by targeting elements of the tumor microenvironment. RSNP has the advantages of high stability when adhering to hydraulic degradation, fast responsiveness to the intracellular reducing environment, and drug release occurs in
235:
bonds share comparable reduction responsiveness to disulfide bonds. Diselenide consists of two selenium atoms along with an additional element or radical. Diselenide bonds are dynamic covalent bonds that can be exchange between molecules. Diselenide bonds have an estimated bond energy of 172 kJ/mol,
214:
Disulfide bonds can also act as cross-linking agents in micelles nanoparticles. Micelles lack the structural stability as a nanocarrier for drug delivery. The lack of stability can result in the loss of drugs after administration and before reaching the infected area. This occurrence can potentially
105:
The physicochemical characteristics of nanoparticles are inclusive of the size, shape, chemical composition, stability, topography, surface charge, and surface area. Deviations of these characteristics can be impacted by the classification of the nanoparticle. For example, the RSNP can be classified
262:
The synthesis of reduction sensitive nanoparticles is dependent on the mechanism subtype of the nanoparticle. Additionally, the synthesis can vary within subtype classes depending on how the different reduction sensitive bonds are expressed. The deviations of RSNPs can range from attachments to the
244:
Succinimide-thioether linkages express sensitivity to reducing environments and can be cleaved as a result. Succinimide-thioether bonds show slower rates of release in comparison to disulfide bonds; however, succinimide-thioether nanoparticles are still sensitive to the reducing environment and are
210:
are commonly observed in medical research. RSNP can consist of disulfide bonds that are cleaved and introduced to a reduction condition. Additionally, the reduction of glutathione results in the formation of sulfhydryl groups. In large concentrations of GSH, the disulfide bonds are capable of being
179:
The over-expression of nicotinamide adenine dinucleotide phosphate NADPH can lead to higher ROS levels. NADPH has a lower concentration than GSH in the reducing environment. NADPH is an electron donor that exists among all organisms; additionally, the NADPH is used as a source of reduction to drive
280:
The effectiveness of reduction-sensitive nanoparticles is dependent on the responsiveness of the RSNP throughout the body. The microtumor and inflammatory environments contain higher concentrations of reducing agents in contrast to healthy cells; however, healthy cells still express GSH and NADPH.
294:
Reduction Sensitive Nanoparticles are used as nanomedicines for drug delivery. As nanocarriers, RSNP can be loaded with drugs for disease therapeutics. This is commonly observed in the use of tumor and cancer treatments. Cancer cells create reducing environments that are used for RSNP activation.
84:
One of the limitations of nanoparticles for drug delivery is the insufficient or slow release of drugs. The rate of release is a critical element to identify how slowed drug release could limit the proper concentration of treatment. If the drug is not administered in concentrations high enough it
303:
The development of RSNP for inflammatory diseases has been explored to a lesser extent. Regardless, in more recent years reduction-sensitive and redox-sensitive nanoparticles have gained more momentum in the realm of inflammatory diseases. Further advances have demonstrated Research has been
67:
Nanoparticle Drug Loading is dependent on the mass ratio of the drug being loaded and the drug-loaded nanoparticle. Variations necessary to consider are the pore volume size, the surface, shape, and charge of the nanoparticle. The mode of drug loading will depend on the type of drug being
398:
Yin, Huabin; Meng, Tong; Shu, Ling; Mao, Min; Zhou, Lei; Chen, Haiyan; Song, Dianwen (2017-06-04). "Novel reduction-sensitive micellar nanoparticles assembled from Rituximab-doxorubicin conjugates as smart and intuitive drug delivery systems for the treatment of non-Hodgkin's lymphoma".
1409:
He, Mengxue; Yu, Ling; Yang, Yuanyuan; Zou, Binhua; Ma, Wen; Yu, Meng; Lu, Jiandong; Xiong, Guoliang; Yu, Zhiqiang; Li, Aimin (December 2020). "Delivery of triptolide with reduction-sensitive polymer nanoparticles for liver cancer therapy on patient-derived xenografts models".
215:
cause adverse side effects from the improper release of medication. Disulfide bonds can be used as crosslinked structures to increase the structural stability of micelle nanocarriers. In general, these crosslinks are located in the shell or the core of micelles nanoparticles.
180:
anabolic reactions and redox balances. The reduction and oxidation states of NADPH/NADP+ will influence the reduced responsiveness of the environment. Cancer cells express a unique NADPH homeostasis due to the adaptive alterations of signaling pathways and metabolic enzymes.
