Knowledge

Torsion (algebra)

Source đź“ť

1455: 179:
without zero divisors), every non-zero element is regular, so a torsion element of a module over an integral domain is one annihilated by a non-zero element of the integral domain. Some authors use this as the definition of a torsion element, but this definition does not work well over more general
1359: 717: 1424: 775: 1265: 1041: 918: 1083:
can be interpreted as the set of the elements that "vanish in the localization". The same interpretation continues to hold in the non-commutative setting for rings satisfying the
828:
in two variables. For non-finitely generated modules, the above direct decomposition is not true. The torsion subgroup of an abelian group may not be a
1274: 481:, conversely, asks whether a finitely generated periodic group must be finite. The answer is "no" in general, even if the period is fixed. 1438:
reflects this relation with the algebraic torsion. This same result holds for non-commutative rings as well as long as the set
675:-module in the natural way, then (as a result of many things, either simply by finite-dimensionality or as a consequence of the 96:(in fact, this is the origin of the terminology, which was introduced for abelian groups before being generalized to modules). 1665: 1632: 1364: 734: 1575: 1204: 990: 284: 1684: 1657: 1605: 1531: 146: 1694: 874: 1600: 676: 1595: 1526: 638: 520: 1506: 709: 1516: 1511: 973: 656: 474: 58:
formed by the torsion elements (in cases when this is indeed a submodule, such as when the ring is
20: 1443: 1088: 1689: 1584: 1567: 1521: 1047: 701: 516: 478: 1642: 1479: 1199: 928: 508: 485: 265: 108: 74: 39: 8: 1496: 1191: 1111: 825: 456: 346: 197: 100: 92:"). This is allowed by the fact that the abelian groups are the modules over the ring of 85: 67: 1591: 940: 857: 591: 582:
in one variable is pure torsion. Both these examples can be generalized as follows: if
448: 135: 47: 93: 1661: 1628: 1571: 254: 558:
modulo 1, is periodic, i.e. every element has finite order. Analogously, the module
1620: 1580: 1491: 957: 610: 373: 176: 128: 59: 43: 1638: 1463: 649: 555: 262: 172: 1475: 829: 77:, that is, when the regular elements of the ring are all its nonzero elements. 1624: 718:
structure theorem for finitely generated modules over a principal ideal domain
1678: 1612: 1084: 642: 496: 489: 403: 390: 238: 112: 81: 1649: 470: 452: 153: 1354:{\displaystyle 0\to \operatorname {Tor} _{1}^{R}(M,R_{S}/R)\to M\to M_{S}} 356:
of the group if it has finite order, i.e., if there is a positive integer
1501: 1454: 1135: 789: 725: 512: 424: 205:
is commutative then the set of all torsion elements forms a submodule of
31: 27: 1619:, Problem Books in Mathematics, New York: Springer, pp. xviii+412, 939:
is a vector space, possibly infinite-dimensional. There is a canonical
579: 531:. In this case, torsion elements do not form a subgroup, for example, 1458:
The 4-torsion subgroup of an elliptic curve over the complex numbers.
805: 55: 439:
is not a domain then torsion is considered with respect to the set
410:
of integers, and in this case the two notions of torsion coincide.
89: 1435: 66:
is a module consisting entirely of torsion elements. A module is
115:
case, the torsion elements do not form a subgroup, in general.
