Knowledge

Reaction dynamics

Source đź“ť

73:"for their contributions concerning the dynamics of chemical elementary processes", In the crossed beam method used by Herschbach and Lee, narrow beams of reactant molecules in selected quantum states are allowed to react in order to determine the reaction probability as a function of such variables as the translational, vibrational and rotational energy of the reactant molecules and their angle of approach. In contrast the method of Polanyi measures vibrational energy of the products by detecting the infrared chemiluminescence emitted by vibrationally excited molecules, in some cases for reactants in defined energy states. 241: 26:, studying why chemical reactions occur, how to predict their behavior, and how to control them. It is closely related to 30:, but is concerned with individual chemical events on atomic length scales and over very brief time periods. It considers 453: 330: 49:
Experimental methods of reaction dynamics probe the chemical physics associated with molecular collisions. They include
287: 99:
of a point on this surface representing the state of the system. A correction can be applied to include the effect of
594: 234: 215: 171: 140: 502: 497: 307: 667: 662: 227: 688: 183: 632: 322: 54: 84:
second = 10 s. This subject has been recognized by the award of the 1999 Nobel Prize in Chemistry to
359: 259: 589: 92: 58: 637: 438: 43: 392: 50: 622: 554: 412: 402: 617: 345: 124: 8: 627: 559: 544: 487: 39: 652: 422: 251: 129: 100: 76:
Spectroscopic observation of reaction dynamics on the shortest time scales is known as
23: 647: 642: 604: 468: 448: 384: 211: 167: 136: 104: 62: 27: 579: 528: 482: 160: 657: 569: 518: 70: 364: 353: 77: 91:
In addition, theoretical studies of reaction dynamics involve calculating the
682: 612: 584: 492: 443: 417: 35: 219: 95:
for a reaction as a function of nuclear positions, and then calculating the
564: 370: 277: 267: 85: 523: 458: 66: 96: 574: 477: 297: 107:
barrier, especially for the movement of hydrogen atoms.
80:, since the typical times studied are of the order of 1 38:, and how energy is distributed between translational, 135:. Cambridge: Cambridge University Press. p. xi. 34:between reactant and product molecules in specific 128: 680: 249: 235: 206:Steinfeld J.I., Francisco J.S. and Hase W.L. 166:(3rd ed., Harper & Row 1987), Chap.12 242: 228: 210:(2nd ed., Prentice-Hall 1999) chaps.6-13 156: 154: 152: 57:experiments, both recognized by the 1986 681: 268:Unimolecular nucleophilic substitution 149: 123: 278:Bimolecular nucleophilic substitution 223: 117: 331:Electrophilic aromatic substitution 184:"The Nobel Prize in Chemistry 1986" 13: 298:Nucleophilic internal substitution 288:Nucleophilic aromatic substitution 201: 14: 700: 454:Lindemann–Hinshelwood mechanism 503:Outer sphere electron transfer 498:Inner sphere electron transfer 308:Nucleophilic acyl substitution 208:Chemical Kinetics and Dynamics 176: 1: 668:Diffusion-controlled reaction 110: 7: 323:Electrophilic substitutions 131:Molecular Reaction Dynamics 16:Field of physical chemistry 10: 705: 633:Energy profile (chemistry) 595:More O'Ferrall–Jencks plot 260:Nucleophilic substitutions 55:infrared chemiluminescence 663:Michaelis–Menten kinetics 603: 537: 511: 467: 431: 383: 344: 321: 258: 590:Potential energy surface 469:Electron/Proton transfer 354:Unimolecular elimination 93:potential energy surface 59:Nobel Prize in Chemistry 46:, and electronic modes. 