Knowledge

Torsion subgroup

Source 📝

533: 130:
to its restriction to the torsion subgroup. There is another covariant functor from the category of abelian groups to the category of torsion-free groups that sends every group to its quotient by its torsion subgroup, and sends every homomorphism to the obvious induced homomorphism (which is easily
350: 438: 211: 255: 609:; this is a torsion group since every element has order 2. Nor need there be an upper bound on the orders of elements in a torsion group if it isn't 512:-torsion subgroups. The product over the set of all prime numbers of the restriction of these functors to the category of torsion groups, is a 376: 150:
and a torsion-free subgroup (but this is not true for all infinitely generated abelian groups). In any decomposition of
595:
Every finite abelian group is a torsion group. Not every torsion group is finite however: consider the direct sum of a
882: 825: 685: 167: 769:
of abelian groups, while taking the quotient by the torsion subgroup makes torsion-free abelian groups into a
900: 91:
is closed under the group operation relies on the commutativity of the operation (see examples section).
166:(but the torsion-free subgroup is not uniquely determined). This is a key step in the classification of 788: 123: 70: 872: 610: 766: 650: 139: 649:
of its torsion-free part is uniquely determined, as is explained in more detail in the article on
546: 542: 478: 103: 536:
The 4-torsion subgroup of the quotient group of the complex numbers under addition by a lattice.
770: 516:
from the category of torsion groups to the product over all prime numbers of the categories of
840: 541:
The torsion subset of a non-abelian group is not, in general, a subgroup. For example, in the
793: 673: 184: 143: 126:
to the category of torsion groups that sends every group to its torsion subgroup and every
46: 8: 856: 631:
is torsion-free, but the converse is not true, as is shown by the additive group of the
628: 596: 127: 878: 821: 783: 119: 868: 513: 78: 524:-torsion groups in isolation tells us everything about torsion groups in general. 860: 719: 632: 589: 585: 345:{\displaystyle A_{T_{p}}=\{a\in A\;|\;\exists n\in \mathbb {N} \;,p^{n}a=0\}.\;} 661: 455: 894: 864: 62: 20: 614: 600: 214: 665: 532: 813: 16:
Subgroup of an abelian group consisting of all elements of finite order
704: 481:. More strongly, any homomorphism between abelian groups sends each 38: 508:-power torsion subgroup, and restricts every homomorphism to the 497: 765:
Taking the torsion subgroup makes torsion abelian groups into a
579:
is a product of two torsion elements, but has infinite order.
433:{\displaystyle A_{T}\cong \bigoplus _{p\in P}A_{T_{p}}.\;} 500:
from the category of abelian groups to the category of
520:-torsion groups. In a sense, this means that studying 855: 379: 258: 187: 504:-power torsion groups that sends every group to its 432: 344: 205: 892: 366:-power torsion subgroups over all prime numbers 527: 485:-power torsion subgroup into the corresponding 877:, Boston, MA: Jones and Bartlett Publishers, 820:(3rd ed.), Addison-Wesley, p. 42, 335: 279: 173: 45:consisting of all elements that have finite 142:and abelian, then it can be written as the 429: 341: 312: 297: 291: 308: 531: 65:(or periodic group) if every element of 362:is isomorphic to the direct sum of its 893: 863:; Holt, Derek F.; Levy, Silvio V. F.; 