641:
by a subgroup is torsion-free exactly when the subgroup is a
519:, any nontrivial torsion element either has order two and is 152:
of the ring (an element that is neither a left nor a right
1568:
Introduction to Commutative algebra and algebraic geometry
960:
of this homomorphism is precisely the torsion submodule T(
73:
This terminology is more commonly used for modules over a
402:
if its only torsion element is the identity element. Any
431:. Then it follows immediately from the definitions that 1419:{\displaystyle \operatorname {Tor} _{1}^{R}(M,R_{S}/R)} 1367: 1277: 1207: 993: 877: 737: 816:
hold for more general commutative domains, even for
691: 527:or has order three and is conjugate to the element 1590: 1418: 1353: 1259: 1110:The concept of torsion plays an important role in 1035: 912: 808:, any finitely generated torsion-free module over 769: 1105: 229:) may or may not be a submodule. It is shown in ( 201:if zero is the only torsion element. If the ring 70:if its only torsion element is the zero element. 1676: 968:is a multiplicatively closed subset of the ring 770:{\displaystyle M\simeq F\oplus \mathrm {T} (M),} 394:if all its elements are torsion elements, and a 1260:{\displaystyle 0\to R\to R_{S}\to R_{S}/R\to 0} 195:if all its elements are torsion elements, and 462:is torsion-free when viewed as a module over 303:-torsion element if there exists an element 84:(with "module" and "submodule" replaced by " 835: 720:gives a detailed description of the module 1122:are two modules over a commutative domain 637:, +) are torsion-free. The quotient of a 1660:(Third ed.), Springer, p. 446, 1426:is the kernel of the localisation map of 1036:{\displaystyle M_{S}=M\otimes _{R}R_{S},} 42:that yields zero when multiplied by some 1453: 406:may be viewed as a module over the ring 334:the set of regular elements of the ring 1126:(for example, two abelian groups, when 1677: 1648: 1550: 913:{\displaystyle M_{Q}=M\otimes _{R}Q,} 1449: 1611: 257:are Ore, this covers the case when 230: 13: 1271:-modules yields an exact sequence 751: 338:and recover the definition above. 268:(which might not be commutative). 14: 1706: 1478:they may be computed in terms of 473:(abelian or not) is periodic and 1587:", University of Michigan, 1954. 1169:is canonically isomorphic to Tor 1079:. Thus the torsion submodule of 1071:, whose kernel is precisely the 1058:. There is a canonical map from 728:. In particular, it claims that 692:Case of a principal ideal domain 469:By contrast with example 1, any 330:In particular, one can take for 145:of the module if there exists a 1617:Exercises in modules and rings 1544: 1413: 1386: 1338: 1332: 1329: 1302: 1281: 1251: 1230: 1217: 1211: 1106:Torsion in homological algebra 800:) is the torsion submodule of 761: 755: 503:obtained from the group SL(2, 285:multiplicatively closed subset 1: 1658:Graduate Texts in Mathematics 1537: 1532:Universal coefficient theorem 1470:or, in an older terminology, 435:is torsion-free (if the ring 118: 1087:, or more generally for any 864:. Then one can consider the 844:is a commutative domain and 484:The torsion elements of the 80:This terminology applies to 7: 1601:Encyclopedia of Mathematics 1485: 1462:The torsion elements of an 1046:which is a module over the 543:, which has infinite order. 