1569:
Sun, Qijuan; Luan, Lin; Arif, Muhammad; Li, Jiaxin; Dong, Quan-Jiang; Gao, Yuanyuan; Chi, Zhe; Liu, Chen-Guang (June 2018). "Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases".
1621:
Han, Shou-Chen; He, Wei-Dong; Li, Jian; Li, Li-Ying; Sun, Xiao-Li; Zhang, Bo-Yu; Pan, Ting-Ting (2009-07-08). "Reducible polyethylenimine hydrogels with disulfide crosslinkers prepared by michael addition chemistry as drug delivery carriers: Synthesis, properties, and
1127:
Kanwal, Sidra; Naveed, Muhammad; Arshad, Ali; Arshad, Azka; Firdous, Farhat; Faisal, Amir; Yameen, Basit (2021-11-11). "Reduction-Sensitive Dextran–Paclitaxel Polymer–Drug Conjugate: Synthesis, Self-Assembly into Nanoparticles, and In Vitro Anticancer Efficacy".
253:
Nanoparticles with Trimethyl Benzoquinone have demonstrated responsiveness to reduced environments. The experiments that have been conducted testing TMBQ are limited in observing the full scope of TMBQ nanoparticles in delivery systems.
627:
Wu, Bo; Yu, Ping; Cui, Can; Wu, Ming; Zhang, Yang; Liu, Lei; Wang, Cai-Xia; Zhuo, Ren-Xi; Huang, Shi-Wen (2015). "Folate-containing reduction-sensitive lipid–polymer hybrid nanoparticles for targeted delivery of doxorubicin".
146:
homeostasis leading to differences in the redox balance and increases in ROS levels. Research trends have shown that increased levels of ROS are correlated with high levels of antioxidant activity, such as intracellular GSH.
513:
Mirhadi, Elaheh; Mashreghi, Mohammad; Faal Maleki, Mahdi; Alavizadeh, Seyedeh Hoda; Arabi, Leila; Badiee, Ali; Jaafari, Mahmoud Reza (November 2020). "Redox-sensitive nanoscale drug delivery systems for cancer treatment".
1365:
Sun, Haifeng; Cao, Dinglingge; Liu, Yanhong; Wang, Hui; Ke, Xue; Ci, Tianyuan (2018). "Low molecular weight heparin-based reduction-sensitive nanoparticles for antitumor and anti-metastasis of orthotopic breast cancer".
333:
Zielińska, Aleksandra; Carreiró, Filipa; Oliveira, Ana M.; Neves, Andreia; Pires, Bárbara; Venkatesh, D. Nagasamy; Durazzo, Alessandra; Lucarini, Massimo; Eder, Piotr; Silva, Amélia M.; Santini, Antonello (2020-08-15).
922:
Yu, Jiahui; Fan, Honglei; Huang, Jin; Chen, Jinghua (2011). "Fabrication and evaluation of reduction-sensitive supramolecular hydrogel based on cyclodextrin/polymer inclusion for injectable drug-carrier application".
176:
the tumor microenvironment is reportedly at least four times higher compared to regular tissue. This is due to the high metabolic needs of tumor cells; for example, the rapid proliferation rates of tumor cells.
1179:
Sun, Huanli; Meng, Fenghua; Cheng, Ru; Deng, Chao; Zhong, Zhiyuan (2013-03-22). "Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy".
1230:
Yang, Jinlong; Huang, Yinjuan; Gao, Chunmei; Liu, Mingzhu; Zhang, Xinjie (March 2014). "Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release".
122:
For the effective application of RSNPs, the physicochemical characteristics of the tumor microenvironment must also be considered. The characteristics depicted by the TME are
163:
Glutathione (GSH) or Îł-glutamyl-cysteinyl-glycine is a critical biological reducing agent for drug delivery applications; it creates an effective reducing environment in the
736:
Sun, Huanli; Zhang, Yifan; Zhong, Zhiyuan (July 2018). "Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy".
1070:"Codelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment" 676:"Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications" 1332:
Bhaw-Luximon, Archana; Goonoo, Nowsheen; Jhurry, Dhanjay (2016). "Nanotherapeutics promises for colorectal cancer and pancreatic ductal adenocarcinoma".
