Knowledge

Rank of an abelian group

Source 📝

1175: 643:, i.e. cannot be expressed as a direct sum of a pair of their proper subgroups. These examples demonstrate that torsion-free abelian group of rank greater than 1 cannot be simply built by direct sums from torsion-free abelian groups of rank 1, whose theory is well understood. Moreover, for every integer 610: 211: 1068: 512: 1145: 866: 466: 868:. Thus the sequence of ranks of indecomposable summands in a certain direct sum decomposition of a torsion-free abelian group of finite rank is very far from being an invariant of 795: 735: 667: 410:
and there is a satisfactory classification of them up to isomorphism. By contrast, there is no satisfactory classification of torsion-free abelian groups of rank 2.
696: 138: 702:
indecomposable groups. Hence even the number of indecomposable summands of a group of an even rank greater or equal than 4 is not well-defined.
995: 1089:
It is a generalization, since every abelian group is a module over the integers. It easily follows that the dimension of the product over
1239: 1211: 1192: 1316:
Thomas, Simon; Schneider, Scott (2012), "Countable Borel equivalence relations", in Cummings, James; Schimmerling, Ernest (eds.),
1218: 225:
are zero (so that the sum is, in effect, finite), then all coefficients are zero. Any two maximal linearly independent sets in
1293: 403: 91: 1225: 605:{\displaystyle \operatorname {rank} \left(\bigoplus _{j\in J}A_{j}\right)=\sum _{j\in J}\operatorname {rank} (A_{j}),} 1343: 1258: 1207: 83: 1109: 312: 1196: 812: 1320:, London Mathematical Society Lecture Note Series, vol. 406, Cambridge University Press, pp. 25–62, 1369: 1353:, Thomas and Schneider refer to "...this failure to classify even the rank 2 groups in a satisfactory way..." 426: 631:
Abelian groups of rank greater than 1 are sources of interesting examples. For instance, for every cardinal
748: 705:
Another result about non-uniqueness of direct sum decompositions is due to A.L.S. Corner: given integers
94:
have been completely classified. However, the theory of abelian groups of higher rank is more involved.
1232: 1326: 708: 98: 86:, rank is a strong invariant and every such group is determined up to isomorphism by its rank and 1185: 1321: 245: 276:). A group is called torsion-free if it has no non-trivial torsion elements. The factor-group 1350: 646: 640: 414: 300: 261: 124: 47: 1303: 672: 206:{\displaystyle \sum _{\alpha }n_{\alpha }a_{\alpha }=0,\quad n_{\alpha }\in \mathbb {Z} ,} 8: 1093:
is the cardinality of maximal linearly independent subset, since for any torsion element
619: 132:) if the only linear combination of these elements that is equal to zero is trivial: if 55: 1339: 1289: 253: 67: 1331: 1299: 265: 87: 75: 1335: 1158: 966: 304: 984: 980: 392: 1363: 36: 1083: 249: 71: 487: 230: 43: 20: 1063:{\displaystyle \operatorname {rank} (M)=\dim _{R_{0}}M\otimes _{R}R_{0}} 698:
that is simultaneously a sum of two indecomposable groups, and a sum of
1281: 500: 357: 264:
is finite. The set of all torsion elements is a subgroup, called the
252:. The main difference with the case of vector space is a presence of 1174: 920:
For abelian groups of infinite rank, there is an example of a group
299:
The notion of rank with analogous properties can be defined for
372:
as an abelian subgroup. In particular, any intermediate group
875:
Other surprising examples include torsion-free rank 2 groups
307:, the case of abelian groups corresponding to modules over 1082:
is a field, and thus any module (or, to be more specific,
474:
is a short exact sequence of abelian groups then rk 
97:
The term rank has a different meaning in the context of
1112: 998: 961:
The notion of rank can be generalized for any module
815: 751: 711: 675: 649: 515: 429: 141: 16:
Number of elements in a subset of a commutative group
1199:. Unsourced material may be challenged and removed. 1288:(Third ed.), Reading, Mass.: Addison-Wesley, 1139: 1062: 860: 789: 729: 690: 661: 604: 460: 205: 288:) is the unique maximal torsion-free quotient of 244:The rank of an abelian group is analogous to the 1361: 669:, there is a torsion-free abelian group of rank 635:there exist torsion-free abelian groups of rank 1315: 494:and the corresponding fact for vector spaces. 1140:{\displaystyle x\otimes _{\mathbf {Z} }q=0.} 737:, there exists a torsion-free abelian group 618:where the sum in the right hand side uses 457: 1325: 1259:Learn how and when to remove this message 861:{\displaystyle r_{1},r_{2},\ldots ,r_{k}} 391:Abelian groups of rank 0 are exactly the 216:where all but finitely many coefficients 196: 626: 292:and its rank coincides with the rank of 461:{\displaystyle 0\to A\to B\to C\to 0\;} 344:is torsion-free then the canonical map 1362: 313:finitely generated module#Generic rank 790:{\displaystyle n=r_{1}+\cdots +r_{k}} 404:Torsion-free abelian groups of rank 1 92:Torsion-free abelian groups of rank 1 1280: 1197:adding citations to reliable sources 1168: 328:coincides with the dimension of the 54:determines the size of the largest 13: 809:indecomposable subgroups of ranks 14: 1381: 1318:Appalachian Set Theory: 2006-2012 956: 256:. An element of an abelian group 84:finitely generated abelian groups 1173: 1122: 948:Every nonzero direct summand of 499:Rank is additive over arbitrary 402:of rational numbers has rank 1. 260:is classified as torsion if its 1184:needs additional citations for 945:and a single other element; and 181: 1309: 1273: 1011: 1005: 987:of the module with the field: 596: 583: 451: 445: 439: 433: 1: 1164: 730:{\displaystyle n\geq k\geq 1} 406:are realized as subgroups of 324:The rank of an abelian group 318: 104: 1336:10.1017/CBO9781139208574.003 801:natural summands, the group 745:such that for any partition 364:is the minimum dimension of 7: 1152: 10: 1386: 1208:"Rank of an abelian group" 368:-vector space containing 99:elementary abelian groups 972:, as the dimension over 486:. This follows from the 662:{\displaystyle n\geq 3} 393:periodic abelian groups 1141: 1075:It makes sense, since 1064: 862: 791: 731: 692: 663: 606: 462: 413:Rank is additive over 233:, which is called the 207: 118:} of an abelian group 70:then it embeds into a 1142: 1065: 863: 805:is the direct sum of 792: 732: 693: 664: 627:Groups of higher rank 607: 482: + rk  463: 415:short exact sequences 208: 1370:Abelian group theory 1193:improve this article 1110: 996: 813: 749: 709: 691:{\displaystyle 2n-2} 673: 647: 513: 427: 139: 125:linearly independent 50:subset. The rank of 48:linearly independent 1086:) over it is free. 620:cardinal arithmetic 1137: 1060: 935:is indecomposable; 858: 787: 727: 688: 659: 602: 576: 542: 458: 203: 151: 78:of dimension rank 56:free abelian group 1295:978-0-201-55540-0 1269: 1268: 1261: 1243: 1097:and any rational 905:is isomorphic to 561: 527: 142: 33:torsion-free rank 1377: 1354: 1348: 1329: 1313: 1307: 1306: 1277: 1264: 1257: 1253: 1250: 1244: 1242: 1201: 1177: 1169: 1146: 1144: 1143: 1138: 1127: 1126: 1125: 1069: 1067: 1066: 1061: 1059: 1058: 1049: 1048: 1033: 1032: 1031: 1030: 952:is decomposable. 