413: 391:torsion (or periodic) group 103:that are noncommutative, a 10: 1711: 1560: 1527:Torsion-free abelian group 935:is a field, a module over 639:torsion-free abelian group 586:is an integral domain and 18: 1625:10.1007/978-0-387-48899-8 1507:Annihilator (ring theory) 16:Zero divisors in a module 1517:Rank of an abelian group 1512:Localization of a module 836:Torsion and localization 812:is free. This corollary 451:is torsion-free and any 443:of non-zero-divisors of 275:be a module over a ring 107:is an element of finite 21:Torsion (disambiguation) 1654:Advanced Linear Algebra 1585:Infinite abelian groups 972:, then we may consider 943:of abelian groups from 677:Cayley–Hamilton theorem 629:, +) while the groups ( 380:denotes the product of 1459: 1420: 1355: 1261: 1075:-torsion submodule of 1037: 964:). More generally, if 914: 771: 702:principal ideal domain 447:). In particular, any 388:. A group is called a 253:-modules. Since right 225:is not commutative, T( 217:, sometimes denoted T( 1570:", Birkhauser 1985, 1457: 1444:right denominator set 1421: 1356: 1262: 1089:right denominator set 1038: 915: 772: 515:by factoring out its 1685:Abelian group theory 1480:division polynomials 1365: 1275: 1205: 1200:short exact sequence 991: 929:extension of scalars 875: 735: 554:, consisting of the 486:multiplicative group 271:More generally, let 245:) is a submodule of 19:For other uses, see 1695:Homological algebra 1596:"Torsion submodule" 1497:Arithmetic dynamics 1382: 1298: 1112:homological algebra 826:ring of polynomials 792:(depending only on 710:finitely generated 700:is a (commutative) 488:of a field are its 156:) that annihilates 54:of a module is the 38:is an element of a 1592:Michiel Hazewinkel 1522:Ray–Singer torsion 1460: 1416: 1368: 1351: 1284: 1257: 1138:yield a family of 1033: 910: 858:field of fractions 788:-module of finite 767: 657:finite-dimensional 592:field of fractions 546:The abelian group 479:Burnside's problem 475:finitely generated 449:free abelian group 398:torsion-free group 376:of the group, and 255:Noetherian domains 111:. Contrary to the 30:, specifically in 1667:978-0-387-72828-5 1634:978-0-387-98850-4 1450:Abelian varieties 507:) of 2Ă—2 integer 241:if and only if T( 211:torsion submodule 52:torsion submodule 1702: 1670: 1645: 1608: 1581:Irving Kaplansky 1554: 1548: 1492:Analytic torsion 1433: 1425: 1423: 1422: 1417: 1409: 1404: 1403: 1381: 1376: 1360: 1358: 1357: 1352: 1350: 1349: 1325: 1320: 1319: 1297: 1292: 1266: 1264: 1263: 1258: 1247: 1242: 1241: 1229: 1228: 1042: 1040: 1039: 1034: 1029: 1028: 1019: 1018: 1003: 1002: 919: 917: 916: 911: 903: 902: 887: 886: 776: 774: 773: 768: 754: 611:torsion subgroup 556:rational numbers 400: 399: 374:identity element 329: 177:commutative ring 170: 44:non-zero-divisor 1710: 1709: 1705: 1704: 1703: 1701: 1700: 1699: 1675: 1674: 1668: 1635: 1563: 1558: 1557: 1549: 1545: 1540: 1488: 1476:elliptic curves 1472:division points 1464:abelian variety 1452: 1431: 1405: 1399: 1395: 1377: 1372: 1366: 1363: 1362: 1345: 1341: 1321: 1315: 1311: 1293: 1288: 1276: 1273: 1272: 1243: 1237: 1233: 1224: 1220: 1206: 1203: 1202: 1197: 1185: 1172: 1161:-torsion of an 1148: 1108: 1070: 1057: 1024: 1020: 1014: 1010: 998: 994: 992: 989: 988: 955: 898: 894: 882: 878: 876: 873: 872: 838: 750: 736: 733: 732: 694: 663:over the field 650:linear operator 535: ·  523:to the element 416: 397: 396: 354:torsion element 320: 173:integral domain 161: 147:regular element 143:torsion element 121: 105:torsion element 99:In the case of 36:torsion element 24: 17: 12: 11: 5: 1708: 1698: 1697: 1692: 1687: 1673: 1672: 1666: 1650:Roman, Stephen 1646: 1633: 1613:Lam, Tsit Yuen 1609: 1588: 1578: 1562: 1559: 1556: 1555: 1542: 1541: 1539: 1536: 1535: 1534: 1529: 1524: 1519: 1514: 1509: 1504: 1499: 1494: 1487: 1484: 1468:torsion points 1451: 1448: 1415: 1412: 1408: 1402: 1398: 1394: 1391: 1388: 1385: 1380: 1375: 1371: 1348: 1344: 1340: 1337: 1334: 1331: 1328: 1324: 1318: 1314: 1310: 1307: 1304: 1301: 1296: 1291: 1287: 1283: 1280: 1256: 1253: 1250: 1246: 1240: 1236: 1232: 1227: 1223: 1219: 1216: 1213: 1210: 1195: 1192:exact sequence 1181: 1170: 1143: 1107: 1104: 1066: 1053: 1044: 1043: 1032: 1027: 1023: 1017: 1013: 1009: 1006: 1001: 997: 951: 923:obtained from 921: 920: 909: 906: 