1273:
Yao, Yihan; Zhou, Yunxiang; Liu, Lihong; Xu, Yanyan; Chen, Qiang; Wang, Yali; Wu, Shijie; Deng, Yongchuan; Zhang, Jianmin; Shao, Anwen (2020-08-20).
966:
Ma, Ning; Li, Ying; Xu, Huaping; Wang, Zhiqiang; Zhang, Xi (2009-12-18). "Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers".
1512:"Activatable Nanoparticles: Recent Advances in Redox-Sensitive Magnetic Resonance Contrast Agent Candidates Capable of Detecting Inflammation" 50:
signaling through a reduction activation or an oxidative activation. Therefore, degradation of chemical bonds can be either activated through
88:
RSNPs consist of reduction or redox-sensitive bonds. After administration in the body, the RSNP will eventually come into contact with the
1675: 107: 142:(ROS), etc. The elements of the tumor microenvironment can affect the reduction-inducing environment. Tumor cells abnormally regulate 308:. These proposed agents would help detect and monitor the treatment of inflammatory diseases by applying redox dysregulation. 1011:"Development of a reduction-sensitive diselenide-conjugated oligoethylenimine nanoparticulate system as a gene carrier" 1349: 565:
Gatoo, Manzoor Ahmad; Naseem, Sufia; Arfat, Mir Yasir; Mahmood Dar, Ayaz; Qasim, Khusro; Zubair, Swaleha (2014).
674:
Shah, Saurabh; Famta, Paras; Raghuvanshi, Rajeev Singh; Singh, Shashi Bala; Srivastava, Saurabh (January 2022).
1680: 806:
Guo, Xiaoshuang; Cheng, Yuan; Zhao, Xiaotian; Luo, Yanli; Chen, Jianjun; Yuan, Wei-En (2018-09-22).
451: 1510:
Nwasike, Chukwuazam; Purr, Erin; Yoo, Eunsoo; Nagi, Jaspreet Singh; Doiron, Amber L. (2021-01-16).
139: 1275:"Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance" 89: 1068:
Wu, Bo; Lu, Shu-Ting; Zhang, Liu-Jie; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen (March 2017).
567:"Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations" 35: 1635: 1466: 932: 8: 1639: 1470: 936: 1603: 1546: 1511: 1492: 1435: 1341: 1309: 1274: 1212: 1161: 1104: 1069: 1045: 1010: 899: 866: 842: 807: 769: 705: 601: 566: 547: 490: 432: 370: 335: 155: 41: 1651: 1595: 1587: 1551: 1533: 1496: 1484: 1439: 1427: 1391: 1383: 1345: 1314: 1296: 1255: 1247: 1204: 1196: 1165: 1153: 1145: 1109: 1091: 1050: 1032: 991: 983: 948: 904: 886: 847: 829: 761: 753: 709: 697: 653: 645: 606: 588: 551: 539: 531: 494: 482: 474: 424: 416: 375: 357: 336:"Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology" 1216: 1141: 773: 436: 1643: 1607: 1579: 1541: 1523: 1474: 1419: 1375: 1337: 1304: 1286: 1243: 1239: 1188: 1137: 1099: 1081: 1040: 1022: 975: 940: 894: 878: 837: 819: 745: 687: 637: 596: 578: 523: 466: 408: 365: 347: 1583: 527: 1479: 1454: 1192: 867:"NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications" 692: 675: 311: 207: 1423: 882: 749: 305: 865:
Ju, Huai-Qiang; Lin, Jin-Fei; Tian, Tian; Xie, Dan; Xu, Rui-Hua (2020-10-07).
824: 808:"Advances in redox-responsive drug delivery systems of tumor microenvironment" 352: 1669: 1655: 1591: 1537: 1488: 1431: 1387: 1300: 1291: 1251: 1200: 1149: 1095: 1036: 987: 952: 890: 833: 757: 701: 649: 592: 535: 478: 420: 361: 123: 450:
Liu, Yun; Yang, Guangze; Jin, Song; Xu, Letao; Zhao, Chun-Xia (2020-08-31).
1599: 1555: 1455:"Reversibly Cross-Linking Polymer Brushes Using Interchain Disulfide Bonds" 1395: 1318: 1259: 1208: 1157: 1113: 1054: 995: 908: 851: 765: 657: 610: 543: 486: 470: 428: 379: 168: 127: 46: 31: 583: 172: 111: 1086: 68:
administered, which will vary depending on the illness that is treated.
