Knowledge

Random close pack

Source 📝

35:, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container. In other words, shaking increases the density of packed objects. But shaking cannot increase the density indefinitely, a limit is reached, and if this is reached without obvious packing into an ordered structure, such as a regular crystal lattice, this is the empirical random close-packed density for this particular procedure of packing. The random close packing is the highest possible volume fraction out of all possible packing procedures. 71:
state is RCP. The definition of packing fraction can be given as: "the volume taken by number of particles in a given space of volume". In other words, packing fraction defines the packing density. It has been shown that the filling fraction increases with the number of taps until the saturation density is reached. Also, the saturation density increases as the tapping
55:
of growth of ordered clusters to be exponentially small and relating it to the distribution of `cells', which are the smallest voids surrounded by connected discs. The derived maximum volume fraction is 85.3542%, if only hexagonal lattice clusters are disallowed, and 85.2514% if one disallows also deformed square lattice clusters.
234:
Products containing loosely packed items are often labeled with this message: 'Contents May Settle During Shipping'. Usually during shipping, the container will be bumped numerous times, which will increase the packing density. The message is added to assure the consumer that the container is full
54:
The random close packing fraction of discs in the plane has also been considered a theoretically unsolved problem because of similar difficulties. An analytical, though not in closed form, solution to this problem was found in 2021 by R. Blumenfeld. The solution was found by limiting the probability
38:
Experiments and computer simulations have shown that the most compact way to pack hard perfect same-size spheres randomly gives a maximum volume fraction of about 64%, i.e., approximately 64% of the volume of a container is occupied by the spheres. The problem of predicting theoretically the random
70:
Random close packing of spheres does not have yet a precise geometric definition. It is defined statistically, and results are empirical. A container is randomly filled with objects, and then the container is shaken or tapped until the objects do not compact any further, at this point the packing
58:
An analytical and closed-form solution for both 2D and 3D, mechanically stable, random packings of spheres has been found by A. Zaccone in 2022 using the assumption that the most random branch of jammed states (maximally random jammed packings, extending up to the fcc closest packing) undergo
95:
then the volume fraction depends non-trivially on the size-distribution and can be arbitrarily close to 1. Still for (relatively) monodisperse objects the value for RCP depends on the object shape; for spheres it is 0.64, for
755:
Donev, A.; Cisse, Ibrahim; Sachs, David; Variano, Evan A.; Stillinger, Frank H.; Connelly, Robert; Torquato, Salvatore; Chaikin, P. M. (2004). "Improving the Density of Jammed Disordered Packings using Ellipsoids".
625:
Donev, A.; Cisse, I.; Sachs, D.; Variano, E. A.; Stillinger, F. H.; Connelly, R.; Torquato, S.; Chaikin, P. M. (2004). "Improving the Density of Jammed Disordered Packings Using Ellipsoids".
39:
close pack of spheres is difficult mainly because of the absence of a unique definition of randomness or disorder. The random close packing value is significantly below the maximum possible
590:
Ratnaswamy, V.; Rosato, A.D.; Blackmore, D.; Tricoche, X.; Ching, Luo; Zuo, L. (2012). "Evolution of Solids Fraction Surfaces in Tapping: Simulation and Dynamical Systems Analysis".
547:
Rosato, Anthony D.; Dybenko, Oleksandr; Horntrop, David J.; Ratnaswamy, Vishagan; Kondic, Lou (2010). "Microstructure Evolution in Density Relaxation by Tapping".
59:
crowding in a way qualitatively similar to an equilibrium liquid. The reasons for the effectiveness of this solution are the object of ongoing debate.