941:is generated by 913:is divisible by 867: 865: 864: 859: 857: 856: 838: 837: 825: 824: 796: 794: 793: 788: 786: 785: 767: 766: 736: 734: 733: 728: 697: 695: 694: 689: 668: 666: 665: 660: 611: 609: 608: 603: 595: 594: 575: 557: 553: 552: 551: 541: 467: 465: 464: 459: 360:and the rank of 311:. For this, see 266:torsion subgroup 212: 210: 209: 204: 199: 191: 190: 171: 170: 161: 160: 150: 88:torsion subgroup 76:rational numbers 1385: 1384: 1380: 1379: 1378: 1376: 1375: 1374: 1360: 1359: 1358: 1357: 1346: 1327:10.1.1.648.3113 1314: 1310: 1296: 1278: 1274: 1265: 1254: 1248: 1245: 1202: 1200: 1190: 1178: 1167: 1159:Rank of a group 1155: 1121: 1120: 1116: 1111: 1108: 1107: 1081: 1054: 1050: 1044: 1040: 1026: 1022: 1021: 1017: 997: 994: 993: 978: 967:integral domain 959: 924:and a subgroup 909:if and only if 900: 887: 852: 848: 833: 829: 820: 816: 814: 811: 810: 781: 777: 762: 758: 750: 747: 746: 710: 707: 706: 674: 671: 670: 648: 645: 644: 629: 590: 586: 565: 547: 543: 531: 526: 522: 514: 511: 510: 478:= rk  428: 425: 424: 321: 305:integral domain 224: 195: 186: 182: 166: 162: 156: 152: 146: 140: 137: 136: 117: 107: 17: 12: 11: 5: 1383: 1373: 1372: 1356: 1355: 1344: 1308: 1294: 1271: 1270: 1267: 1266: 1249:September 2008 1181: 1179: 1172: 1166: 1163: 1162: 1161: 1154: 1151: 1150: 1149: 1148: 1147: 1136: 1133: 1130: 1124: 1119: 1115: 1079: 1073: 1072: 1071: 1070: 1057: 1053: 1047: 1043: 1039: 1036: 1029: 1025: 1020: 1016: 1013: 1010: 1007: 1004: 1001: 985:tensor product 981:quotient field 976: 958: 957:Generalization 955: 954: 953: 946: 936: 892: 879: 855: 851: 847: 844: 841: 836: 832: 828: 823: 819: 784: 780: 776: 773: 770: 765: 761: 757: 754: 726: 723: 720: 717: 714: 687: 684: 681: 678: 658: 655: 652: 641:indecomposable 628: 625: 624: 623: 615: 614: 613: 612: 601: 598: 593: 589: 585: 582: 579: 574: 571: 568: 564: 560: 556: 550: 546: 540: 537: 534: 530: 525: 521: 518: 505: 504: 496: 495: 471: 470: 469: 468: 456: 453: 450: 447: 444: 441: 438: 435: 432: 419: 418: 411: 396: 389: 332:-vector space 320: 317: 229:have the same 220: 214: 213: 202: 198: 194: 189: 185: 180: 177: 174: 169: 165: 159: 155: 149: 145: 113: 106: 103: 15: 9: 6: 4: 3: 2: 1382: 1371: 1368: 1367: 1365: 1352: 1347: 1345:9781107608504 1341: 1337: 1333: 1328: 1323: 1319: 1312: 1305: 1301: 1297: 1291: 1287: 1283: 1276: 1272: 1263: 1260: 1252: 1241: 1238: 1234: 1231: 1227: 1224: 1220: 1217: 1213: 1210: –  1209: 1205: 1204:Find sources: 1198: 1194: 1188: 1187: 1182:This article 1180: 1176: 1171: 1170: 1160: 1157: 1156: 1134: 1131: 1128: 1117: 1113: 1106: 1105: 1104: 1103: 1102: 1100: 1096: 1092: 1087: 1085: 1078: 1055: 1051: 1045: 1041: 1037: 1034: 1027: 1023: 1018: 1014: 1008: 1002: 999: 992: 991: 990: 989: 988: 986: 982: 975: 971: 968: 964: 951: 947: 944: 940: 937: 934: 931: 930: 929: 927: 923: 918: 916: 912: 908: 904: 899: 895: 891: 886: 882: 878: 873: 871: 853: 849: 845: 842: 839: 834: 830: 826: 821: 817: 808: 804: 800: 782: 778: 774: 771: 768: 763: 759: 755: 752: 744: 740: 724: 721: 718: 715: 712: 703: 701: 685: 682: 679: 676: 656: 653: 650: 642: 638: 634: 621: 617: 616: 599: 591: 587: 580: 577: 572: 569: 566: 562: 558: 554: 548: 544: 538: 535: 532: 528: 523: 519: 516: 509: 508: 507: 506: 502: 498: 497: 493: 489: 485: 481: 477: 473: 472: 454: 448: 442: 436: 430: 423: 422: 421: 420: 416: 412: 409: 405: 401: 397: 394: 390: 387: 383: 379: 375: 371: 367: 363: 359: 355: 351: 347: 343: 339: 335: 331: 327: 323: 322: 316: 314: 310: 306: 302: 297: 295: 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 242: 240: 236: 232: 228: 223: 219: 200: 192: 187: 183: 178: 175: 172: 167: 163: 157: 153: 147: 143: 135: 