1647: 1528: 1379: 1027: 944: 641: 412: 232: 131: 979: 512: 198: 55: 223: 135: 51: 42:
Redox sensitive nanoparticles vs. reduction sensitive nanoparticles
76: 202:
Fig. 4.0 Drug Release of RSNP with Disulfide Bonds in the Cytosol
164: 332: 143: 19: 564: 673: 1331: 1126: 1628:
Journal of Polymer Science Part A: Polymer Chemistry
95: 1509: 1667: 1178: 452:"Development of High-Drug-Loading Nanoparticles" 1229: 805: 315:Fig. 6.0 Ulcerative Colitis VS. Crohn's Disease 248: 245:cleaved by GSH for fast intracellular release. 921: 239: 1568: 1453:Mocny, Piotr; Klok, Harm-Anton (2020-01-14). 1364: 1067: 735: 397: 1272: 864: 680:Colloid and Interface Science Communications 449: 188: 62: 1408: 965: 289: 1620: 1545: 1527: 1478: 1452: 1308: 1290: 1103: 1085: 1044: 1026: 898: 841: 823: 691: 626: 600: 582: 369: 351: 117: 80:Fig. 2.0 Benign and Malignant Tumor Cells 968:Journal of the American Chemical Society 871:Signal Transduction and Targeted Therapy 310: 298: 257: 222: 197: 154: 75: 18: 227:Fig. 5.0 Relevant Nanoparticle Subtypes 1668: 1232:Colloids and Surfaces B: Biointerfaces 516:International Journal of Pharmaceutics 1074:International Journal of Nanomedicine 1015:International Journal of Nanomedicine 801: 799: 797: 795: 793: 791: 789: 787: 785: 783: 731: 729: 727: 725: 723: 721: 719: 669: 667: 622: 620: 508: 506: 504: 393: 391: 389: 231:Redox-Sensitive Nanoparticles with 218: 206:Redox-Sensitive Nanoparticles with 13: 1676:Nanoparticles by physical property 1342:10.1016/b978-0-323-42863-7.00006-2 1334:Nanobiomaterials in Cancer Therapy 1279:Frontiers in Molecular Biosciences 1008: 401:Chemical Biology & Drug Design 193: 150: 34:that are chemically responsive to 14: 1692: 780: 716: 664: 617: 501: 386: 28:Reduction-sensitive nanoparticles 159:Fig. 3.0 Reduction and Oxidation 96:Physicochemical characterization 1614: 1562: 1503: 1446: 1402: 1358: 1325: 1266: 1223: 1181:Expert Opinion on Drug Delivery 1172: 1142:10.1021/acs.bioconjchem.1c00492 1120: 1061: 1002: 959: 915: 858: 284: 71: 1244:10.1016/j.colsurfb.2013.12.007 738:Advanced Drug Delivery Reviews 558: 443: 326: 275: 1: 1584:10.1016/j.carbpol.2017.12.021 571:BioMed Research International 528:10.1016/j.ijpharm.2020.119882 319: 266: 171:of a cell. Glutathione is an 59:method is through reduction. 1480:10.1021/acs.macromol.9b02199 1193:10.1517/17425247.2013.783009 812:Journal of Nanobiotechnology 693:10.1016/j.colcom.2021.100570 249:Trimethyl benzoquinone bonds 7: 1424:10.1016/j.cclet.2020.05.034 240:Succinimide-thioether bonds 183: 10: 1697: 1009:Gu, Zhongwei (July 2012). 883:10.1038/s41392-020-00326-0 750:10.1016/j.addr.2018.05.007 825:10.1186/s12951-018-0398-2 353:10.3390/molecules25163731 189:Reduction sensitive bonds 63:Nanoparticle drug loading 1412:Chinese Chemical Letters 1292:10.3389/fmolb.2020.00193 100: 290:Tumor/cancer treatments 140:reactive oxygen species 1130:Bioconjugate Chemistry 471:10.1002/cplu.202000496 316: 228: 203: 160: 118:Tumor microenvironment 90:tumor microenvironment 81: 24: 1681:Drug delivery devices 1572:Carbohydrate Polymers 1336:. Elsevier: 147–201. 