47:
and hexagonal close packed (hcp) crystal lattices have maximum densities equal to this upper limit, which can occur through the process of
235:
on a mass basis, even though the container appears slightly empty. Systems of packed particles are also used as a basic model of
695: 820: 248: 40: 278:
Torquato, S.; Truskett, T.M.; Debenedetti, P.G. (2000). "Is Random Close Packing of Spheres Well Defined?".
48: 778: 647: 31:
objects obtained when they are packed randomly. For example, when a solid container is filled with
339: 424:
Zaccone, Alessio (2022). "Explicit Analytical Solution for Random Close Packing in d=2 and d=3".
258: 773: 642: 91:
The particle volume fraction at RCP depends on the objects being packed. If the objects are
765: 719: 634: 556: 443: 374: 297: 44: 8: 141: 76: 769: 723: 638: 560: 489: 447: 378: 301: 799: 743: 668: 607: 529: 467: 433: 406: 364: 321: 287: 791: 735: 691: 660: 611: 572: 533: 486: 471: 459: 410: 398: 390: 313: 803: 747: 672: 352: 325: 783: 727: 652: 599: 564: 519: 455: 451: 386: 382: 305: 79:
as the tapping amplitude goes to zero, and the limit as the number of taps goes to
731: 127: 24: 524: 511: 309: 568: 253: 41:
close-packing of same-size hard spheres into a regular crystalline arrangements
603: 353:"Disorder Criterion and Explicit Solution for the Disc Random Packing Problem" 814: 394: 214: 137: 92: 787: 656: 795: 739: 664: 576: 463: 402: 317: 236: 292: 97: 23:) of spheres is an empirical parameter used to characterize the maximum 338:
Modes of wall induced granular crystallisation in vibrational packing.
494: 72: 110:
Comparison of various models of close sphere packing (monodispersed)
438: 369: 122: 80: 710:
Jaeger, H. M.; Nagel, S. R. (1992). "Physics of Granular States".
589: 546: 484: 32: 28: 277: 75:
decreases. Thus, RCP is the packing fraction given by the
512:"Maximizing space efficiency without order, analytically" 754: 624: 812: 688:Porous Media: Fluid Transport and Pore Structure 709: 350: 777: 646: 523: 516:Journal Club for Condensed Matter Physics 437: 368: 291: 86: 172:E.g., dropped into bed or packed by hand 685: 423: 813: 509: 485: 13: 351:Blumenfeld, Raphael (2021-09-09). 14: 832: 690:(2nd ed.). Academic Press. 679: 618: 583: 540: 503: 478: 456:10.1103/PhysRevLett.128.028002 417: 387:10.1103/physrevlett.127.118002 344: 332: 271: 249:Close-packing of equal spheres 103: 1: 732:10.1126/science.255.5051.1523 264: 65: 158:E.g., spheres slowly settled 43:, which is 74.04%. Both the 7: 525:10.36471/JCCM_March_2022_02 310:10.1103/PhysRevLett.84.2064 242: 10: 837: 686:Dullien, F. A. L. (1992). 569:10.1103/physreve.81.061301 340:Granular Matter, 21(2), 26 229: 604:10.1007/s10035-012-0343-2 155:Very loose random packing 821:Granularity of materials 510:Likos, Christos (2022). 217:(Coordination number 12) 134:Thinnest regular packing 49:granular crystallisation 45:face-centred cubic (fcc) 788:10.1126/science.1093010 657:10.1126/science.1093010 426:Physical Review Letters 357:Physical Review Letters 280:Physical Review Letters 259:Cylinder sphere packing 211:Densest regular packing 186:Spheres poured into bed 490:"Random Close Packing" 200:E.g., the bed vibrated 87:Effect of object shape 183:Poured random packing 197:Close random packing 169:Loose random packing 17:Random close packing 770:2004Sci...303..990D 724:1992Sci...255.1523J 639:2004Sci...303..990D 561:2010PhRvE..81f1301R 448:2022PhRvL.128b8002Z 379:2021PhRvL.127k8002B 302:2000PhRvL..84.2064T 142:Coordination number 112: 487:Weisstein, Eric W. 215:fcc or hcp lattice 108: 100:candy it is 0.68. 764:(5660): 990–993. 718:(5051): 1523–31. 697:978-0-12-223651-8 633:(5660): 990–993. 549:Physical Review E 286:(10): 2064–2067. 