134: 133: 131: 127: 126: 121: 116: 112: 102: 100: 95: 93: 89: 85: 81: 77: 73: 69: 65: 61: 58:contained in 57: 53: 49: 46:of a maximal 45: 41: 38: 37:abelian group 34: 30: 26: 22: 1317: 1311: 1285: 1275: 1255: 1246: 1236: 1229: 1222: 1215: 1203: 1191:Please help 1186:verification 1183: 1098: 1094: 1090: 1088: 1084:vector space 1076: 1074: 973: 969: 962: 960: 949: 942: 938: 932: 925: 921: 919: 914: 910: 906: 902: 897: 893: 889: 884: 880: 876: 874: 869: 806: 802: 798: 742: 738: 704: 699: 636: 632: 630: 491: 483: 479: 475: 407: 399: 385: 381: 377: 373: 369: 365: 361: 353: 349: 345: 341: 337: 333: 329: 325: 308: 298: 293: 289: 285: 281: 277: 273: 269: 268:and denoted 257: 250:vector space 243: 238: 234: 226: 221: 217: 215: 129: 123: 119: 114: 110: 108: 96: 79: 72:vector space 68:torsion-free 63: 59: 51: 39: 32: 28: 24: 18: 1282:Lang, Serge 1279:Page 46 of 928:such that 501:direct sums 231:cardinality 44:cardinality 29:Prüfer rank 21:mathematics 1351:p. 46 1304:0848.13001 1219:newspapers 1165:References 901:such that 398:The group 319:Properties 109:A subset { 105:Definition 1322:CiteSeerX 1118:⊗ 1042:⊗ 1035:⁡ 1003:⁡ 983:, of the 843:… 772:⋯ 722:≥ 716:≥ 683:− 654:≥ 639:that are 581:⁡ 570:∈ 563:∑ 536:∈ 529:⨁ 520:⁡ 452:→ 446:→ 440:→ 434:→ 384:has rank 358:injective 303:over any 246:dimension 193:∈ 188:α 168:α 158:α 148:α 144:∑ 74:over the 1364:Category 1284:(1993), 1153:See also 965:over an 741:of rank 488:flatness 1286:Algebra 1233:scholar 301:modules 254:torsion 42:is the 1342:  1324:  1302:  1292:  1235:  1228:  1221:  1214:  1206:  979:, the 128:(over 82:. For 35:of an 23:, the 1349:. On 1240:JSTOR 1226:books 797:into 380:< 376:< 340:. If 262:order 248:of a 62:. If 31:, or 1340:ISBN 1290:ISBN 1212:news 1000:rank 888:and 578:rank 517:rank 417:: if 235:rank 25:rank 1332:doi 1300:Zbl 1195:by 1019:dim 490:of 356:is 237:of 122:is 66:is 19:In 1366:: 1338:, 1330:, 1298:, 1135:0. 1101:, 917:. 872:. 352:⊗ 348:→ 336:⊗ 315:. 296:. 241:. 101:. 90:. 27:, 1334:: 1262:) 1256:( 1251:) 1247:( 1237:· 1230:· 1223:· 1216:· 1189:. 1132:= 1129:q 1123:Z 1114:x 1099:q 1095:x 1091:Q 1080:0 1077:R 1056:0 1052:R 1046:R 1038:M 1028:0 1024:R 1015:= 1012:) 1009:M 1006:( 977:0 974:R 970:R 963:M 950:G 943:G 939:K 933:K 926:G 922:K 915:m 911:n 907:B 903:A 898:m 896:, 894:n 890:B 885:m 883:, 881:n 877:A 870:A 854:k 850:r 846:, 840:, 835:2 831:r 827:, 822:1 818:r 807:k 803:A 799:k 783:k 779:r 775:+ 769:+ 764:1 760:r 756:= 753:n 743:n 739:A 725:1 719:k 713:n 700:n 686:2 680:n 677:2 657:3 651:n 637:d 633:d 622:. 600:, 597:) 592:j 588:A 584:( 573:J 567:j 559:= 555:) 549:j 545:A 539:J 533:j 524:( 503:: 492:Q 484:C 480:A 476:B 455:0 449:C 443:B 437:A 431:0 408:Q 400:Q 395:. 388:. 386:n 382:Q 378:A 374:Z 370:A 366:Q 362:A 354:Q 350:A 346:A 342:A 338:Q 334:A 330:Q 326:A 309:Z 294:A 290:A 286:A 284:( 282:T 280:/ 278:A 274:A 272:( 270:T 258:A 239:A 227:A 222:α 218:n 201:, 197:Z 184:n 179:, 176:0 173:= 164:a 154:n 130:Z 120:A 115:α 111:a 80:A 64:A 60:A 52:A 40:A

Index

mathematics
abelian group
cardinality
linearly independent
free abelian group
torsion-free
vector space
rational numbers
finitely generated abelian groups
torsion subgroup
Torsion-free abelian groups of rank 1
elementary abelian groups
linearly independent
cardinality
dimension
vector space
torsion
order
torsion subgroup
modules
integral domain
finitely generated module#Generic rank
injective
periodic abelian groups
Torsion-free abelian groups of rank 1
short exact sequences
flatness
direct sums
cardinal arithmetic
indecomposable

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.