Knowledge

Close-packing of equal spheres

Source 📝

785: 243: 162: 716: 815: 128: 800: 148: 155: 2052: 1690: 753: 20: 2314: 731: 275: 1701: 1354: 2047:{\displaystyle \left(2r,r+{\frac {4{\sqrt {3}}r}{3}},r+{\frac {{\sqrt {6}}r2}{3}}\right),\ \left(4r,r+{\frac {4{\sqrt {3}}r}{3}},r+{\frac {{\sqrt {6}}r2}{3}}\right),\ \left(6r,r+{\frac {4{\sqrt {3}}r}{3}},r+{\frac {{\sqrt {6}}r2}{3}}\right),\ \left(8r,r+{\frac {4{\sqrt {3}}r}{3}},r+{\frac {{\sqrt {6}}r2}{3}}\right),\dots .} 1685:{\displaystyle \left(r,r+{\frac {{\sqrt {3}}r}{3}},r+{\frac {{\sqrt {6}}r2}{3}}\right),\ \left(3r,r+{\frac {{\sqrt {3}}r}{3}},r+{\frac {{\sqrt {6}}r2}{3}}\right),\ \left(5r,r+{\frac {{\sqrt {3}}r}{3}},r+{\frac {{\sqrt {6}}r2}{3}}\right),\ \left(7r,r+{\frac {{\sqrt {3}}r}{3}},r+{\frac {{\sqrt {6}}r2}{3}}\right),\dots .} 1237: 2439:
left by hcp and fcc conformations; tetrahedral and octahedral void. Four spheres surround the tetrahedral hole with three spheres being in one layer and one sphere from the next layer. Six spheres surround an octahedral voids with three spheres coming from one layer and three spheres coming from the
837:
When forming any sphere-packing lattice, the first fact to notice is that whenever two spheres touch a straight line may be drawn from the center of one sphere to the center of the other intersecting the point of contact. The distance between the centers along the shortest path namely that straight
2443:
Layered structures are formed by alternating empty and filled octahedral planes. Two octahedral layers usually allow for four structural arrangements that can either be filled by an hpc of fcc packing systems. In filling tetrahedral holes a complete filling leads to fcc field array. In unit cells,
745:
is shown in red. The letters indicate which layers are the same. There are two "A" layers in the HCP matrix, where all the spheres are in the same position. All three layers in the FCC stack are different. Note the FCC stacking may be converted to the HCP stacking by translation of the upper-most
1302:
Using the plane described precisely above as plane #1, the A plane, place a sphere on top of this plane so that it lies touching three spheres in the A-plane. The three spheres are all already touching each other, forming an equilateral triangle, and since they all touch the new sphere, the four
270:
on their expedition to America. Cannonballs were usually piled in a rectangular or triangular wooden frame, forming a three-sided or four-sided pyramid. Both arrangements produce a face-centered cubic lattice – with different orientation to the ground. Hexagonal close-packing would result in a
118:
structures are based on a close-packing of a single kind of atom, or a close-packing of large ions with smaller ions filling the spaces between them. The cubic and hexagonal arrangements are very close to one another in energy, and it may be difficult to predict which form will be preferred from
810:. The difference between this stack and the top three tiers of the cannonball stack all occurs in the bottom tier, which is rotated half the pitch diameter of a sphere (60°). Note how the two balls facing the viewer in the second tier from the top do not contact the same ball in the tier below. 2270: 590:
Relative to a reference layer with positioning A, two more positionings B and C are possible. Every sequence of A, B, and C without immediate repetition of the same one is possible and gives an equally dense packing for spheres of a given radius.