314: 299:Inflammatory diseases 258:Development/Synthesis 226: 201: 158: 79: 22: 1368:Biomaterials Science 630:Biomaterials Science 23:Fig. 1.0 Cancer Cell 16:Drug delivery method 1640:2009JPoSA..47.4074H 1471:2020MaMol..53..731M 1087:10.2147/ijn.s131235 937:2011SMat....7.7386Y 584:10.1155/2014/498420 1648:10.1002/pola.23468 1529:10.3390/ph14010069 1380:10.1039/c8bm00486b 1028:10.2147/ijn.s32961 945:10.1039/c1sm05426k 642:10.1039/c4bm00462k 413:10.1111/cbdd.13010 317: 229: 204: 161: 82: 30:(RSNP) consist of 25: 1634:(16): 4074–4082. 1418:(12): 3178–3182. 1136:(12): 2516–2529. 980:10.1021/ja908124g 1688: 1660: 1659: 1618: 1612: 1611: 1566: 1560: 1559: 1549: 1531: 1507: 1501: 1500: 1482: 1450: 1444: 1443: 1406: 1400: 1399: 1374:(8): 2172–2188. 1362: 1356: 1355: 1329: 1323: 1322: 1312: 1294: 1270: 1264: 1263: 1227: 1221: 1220: 1187:(8): 1109–1122. 1176: 1170: 1169: 1124: 1118: 1117: 1107: 1089: 1065: 1059: 1058: 1048: 1030: 1006: 1000: 999: 963: 957: 956: 919: 913: 912: 902: 862: 856: 855: 845: 827: 803: 778: 777: 733: 714: 713: 695: 671: 662: 661: 624: 615: 614: 604: 586: 562: 556: 555: 510: 499: 498: 465:(9): 2143–2157. 456: 447: 441: 440: 395: 384: 383: 373: 355: 330: 219:Diselenide bonds 1696: 1695: 1691: 1690: 1689: 1687: 1686: 1685: 1666: 1665: 1664: 1663: 1619: 1615: 1567: 1563: 1516:Pharmaceuticals 1508: 1504: 1451: 1447: 1407: 1403: 1363: 1359: 1352: 1330: 1326: 1271: 1267: 1228: 1224: 1177: 1173: 1125: 1121: 1066: 1062: 1007: 1003: 964: 960: 920: 916: 863: 859: 804: 781: 734: 717: 672: 665: 625: 618: 563: 559: 511: 502: 454: 448: 444: 396: 387: 331: 327: 322: 306:contrast agents 301: 292: 287: 278: 269: 260: 251: 242: 221: 208:Disulfide bonds 196: 194:Disulfide bonds 191: 186: 153: 151:Reducing agents 120: 103: 98: 74: 65: 44: 17: 12: 11: 5: 1694: 1684: 1683: 1678: 1662: 1661: 1613: 1561: 1502: 1465:(2): 731–740. 1459:Macromolecules 1445: 1401: 1357: 1350: 1324: 1265: 1222: 1171: 1119: 1060: 1001: 974:(2): 442–443. 958: 914: 857: 779: 715: 663: 636:(4): 655–664. 616: 557: 500: 442: 407:(5): 892–899. 385: 324: 323: 321: 318: 300: 297: 291: 288: 286: 283: 277: 274: 268: 265: 259: 256: 250: 247: 241: 238: 220: 217: 195: 192: 190: 187: 185: 182: 152: 149: 119: 116: 102: 99: 97: 94: 73: 70: 64: 61: 43: 40: 15: 9: 6: 4: 3: 2: 1693: 1682: 1679: 1677: 1674: 1673: 1671: 1657: 1653: 1649: 1645: 1641: 1637: 1633: 1629: 1625: 1617: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1565: 1557: 1553: 1548: 1543: 1539: 1535: 1530: 1525: 1521: 1517: 1513: 1506: 1498: 1494: 1490: 1486: 1481: 1476: 1472: 1468: 1464: 1460: 1456: 1449: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1405: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1361: 1353: 1351:9780323428637 1347: 1343: 1339: 1335: 1328: 1320: 1316: 1311: 1306: 1302: 1298: 1293: 1288: 1284: 1280: 1276: 1269: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1226: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1175: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1123: 1115: 1111: 1106: 1101: 1097: 1093: 1088: 1083: 1080:: 1853–1862. 