154:as a direct sum of a torsion subgroup 98:is abelian, then the torsion subgroup 812: 680:is a subgroup of some abelian group 13: 298: 14: 912: 734:= 0. For a general abelian group 168:finitely generated abelian groups 839:See Epstein & Cannon (1992) 684:, then the natural map from the 645:is not finitely generated, the 69:has finite order and is called 833: 806: 293: 200: 188: 1: 849: 722:) kills torsion. That is, if 479:fully characteristic subgroup 158:and a torsion-free subgroup, 104:fully characteristic subgroup 676:, which means that whenever 528:Examples and further results 118:is torsion-free. There is a 7: 777: 710:Tensoring an abelian group 473:-power torsion subgroup of 447:is a finite abelian group, 231:that have order a power of 10: 917: 789:Torsion-free abelian group 584:The torsion elements in a 454:coincides with the unique 131:seen to be well-defined). 124:category of abelian groups 874:Word Processing in Groups 489:-power torsion subgroup. 235:is a subgroup called the 799: 767:coreflective subcategory 726:is a torsion group then 651:rank of an abelian group 613:, as the example of the 599:number of copies of the 177:-power torsion subgroups 146:of its torsion subgroup 543:infinite dihedral group 240:-power torsion subgroup 771:reflective subcategory 738:with torsion subgroup 537: 492:For each prime number 434: 346: 242:or, more loosely, the 207: 181:For any abelian group 81:is of infinite order. 794:Torsion abelian group 535: 435: 355:The torsion subgroup 347: 208: 206:{\displaystyle (A,+)} 110:and the factor group 901:Abelian group theory 869:Thurston, William P. 865:Paterson, Michael S. 857:Epstein, David B. A. 377: 256: 185: 73:if every element of 57:). An abelian group 33:of an abelian group 629:free abelian group 611:finitely generated 538: 496:, this provides a 430: 408: 342: 203: 140:finitely generated 784:Torsion (algebra) 656:An abelian group 393: 247:-torsion subgroup 120:covariant functor 19:In the theory of 908: 887: 861:Cannon, James W. 843: 837: 831: 830: 810: 660:is torsion-free 633:rational numbers 514:faithful functor 439: 437: 436: 431: 425: 424: 423: 422: 407: 389: 388: 351: 349: 348: 343: 325: 324: 311: 296: 275: 274: 273: 272: 212: 210: 209: 204: 51:torsion elements 25:torsion subgroup 916: 915: 911: 910: 909: 907: 906: 905: 891: 890: 885: 852: 847: 846: 838: 834: 828: 811: 807: 802: 780: 720:divisible group 608: 590:normal subgroup 586:nilpotent group 530: 452: 418: 414: 413: 409: 397: 384: 380: 378: 375: 374: 360: 320: 316: 307: 292: 268: 264: 263: 259: 257: 254: 253: 227:of elements of 225: 186: 183: 182: 179: 89: 84:The proof that 31: 17: 12: 11: 5: 914: 904: 903: 889: 888: 883: 851: 848: 845: 844: 832: 826: 804: 803: 801: 798: 797: 796: 791: 786: 779: 776: 775: 774: 763: 708: 686:tensor product 662:if and only if 654: 639: 625: 606: 593: 581: 580: 572: 571: 551: 550: 529: 526: 450: 441: 440: 428: 421: 417: 412: 406: 403: 400: 396: 392: 387: 383: 358: 353: 352: 340: 337: 334: 331: 328: 323: 319: 315: 310: 306: 303: 300: 295: 290: 287: 284: 281: 278: 271: 267: 262: 223: 202: 199: 196: 193: 190: 178: 172: 87: 29: 21:abelian groups 15: 9: 6: 4: 3: 2: 913: 902: 899: 898: 896: 886: 884:0-86720-244-0 880: 876: 875: 870: 866: 862: 858: 854: 853: 842: 836: 829: 827:0-201-55540-9 823: 819: 815: 809: 805: 795: 792: 790: 787: 785: 782: 781: 772: 768: 764: 761: 757: 753: 749: 745: 741: 737: 