227: 226: 828: 807: 781: 751: 702: 701: 683: 677: 676: 650: 622: 616: 615: 587: 581: 580: 544: 538: 537: 527: 507: 501: 500: 499: 482: 476: 475: 441: 421: 415: 414: 372: 348: 342: 336: 330: 329: 295: 293:cond-mat/0003416 275: 113: 107: 836: 835: 831: 830: 829: 827: 826: 825: 811: 810: 779:10.1.1.220.1156 706: 705: 698: 684: 680: 648:10.1.1.220.1156 623: 619: 592:Granular Matter 588: 584: 545: 541: 508: 504: 483: 479: 422: 418: 349: 345: 337: 333: 276: 272: 267: 245: 232: 206:0.625 to 0.641 192:0.609 to 0.625 128:Packing density 106: 89: 68: 62: 25:volume fraction 12: 11: 5: 834: 824: 823: 809: 808: 752: 704: 703: 696: 678: 617: 582: 539: 502: 477: 416: 363:(11): 118002. 343: 331: 269: 268: 266: 263: 262: 261: 256: 254:Sphere packing 251: 244: 241: 231: 228: 225: 224: 221: 218: 212: 208: 207: 204: 203:0.359 to 0.375 201: 198: 194: 193: 190: 189:0.375 to 0.391 187: 184: 180: 179: 176: 173: 170: 166: 165: 162: 159: 156: 152: 151: 148: 145: 135: 131: 130: 125: 120: 117: 105: 102: 88: 85: 67: 64: 9: 6: 4: 3: 2: 833: 822: 819: 818: 816: 805: 801: 797: 793: 789: 785: 780: 775: 771: 767: 763: 759: 753: 749: 745: 741: 737: 733: 729: 725: 721: 717: 713: 708: 707: 699: 693: 689: 682: 674: 670: 666: 662: 658: 654: 649: 644: 640: 636: 632: 628: 621: 613: 609: 605: 601: 598:(2): 163–68. 597: 593: 586: 578: 574: 570: 566: 562: 558: 555:(6): 061301. 554: 550: 543: 535: 531: 526: 521: 517: 513: 506: 497: 496: 491: 488: 481: 473: 469: 465: 461: 457: 453: 449: 445: 440: 435: 432:(2): 028002. 431: 427: 420: 412: 408: 404: 400: 396: 392: 388: 384: 380: 376: 371: 366: 362: 358: 354: 347: 341: 335: 327: 323: 319: 315: 311: 307: 303: 299: 294: 289: 285: 281: 274: 270: 260: 257: 255: 252: 250: 247: 246: 240: 238: 222: 219: 216: 213: 210: 209: 205: 202: 199: 196: 195: 191: 188: 185: 182: 181: 178:0.59 to 0.60 177: 174: 171: 168: 167: 163: 160: 157: 154: 153: 149: 146: 143: 139: 138:cubic lattice 136: 133: 132: 129: 126: 124: 123:Void fraction 121: 118: 115: 114: 111: 101: 99: 94: 93:polydispersed 84: 82: 78: 74: 63: 60: 56: 52: 50: 46: 42: 36: 34: 30: 26: 22: 18: 761: 757: 715: 711: 687: 681: 630: 626: 620: 595: 591: 585: 552: 548: 542: 515: 505: 493: 480: 429: 425: 419: 360: 356: 346: 334: 283: 279: 273: 237:porous media 233: 175:0.40 to 0.41 109: 90: 69: 61: 57: 53: 37: 20: 16: 15: 119:Description 104:For spheres 439:2201.04541 370:2106.11774 265:References 66:Definition 774:CiteSeerX 643:CiteSeerX 612:254114944 534:247914694 495:MathWorld 472:245877616 411:237617506 395:0031-9007 98:M&M's 73:amplitude 815:Category 804:33409855 796:14963324 748:44568820 740:17820163 673:33409855 665:14963324 577:20866410 464:35089741 403:34558936 326:13149645 318:11017210 243:See also 81:infinity 766:Bibcode 758:Science 720:Bibcode 712:Science 635:Bibcode 627:Science 557:Bibcode 444:Bibcode 375:Bibcode 298:Bibcode 230:Example 223:0.7405 150:0.5236 802:  794:  776:  746:  738:  694:  671:  663:  645:  610:  575:  532:  470:  462:  409:  401:  393:  324:  316:  220:0.2595 147:0.4764 800:S2CID 744:S2CID 669:S2CID 608:S2CID 530:S2CID 468:S2CID 434:arXiv 407:S2CID 365:arXiv 322:S2CID 288:arXiv 164:0.56 116:Model 77:limit 33:grain 29:solid 792:PMID 736:PMID 692:ISBN 661:PMID 573:PMID 460:PMID 399:PMID 391:ISSN 314:PMID 161:0.44 784:doi 762:303 728:doi 716:255 653:doi 631:303 600:doi 565:doi 520:doi 452:doi 430:128 383:doi 361:127 306:doi 27:of 21:RCP 817:: 798:. 790:. 782:. 772:. 760:. 742:. 734:. 726:. 714:. 667:. 659:. 651:. 641:. 629:. 606:. 596:14 594:. 571:. 563:. 553:81 551:. 528:. 518:. 514:. 492:. 466:. 458:. 450:. 442:. 428:. 405:. 397:. 389:. 381:. 373:. 359:. 355:. 320:. 312:. 304:. 296:. 284:84 282:. 239:. 144:6) 83:. 51:. 806:. 786:: 768:: 750:. 730:: 722:: 700:. 675:. 655:: 637:: 614:. 602:: 579:. 567:: 559:: 536:. 522:: 498:. 474:. 454:: 446:: 436:: 413:. 385:: 377:: 367:: 328:. 308:: 300:: 290:: 140:( 19:(

Index

volume fraction
solid
grain
close-packing of same-size hard spheres into a regular crystalline arrangements
face-centred cubic (fcc)
granular crystallisation
amplitude
limit
infinity
polydispersed
M&M's
Void fraction
Packing density
cubic lattice
Coordination number
fcc or hcp lattice
porous media
Close-packing of equal spheres
Sphere packing
Cylinder sphere packing
arXiv
cond-mat/0003416
Bibcode
2000PhRvL..84.2064T
doi
10.1103/PhysRevLett.84.2064
PMID
11017210
S2CID
13149645

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.