1079: 1075: 1071: 1064: 1056: 1052: 1047: 1042: 1038: 1034: 1029: 1024: 1021:: 3991–4006. 1020: 1016: 1012: 1005: 997: 993: 989: 985: 981: 977: 973: 969: 962: 954: 950: 946: 942: 938: 934: 930: 926: 918: 910: 906: 901: 896: 892: 888: 884: 880: 876: 872: 868: 861: 853: 849: 844: 839: 835: 831: 826: 821: 817: 813: 809: 802: 800: 798: 796: 794: 792: 790: 788: 786: 784: 775: 771: 767: 763: 759: 755: 751: 747: 743: 739: 732: 730: 728: 726: 724: 722: 720: 711: 707: 703: 699: 694: 689: 685: 681: 677: 670: 668: 659: 655: 651: 647: 643: 639: 635: 631: 623: 621: 612: 608: 603: 598: 594: 590: 585: 580: 576: 572: 568: 561: 553: 549: 545: 541: 537: 533: 529: 525: 521: 517: 509: 507: 505: 496: 492: 488: 484: 480: 476: 472: 468: 464: 460: 453: 446: 438: 434: 430: 426: 422: 418: 414: 410: 406: 402: 394: 392: 390: 381: 377: 372: 367: 363: 359: 354: 349: 345: 341: 337: 329: 325: 313: 309: 307: 296: 282: 273: 264: 255: 246: 237: 234: 225: 216: 212: 209: 200: 181: 177: 174: 170: 166: 157: 148: 145: 141: 137: 133: 129: 125: 124:tumor hypoxia 115: 113: 109: 93: 91: 86: 78: 69: 60: 57: 53: 48: 47:Nanoparticles 39: 37: 33: 29: 21: 1631: 1627: 1623: 1616: 1575: 1571: 1564: 1519: 1515: 1505: 1462: 1458: 1448: 1415: 1411: 1404: 1371: 1367: 1360: 1333: 1327: 1282: 1278: 1268: 1235: 1231: 1225: 1184: 1180: 1174: 1133: 1129: 1122: 1077: 1073: 1063: 1018: 1014: 1004: 971: 967: 961: 931:(16): 7386. 928: 924: 917: 874: 870: 860: 815: 811: 741: 737: 683: 679: 633: 629: 574: 570: 560: 519: 515: 462: 459:ChemPlusChem 458: 445: 404: 400: 346:(16): 3731. 343: 339: 328: 302: 293: 285:Applications 279: 270: 261: 252: 243: 230: 213: 205: 178: 162: 128:angiogenesis 121: 104: 87: 83: 72:Drug Release 66: 45: 32:nanocarriers 27: 26: 1578:: 352–359. 1238:: 368–376. 925:Soft Matter 276:Limitations 173:antioxidant 112:Glutathione 110:/NADP+ and 1670:Categories 1626:release". 877:(1): 231. 686:: 100570. 577:: 498420. 522:: 119882. 320:References 267:Advantages 233:Diselenide 132:metabolism 56:reductants 1656:0887-624X 1592:0144-8617 1538:1424-8247 1522:(1): 69. 1497:213510887 1489:0024-9297 1440:219742385 1432:1001-8417 1388:2047-4830 1301:2296-889X 1252:0927-7765 1201:1742-5247 1166:244040558 1150:1043-1802 1096:1178-2013 1037:1178-2013 988:0002-7863 953:1744-683X 891:2059-3635 834:1477-3155 818:(1): 74. 758:0169-409X 744:: 16–32. 710:245472939 702:2215-0382 650:2047-4830 593:2314-6133 552:221786766 536:0378-5173 495:221382512 479:2192-6506 421:1747-0277 362:1420-3049 340:Molecules 36:reduction 1624:in vitro 1600:29580419 1556:33467028 1396:29942949 1319:32974385 1260:24463097 1217:22681173 1209:23517599 1158:34762796 1114:28331310 1055:22904624 996:20020681 909:33028807 852:30243297 774:21742380 766:29775625 658:26222425 611:25165707 544:32941986 487:32864902 437:21460046 429:28440948 380:32824172 184:Subtypes 136:acidosis 52:oxidants 1636:Bibcode 1608:4337453 1547:7829999 1467:Bibcode 1310:7468194 1285:: 193. 