883: 886:
An animation of close-packing lattice generation. Note: If a third layer (not shown) is directly over the first layer, then the HCP lattice is built. If the third layer is placed over holes in the first layer, then the FCC lattice is
1037: 1009:-coordinate of where two spheres touch in the first row. This allows the spheres of the new row to slide in closer to the first row until all spheres in the new row are touching two spheres of the first row. Since the new spheres 693: 221:. Both are based upon sheets of spheres arranged at the vertices of a triangular tiling; they differ in how the sheets are stacked upon one another. The FCC lattice is also known to mathematicians as that generated by the A 891:
To form an A-B-A-B-... hexagonal close packing of spheres, the coordinate points of the lattice will be the spheres' centers. Suppose, the goal is to fill a box with spheres according to HCP. The box would be placed on the
2440:
next layer. Structures of many simple chemical compounds, for instance, are often described in terms of small atoms occupying tetrahedral or octahedral holes in closed-packed systems that are formed from larger atoms.
771:
which has an FCC lattice. Note how the two balls facing the viewer in the second tier from the top contact the same ball in the tier below. This does not occur in an HCP lattice (the left organization in
2392:
Replacing each contact point between two spheres with an edge connecting the centers of the touching spheres produces tetrahedrons and octahedrons of equal edge lengths. The FCC arrangement produces the
93: 432: 605:
There is an uncountably infinite number of disordered arrangements of planes (e.g. ABCACBABABAC...) that are sometimes collectively referred to as "Barlow packings", after crystallographer
2111: 791:  Shown here is a modified form of the cannonball stack wherein three extra spheres have been added to show all eight spheres in the top three tiers of the FCC lattice diagramed in 356: 715: 616:
plane is a simple honeycomb-like tessellation with a pitch (distance between sphere centers) of one sphere diameter. The distance between sphere centers, projected on the
511: 473: 2401:. If, instead, every sphere is augmented with the points in space that are closer to it than to any other sphere, the duals of these honeycombs are produced: the 2412:
Spherical bubbles appear in soapy water in a FCC or HCP arrangement when the water in the gaps between the bubbles drains out. This pattern also approaches the
1232:{\displaystyle \left(r,r+{\sqrt {3}}r,r\right),\ \left(3r,r+{\sqrt {3}}r,r\right),\ \left(5r,r+{\sqrt {3}}r,r\right),\ \left(7r,r+{\sqrt {3}}r,r\right),\dots .} 551: 531: 103:
can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The
626: 565:) and two smaller gaps surrounded by four spheres (tetrahedral). The distances to the centers of these gaps from the centers of the surrounding spheres is 107:
states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular. This conjecture was proven by
2810:
P. Krishna & D. Pandey, "Close-Packed Structures" International Union of Crystallography by University College Cardiff Press. Cardiff, Wales. PDF
2890: 2836: 2886: 561:
In both the FCC and HCP arrangements each sphere has twelve neighbors. For every sphere there is one gap surrounded by six spheres (
2398: 2377:
The FCC and HCP packings are the densest known packings of equal spheres with the highest symmetry (smallest repeat units). Denser
1242:
The first sphere of this row only touches one sphere in the original row, but its location follows suit with the rest of the row.
46:
proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a
56: 2417: 2406: 2321:
Crystallographic features of HCP systems, such as vectors and atomic plane families, can be described using a four-value
2566:
Cohn, H.; Kumar, A.; Miller, S. D.; Radchenko, D.; Viazovska, M. (2017). "The sphere packing problem in dimension 24".
2265:{\displaystyle {\begin{bmatrix}2i+((j\ +\ k){\bmod {2}})\\{\sqrt {3}}\left\\{\frac {2{\sqrt {6}}}{3}}k\end{bmatrix}}r} 361: 2790: 2765: 2631: 1013:
two spheres, their centers form an equilateral triangle with those two neighbors' centers. The side lengths are all 2
2756:; Cohen-Addad, Sylvie; Elias, Florence; Graner, François; Höhler, Reinhard; Flatman, Ruth; Pitois, Olivier (2013). 2394: 926:-coordinate and z-coordinate will be the same. For simplicity, say that the balls are the first row and that their 1295:-coordinates. Both types of planes are formed using the pattern mentioned above, but the starting place for the 300: 3023: 2829: 2413: 2402: 938:, so that their surfaces rest on the zero-planes. Coordinates of the centers of the first row will look like (2 882: 2950: 2429: 893: 282:
arranged in pyramid shape. The front pyramid is hexagonal close-packed and rear is face-centered cubic.