901: 897: 893: 890: 885: 881: 837: 834: 830:direct summand 778: 777: 766: 763: 760: 757: 753: 749: 746: 743: 740: 693: 690: 689: 688: 646: 607: 570:over the ring 544: 493: 490:roots of unity 482: 467: 427:over any ring 415: 412: 249:for all right 193:torsion module 120: 117: 82:abelian groups 64:torsion module 15: 9: 6: 4: 3: 2: 1707: 1696: 1693: 1691: 1690:Module theory 1688: 1686: 1683: 1682: 1680: 1669: 1663: 1659: 1655: 1651: 1647: 1644: 1640: 1636: 1630: 1626: 1622: 1618: 1614: 1610: 1607: 1603: 1602: 1597: 1593: 1589: 1586: 1582: 1579: 1577: 1576:0-8176-3065-1 1573: 1569: 1566:Ernst Kunz, " 1565: 1564: 1552: 1547: 1543: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1489: 1483: 1481: 1477: 1473: 1469: 1465: 1456: 1447: 1445: 1441: 1437: 1434:denoting the 1430:. The symbol 1429: 1410: 1406: 1400: 1396: 1392: 1389: 1383: 1378: 1373: 1369: 1346: 1342: 1335: 1326: 1322: 1316: 1312: 1308: 1305: 1299: 1294: 1289: 1285: 1278: 1270: 1254: 1248: 1244: 1238: 1234: 1225: 1221: 1214: 1208: 1201: 1193: 1189: 1184: 1180: 1176: 1168: 1164: 1160: 1156: 1152: 1146: 1141: 1137: 1133: 1130: =  1129: 1125: 1121: 1117: 1113: 1103: 1101: 1097: 1093: 1090: 1086: 1085:Ore condition 1082: 1078: 1074: 1069: 1065: 1061: 1056: 1052: 1049: 1030: 1025: 1021: 1015: 1011: 1007: 1004: 999: 995: 987: 986: 985: 983: 979: 975: 971: 967: 963: 959: 954: 950: 946: 942: 938: 934: 930: 926: 907: 904: 899: 895: 891: 888: 883: 879: 871: 870: 869: 867: 863: 859: 855: 852:-module. Let 851: 847: 843: 833: 831: 827: 823: 820: =  819: 815: 811: 807: 803: 799: 795: 791: 787: 783: 764: 758: 747: 744: 741: 738: 731: 730: 729: 727: 723: 719: 715: 713: 707: 703: 699: 696:Suppose that 686: 683:is a torsion 682: 678: 674: 670: 667:. If we view 666: 662: 659:vector space 658: 654: 651: 647: 644: 643:pure subgroup 640: 636: 632: 628: 624: 620: 616: 612: 608: 605: 602:is a torsion 601: 597: 593: 589: 585: 581: 577: 574: =  573: 569: 565: 561: 557: 553: 549: 545: 542: 538: 534: 530: 526: 522: 518: 514: 510: 506: 502: 498: 497:modular group 494: 491: 487: 483: 480: 476: 472: 468: 465: 461: 458: 454: 450: 446: 442: 438: 434: 430: 426: 422: 418: 417: 411: 409: 405: 404:abelian group 401: 393: 392: 387: 383: 379: 375: 371: 367: 363: 359: 355: 351: 348: 344: 339: 337: 333: 327: 323: 318: 314: 310: 306: 302: 299:is called an 298: 294: 291:. An element 290: 286: 282: 278: 274: 269: 267: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 209:, called the 208: 204: 200: 199: 194: 190: 186: 181: 178: 174: 168: 164: 159: 155: 151: 148: 144: 140: 137: 133: 130: 126: 116: 114: 110: 106: 102: 97: 95: 91: 87: 83: 78: 76: 71: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 22: 1653: 1616: 1599: 1553:, p. 115, §4 1546: 1471: 1467: 1461: 1439: 1427: 1361:, and hence 1268: 1187: 1182: 1178: 1174: 1166: 1162: 1158: 1154: 1150: 1144: 1142:-modules Tor 1139: 1136:Tor functors 1131: 1127: 1123: 1119: 1115: 1109: 1099: 1095: 1091: 1080: 1076: 1072: 1067: 1063: 1059: 1054: 1050: 1048:localization 1045: 981: 977: 974:localization 969: 965: 961: 952: 948: 944: 941:homomorphism 936: 932: 924: 922: 865: 861: 860:of the ring 853: 849: 845: 841: 840:Assume that 839: 821: 817: 813: 809: 801: 797: 793: 785: 781: 779: 721: 711: 705: 697: 695: 684: 680: 672: 668: 664: 660: 655:acting on a 652: 634: 630: 626: 622: 618: 614: 603: 599: 595: 587: 583: 575: 571: 567: 563: 559: 551: 547: 540: 536: 532: 528: 524: 504: 500: 471:finite group 463: 459: 453:vector space 444: 440: 436: 432: 428: 420: 407: 395: 389: 385: 381: 377: 372:denotes the 369: 365: 361: 357: 353: 352:is called a 349: 342: 340: 335: 331: 325: 321: 316: 315:annihilates 312: 308: 304: 300: 296: 292: 288: 280: 276: 272: 270: 258: 250: 246: 242: 234: 226: 222: 218: 214: 210: 206: 202: 198:torsion-free 196: 192: 191:is called a 188: 