1105:5352248 1046:3418076 933:Bibcode 900:7542157 843:6151045 602:4140132 371:7464532 169:nucleus 165:cytosol 1654:  1606:  1598:  1590:  1554:  1544:  1536:  1495:  1487:  1438:  1430:  1394:  1386:  1348:  1317:  1307:  1299:  1258:  1250:  1215:  1207:  1199:  1164:  1156:  1148:  1112:  1102:  1094:  1053:  1043:  1035:  994:  986:  951:  907:  897:  889:  850:  840:  832:  772:  764:  756:  708:  700:  656:  648:  609:  599:  591:  550:  542:  534:  493:  485:  477:  435:  427:  419:  378:  368:  360:  1604:S2CID 1493:S2CID 1436:S2CID 1213:S2CID 1162:S2CID 770:S2CID 706:S2CID 548:S2CID 491:S2CID 455:(PDF) 433:S2CID 144:redox 108:NADPH 101:RSNPs 1652:ISSN 1596:PMID 1588:ISSN 1552:PMID 1534:ISSN 1485:ISSN 1428:ISSN 1392:PMID 1384:ISSN 1346:ISBN 1315:PMID 1297:ISSN 1256:PMID 1248:ISSN 1205:PMID 1197:ISSN 1154:PMID 1146:ISSN 1110:PMID 1092:ISSN 1051:PMID 1033:ISSN 992:PMID 984:ISSN 949:ISSN 905:PMID 887:ISSN 848:PMID 830:ISSN 762:PMID 754:ISSN 698:ISSN 654:PMID 646:ISSN 607:PMID 589:ISSN 575:2014 540:PMID 532:ISSN 483:PMID 475:ISSN 425:PMID 417:ISSN 376:PMID 358:ISSN 167:and 1644:doi 1580:doi 1576:189 1542:PMC 1524:doi 1475:doi 1420:doi 1376:doi 1338:doi 1305:PMC 1287:doi 1240:doi 1236:115 1189:doi 1138:doi 1100:PMC 1082:doi 1041:PMC 1023:doi 976:doi 972:132 941:doi 895:PMC 879:doi 838:PMC 820:doi 746:doi 742:132 688:doi 638:doi 597:PMC 579:doi 524:doi 520:589 467:doi 409:doi 366:PMC 348:doi 54:or 1672:: 1650:. 1642:. 1632:47 1630:. 1602:. 1594:. 1586:. 1574:. 1550:. 1540:. 1532:. 1520:14 1518:. 1514:. 1491:. 1483:. 1473:. 1463:53 1461:. 1457:. 1434:. 1426:. 1416:31 1414:. 1390:. 1382:. 1370:. 1344:. 1313:. 1303:. 1295:. 1281:. 1277:. 1254:. 1246:. 1234:. 1211:. 1203:. 1195:. 1185:10 1183:. 1160:. 1152:. 1144:. 1134:32 1132:. 1108:. 1098:. 1090:. 1078:12 1076:. 1072:. 1049:. 1039:. 1031:. 1017:. 1013:. 990:. 982:. 970:. 947:. 939:. 927:. 903:. 893:. 885:. 873:. 869:. 846:. 836:. 828:. 816:16 814:. 810:. 782:^ 768:. 760:. 752:. 740:. 718:^ 704:. 696:. 684:46 682:. 678:. 666:^ 652:. 644:. 632:. 619:^ 605:. 595:. 587:. 573:. 569:. 546:. 538:. 530:. 518:. 503:^ 489:. 481:. 473:. 463:85 461:. 457:. 431:. 423:. 415:. 405:90 403:. 388:^ 374:. 364:. 356:. 344:25 342:. 338:. 138:, 134:, 130:, 126:, 114:. 1658:. 1646:: 1638:: 1610:. 1582:: 1558:. 1526:: 1499:. 1477:: 1469:: 1442:. 1422:: 1398:. 1378:: 1372:6 1354:. 1340:: 1321:. 1289:: 1283:7 1262:. 1242:: 1219:. 1191:: 1168:. 1140:: 1116:. 1084:: 1057:. 1025:: 1019:7 998:. 978:: 955:. 943:: 935:: 929:7 911:. 881:: 875:5 854:. 822:: 776:. 748:: 712:. 690:: 660:. 640:: 634:3 613:. 581:: 554:. 526:: 497:. 469:: 439:. 411:: 382:. 350::

Index


nanocarriers
reduction
Nanoparticles
oxidants
reductants

tumor microenvironment
NADPH
Glutathione
tumor hypoxia
angiogenesis
metabolism
acidosis
reactive oxygen species
redox

cytosol
nucleus
antioxidant

Disulfide bonds

Diselenide
contrast agents

"Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology"
doi
10.3390/molecules25163731
ISSN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