733: 729: 725: 721: 717: 713: 709: 706: 702: 698: 694: 690: 687: 683: 679: 675: 671: 667: 663: 659: 655: 652: 648: 644: 640: 637: 634: 630: 626: 623: 619: 616: 612: 605: 602: 598: 594: 591: 587: 583: 582: 578: 574: 573: 569: 565: 561: 557: 553: 552: 548: 544: 540: 539: 534: 525: 523: 519: 515: 511: 507: 503: 499: 495: 490: 488: 484: 480: 476: 472: 467: 465: 461: 459: 453: 446: 426: 419: 415: 410: 404: 401: 398: 394: 390: 385: 381: 373: 372: 371: 369: 365: 361: 338: 332: 329: 326: 321: 317: 313: 304: 301: 288: 285: 282: 276: 269: 265: 260: 252: 251: 250: 248: 246: 241: 239: 234: 230: 226: 219: 216: 197: 194: 191: 176: 171: 169: 165: 161: 157: 153: 149: 145: 141: 137: 132: 129: 125: 121: 117: 113: 109: 105: 101: 97: 92: 90: 82: 80: 76: 72: 68: 64: 63:torsion group 60: 56: 52: 48: 44: 40: 36: 32: 26: 22: 873: 835: 817: 808: 759: 755: 751: 747: 743: 739: 735: 731: 727: 723: 715: 711: 700: 696: 692: 688: 681: 677: 669: 657: 646: 642: 635: 621: 617: 615:factor group 603: 601:cyclic group 576: 575:the element 567: 563: 559: 555: 547:presentation 545:, which has 521: 517: 509: 505: 501: 493: 491: 486: 482: 474: 470: 468: 463: 457: 448: 444: 442: 367: 363: 356: 354: 244: 243: 237: 236: 232: 228: 221: 217: 215:prime number 180: 174: 163: 159: 155: 151: 147: 135: 133: 128:homomorphism 115: 111: 107: 99: 95: 93: 85: 83: 74: 71:torsion-free 66: 61:is called a 58: 54: 50: 42: 34: 27: 24: 18: 814:Serge, Lang 162:must equal 77:except the 850:References 144:direct sum 705:injective 597:countable 460:-subgroup 402:∈ 395:⨁ 391:≅ 305:∈ 299:∃ 286:∈ 122:from the 895:Category 871:(1992), 816:(1993), 778:See also 742:one has 718:(or any 641:Even if 220:the set 213:and any 79:identity 39:subgroup 818:Algebra 588:form a 570:² = 1 ⟩ 498:functor 37:is the 881:  841:p. 167 824:  674:module 664:it is 627:Every 624:shows. 456:Sylow 23:, the 800:Notes 714:with 668:as a 477:is a 469:Each 443:When 102:is a 49:(the 47:order 879:ISBN 822:ISBN 666:flat 647:size 566:² = 703:is 695:to 462:of 138:is 134:If 106:of 94:If 53:of 41:of 897:: 867:; 859:; 758:⊗ 750:≅ 746:⊗ 730:⊗ 699:⊗ 691:⊗ 577:xy 562:| 558:, 554:⟨ 466:. 451:Tp 370:: 249:: 224:Tp 170:. 773:. 762:. 760:Q 756:T 754:/ 752:A 748:Q 744:A 740:T 736:A 732:Q 728:T 724:T 716:Q 712:A 707:. 701:A 697:B 693:A 689:C 682:B 678:C 672:- 670:Z 658:A 653:. 643:A 638:. 636:Q 622:Z 620:/ 618:Q 607:2 604:C 592:. 568:y 564:x 560:y 556:x 549:: 522:p 518:p 510:p 506:p 502:p 494:p 487:p 483:p 475:A 471:p 464:A 458:p 449:A 445:A 427:. 420:p 416:T 411:A 405:P 399:p 386:T 382:A 368:p 364:p 359:T 357:A 339:. 336:} 333:0 330:= 327:a 322:n 318:p 314:, 309:N 302:n 294:| 289:A 283:a 280:{ 277:= 270:p 266:T 261:A 245:p 238:p 233:p 229:A 222:A 218:p 201:) 198:+ 195:, 192:A 189:( 175:p 164:T 160:S 156:S 152:A 148:T 136:A 116:T 114:/ 112:A 108:A 100:T 96:A 88:T 86:A 75:A 67:A 59:A 55:A 43:A 35:A 30:T 28:A

Index

abelian groups
subgroup
order
torsion group
torsion-free
identity
fully characteristic subgroup
covariant functor
category of abelian groups
homomorphism
finitely generated
direct sum
finitely generated abelian groups
prime number
Sylow p-subgroup
fully characteristic subgroup
functor
faithful functor

infinite dihedral group
presentation
nilpotent group
normal subgroup
countable
cyclic group
finitely generated
factor group
free abelian group
rational numbers
rank of an abelian group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.