187:over a ring 184: 182: 166: 162: 157: 154:zero divisor 149: 142: 141:is called a 138: 131: 124: 122: 104: 98: 79: 72: 68:torsion-free 63: 51: 35: 25: 1502:Flat module 726:isomorphism 716:. Then the 648:Consider a 580:polynomials 513:determinant 425:free module 341:An element 261:is a right 237:is a right 123:An element 113:commutative 60:commutative 32:ring theory 28:mathematics 1679:Categories 1551:Roman 2008 1538:References 1094:and right 956:, and the 784:is a free 633:, +) and ( 511:with unit 384:copies of 360:such that 311:such that 263:Noetherian 119:Definition 1606:EMS Press 1594:(2001) , 1384:⁡ 1339:→ 1333:→ 1300:⁡ 1282:→ 1252:→ 1231:→ 1218:→ 1212:→ 1190:) by the 1012:⊗ 896:⊗ 806:corollary 748:⊕ 742:≃ 621:, +) is ( 521:conjugate 183:A module 56:submodule 1652:(2008), 1615:(2007), 1486:See also 1436:functors 1165:-module 1098:-module 980:-module 931:. Since 868:-module 814:does not 796:) and T( 687:-module. 606:-module. 509:matrices 414:Examples 368:, where 319:, i.e., 239:Ore ring 231:Lam 2007 160:, i.e., 94:integers 90:subgroup 1643:2278849 1561:Sources 1177:,  1157:). The 1147:  976:of the 856:be the 832:of it. 804:. As a 714:-module 594:, then 590:is its 495:In the 455:over a 324:  233:) that 180:rings. 165:  134:over a 88:" and " 46:of the 1664:  1641:  1631:  1574:  1474:. On 1198:: The 1194:of Tor 958:kernel 848:is an 824:, the 780:where 724:up to 671:as an 517:center 266:domain 221:). If 171:In an 129:module 101:groups 75:domain 50:. The 40:module 1442:is a 1114:. If 708:is a 457:field 423:be a 347:group 345:of a 283:be a 127:of a 109:order 86:group 62:). A 1662:ISBN 1629:ISBN 1572:ISBN 1466:are 1118:and 790:rank 704:and 613:of ( 609:The 419:Let 328:= 0. 279:and 169:= 0. 136:ring 48:ring 34:, a 1621:doi 1583:, " 1432:Tor 1370:Tor 1286:Tor 1267:of 1134:), 1062:to 947:to 927:by 679:), 578:of 307:in 295:of 287:of 213:of 175:(a 26:In 1681:: 1656:, 1639:MR 1637:, 1627:, 1604:, 1598:, 1482:. 1446:. 1102:. 984:, 566:)/ 539:= 537:ST 529:ST 499:, 477:. 364:= 1671:. 1623:: 1440:S 1428:M 1414:) 1411:R 1407:/ 1401:S 1397:R 1393:, 1390:M 1387:( 1379:R 1374:1 1347:S 1343:M 1336:M 1330:) 1327:R 1323:/ 1317:S 1313:R 1309:, 1306:M 1303:( 1295:R 1290:1 1279:0 1269:R 1255:0 1249:R 1245:/ 1239:S 1235:R 1226:S 1222:R 1215:R 1209:0 1196:* 1188:R 1186:/ 1183:S 1179:R 1175:M 1173:( 1171:1 1167:M 1163:R 1159:S 1155:N 1153:, 1151:M 1149:( 1145:i 1140:R 1132:Z 1128:R 1124:R 1120:N 1116:M 1100:M 1096:R 1092:S 1081:M 1077:M 1073:S 1068:S 1064:M 1060:M 1055:S 1051:R 1031:, 1026:S 1022:R 1016:R 1008:M 1005:= 1000:S 996:M 982:M 978:R 970:R 966:S 962:M 953:Q 949:M 945:M 937:Q 933:Q 925:M 908:, 905:Q 900:R 892:M 889:= 884:Q 880:M 866:Q 862:R 854:Q 850:R 846:M 842:R 822:K 818:R 810:R 802:M 798:M 794:M 786:R 782:F 765:, 762:) 759:M 756:( 752:T 745:F 739:M 722:M 712:R 706:M 698:R 685:K 681:V 673:K 669:V 665:K 661:V 653:L 645:. 635:Z 631:R 627:Z 625:/ 623:Q 619:Z 617:/ 615:R 604:R 600:R 598:/ 596:Q 588:Q 584:R 576:K 572:R 568:K 564:t 562:( 560:K 552:Z 550:/ 548:Q 541:T 533:S 525:S 505:Z 501:Γ 492:. 466:. 464:K 460:K 445:R 441:S 437:R 433:M 429:R 421:M 408:Z 386:g 382:m 378:g 370:e 366:e 362:g 358:m 350:G 343:g 336:R 332:S 326:m 322:s 317:m 313:s 309:S 305:s 301:S 297:M 293:m 289:R 281:S 277:R 273:M 259:R 251:R 247:M 243:M 235:R 227:M 223:R 219:M 215:M 207:M 203:R 189:R 185:M 167:m 163:r 158:m 150:r 139:R 132:M 125:m 23:.

Index

Torsion (disambiguation)
mathematics
ring theory
module
non-zero-divisor
ring
submodule
commutative
torsion-free
domain
abelian groups
group
subgroup
integers
groups
order
commutative
module
ring
regular element
zero divisor
integral domain
commutative ring
torsion-free
Lam 2007
Ore ring
Noetherian domains
Noetherian
domain
multiplicatively closed subset

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