638:Transition state theory 439:Intramolecular reaction 365:Bimolecular elimination 32:state-to-state kinetics 432:Unimolecular reactions 393:Electrophilic addition 51:crossed molecular beam 623:Rate-determining step 555:Reactive intermediate 413:Free-radical addition 403:Nucleophilic addition 346:Elimination reactions 618:Equilibrium constant 628:Reaction coordinate 560:Radical (chemistry) 545:Elementary reaction 488:Grotthuss mechanism 252:reaction mechanisms 689:Physical chemistry 653:Arrhenius equation 423:Oxidative addition 385:Addition reactions 101:quantum tunnelling 24:physical chemistry 22:is a field within 676: 675: 648:Activated complex 643:Activation energy 605:Chemical kinetics 550:Reaction dynamics 449:Photodissociation 164:Chemical Kinetics 105:activation energy 63:Dudley Herschbach 28:chemical kinetics 20:Reaction dynamics 696: 580:Collision theory 529:Matrix isolation 483:Harpoon reaction 360:E1cB-elimination 244: 237: 230: 221: 220: 195: 194: 192: 191: 186:. Nobelprize.org 180: 174: 158: 147: 146: 134: 121: 704: 703: 699: 698: 697: 695: 694: 693: 679: 678: 677: 672: 658:Eyring equation 599: 570:Stereochemistry 533: 519:Solvent effects 507: 463: 427: 408: 398: 379: 374: 340: 336: 317: 313: 303: 293: 283: 273: 254: 248: 204: 202:Further reading 199: 198: 189: 187: 182: 181: 177: 159: 150: 143: 125:Levine, Raphael 122: 118: 113: 71:John C. Polanyi 17: 12: 11: 5: 702: 692: 691: 674: 673: 671: 670: 665: 660: 655: 650: 645: 640: 635: 630: 625: 620: 615: 609: 607: 601: 600: 598: 597: 592: 587: 582: 577: 572: 567: 562: 557: 552: 547: 541: 539: 538:Related topics 535: 534: 532: 531: 526: 521: 515: 513: 512:Medium effects 509: 508: 506: 505: 500: 495: 490: 485: 480: 474: 472: 465: 464: 462: 461: 456: 451: 446: 441: 435: 433: 429: 428: 426: 425: 420: 415: 410: 406: 400: 396: 389: 387: 381: 380: 378: 377: 372: 368: 362: 357: 350: 348: 342: 341: 339: 338: 334: 327: 325: 319: 318: 316: 315: 311: 305: 301: 295: 291: 285: 281: 275: 271: 264: 262: 256: 255: 247: 246: 239: 232: 224: 203: 200: 197: 196: 175: 148: 141: 115: 114: 112: 109: 78:femtochemistry 36:quantum states 15: 9: 6: 4: 3: 2: 701: 690: 687: 686: 684: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 613:Rate equation 611: 610: 608: 606: 602: 596: 593: 591: 588: 586: 585:Arrow pushing 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 542: 540: 536: 530: 527: 525: 522: 520: 517: 516: 514: 510: 504: 501: 499: 496: 494: 493:Marcus theory 491: 489: 486: 484: 481: 479: 476: 475: 473: 470: 466: 460: 457: 455: 452: 450: 447: 445: 444:Isomerization 442: 440: 437: 436: 434: 430: 424: 421: 419: 418:Cycloaddition 416: 414: 411: 404: 401: 394: 391: 390: 388: 386: 382: 376: 369: 366: 363: 361: 358: 355: 352: 351: 349: 347: 343: 332: 329: 328: 326: 324: 320: 309: 306: 299: 296: 289: 286: 279: 276: 269: 266: 265: 263: 261: 257: 253: 245: 240: 238: 233: 231: 226: 225: 222: 218: 217: 216:0-13-737123-3 213: 209: 185: 179: 173: 172:0-06-043862-2 169: 165: 162: 161:Laidler, K.J. 157: 155: 153: 144: 142:0-521-84276-X 138: 133: 132: 126: 120: 116: 108: 106: 102: 98: 94: 89: 87: 83: 79: 74: 72: 68: 64: 60: 56: 52: 47: 45: 41: 37: 33: 29: 25: 21: 565:Molecularity 549: 207: 205: 188:. Retrieved 178: 163: 130: 119: 103:through the 90: 86:Ahmed Zewail 81: 75: 48: 31: 19: 18: 524:Cage effect 459:RRKM theory 375:elimination 67:Yuan T. Lee 61:awarded to 40:vibrational 190:2008-10-06 111:References 97:trajectory 44:rotational 575:Catalysis 471:reactions 683:Category 127:(2005). 250:Basic 214:  170:  139:  69:, and 478:Redox 314:Acyl) 82:femto 367:(E2) 356:(E1) 212:ISBN 168:ISBN 137:ISBN 53:and 337:Ar) 294:Ar) 685:: 405:(A 395:(A 333:(S 310:(S 304:i) 300:(S 290:(S 284:2) 280:(S 274:1) 270:(S 151:^ 88:. 65:, 42:, 409:) 407:N 399:) 397:E 373:i 371:E 335:E 312:N 302:N 292:N 282:N 272:N 243:e 236:t 229:v 193:. 145:.

Index

physical chemistry
chemical kinetics
quantum states
vibrational
rotational
crossed molecular beam
infrared chemiluminescence
Nobel Prize in Chemistry
Dudley Herschbach
Yuan T. Lee
John C. Polanyi
femtochemistry
Ahmed Zewail
potential energy surface
trajectory
quantum tunnelling
activation energy
Levine, Raphael
Molecular Reaction Dynamics
ISBN
0-521-84276-X



Laidler, K.J.
ISBN
0-06-043862-2
"The Nobel Prize in Chemistry 1986"
ISBN
0-13-737123-3

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