3044: 2940: 2894: 2882: 606: 2648: 2382: 3054: 2930: 2822: 181:
arrangement can be seen in the triangular orientation, but alternates two positions of spheres, in a
177:
with 12 vertices representing the positions of 12 neighboring spheres around one central sphere. The
702:
is the diameter of a sphere; this follows from the tetrahedral arrangement of close-packed spheres.
173:
arrangement can be oriented in two different planes, square or triangular. These can be seen in the
3049: 2945: 2420:. However, such FCC or HCP foams of very small liquid content are unstable, as they do not satisfy 208: 182: 2473: 191:
There are two simple regular lattices that achieve this highest average density. They are called
2432:
are more stable, having smaller interfacial energy in the limit of a very small liquid content.
2904: 2493: 478: 108: 2809: 437: 23:
Illustration of the close-packing of equal spheres in both HCP (left) and FCC (right) lattices
2935: 710: 2620: 2732: 2679: 2530: 2453: 2386: 2385:. A packing density of 1, filling space completely, requires non-spherical shapes, such as 989:
Now, form the next row of spheres. Again, the centers will all lie on a straight line with
814: 295: 201: 43: 8: 2997: 2859: 2444:
hole filling can sometimes lead to polyhedral arrays with a mix of hcp and fcc layering.
706: 290:
asks which flat square arrangements of cannonballs can be stacked into a square pyramid.
255: 2683: 2534: 1311:
because all of the sides are formed by two spheres touching. The height of which or the
866:
is the radius of the second. In close packing all of the spheres share a common radius,
2611: 2593: 2575: 2497: 688:{\displaystyle {\text{pitch}}_{Z}={\sqrt {6}}\cdot {d \over 3}\approx 0.816\,496\,58d,} 536: 516: 287: 237: 784: 3002: 2899: 2786: 2761: 2729: 2627: 2597: 2548: 2463: 2436: 2421: 1279:
of spheres will have exactly the same coordinates save for a pitch difference in the
741:– The HCP lattice (left) and the FCC lattice (right). The outline of each respective 266:
around 1587, after a question on piling cannonballs on ships was posed to him by Sir
242: 161: 104: 38:
is a dense arrangement of congruent spheres in an infinite, regular arrangement (or
3059: 2845: 2687: 2585: 2538: 2458: 799: 291: 2753: 2707: 742: 100: 47: 39: 2589: 910:
First form a row of spheres. The centers will all lie on a straight line. Their
2981: 2960: 2922: 2909: 2874: 2468: 2378: 1695:
The second row's coordinates follow the pattern first described above and are:
760: 267: 263: 3038: 3018: 2965: 262:
The problem of close-packing of spheres was first mathematically analyzed by
174: 127: 2781:
Woodward, Patrick M.; Karen, Pavel; Evans, John S. O.; Vogt, Thomas (2021).
2552: 2322: 2308: 806:  Shown here are all eleven spheres of the HCP lattice illustrated in 553:
is the number of cannonballs along an edge in the flat square arrangement.
1005:-direction so that the center of every sphere in this row aligns with the 147: 16:
Dense arrangement of congruent spheres in an infinite, regular arrangement
2864: 2615: 2425: 2353:
index directions are separated by 120°, and are thus not orthogonal; the
2313: 1304: 822: 225: 154: 2502: 918:
since the distance between each center of the spheres are touching is 2
752: 562: 821:  This animated view helps illustrate the three-sided pyramidal ( 2737: 2692: 2667: 2543: 2518: 19: 2814: 2580: 279: 218: 111:. Highest density is known only for 1, 2, 3, 8, and 24 dimensions. 28: 533:
is the number of layers in the pyramidal stacking arrangement and
2333:
denotes a degenerate but convenient component which is equal to −
2105:
In general, the coordinates of sphere centers can be written as:
612:
In close-packing, the center-to-center spacing of spheres in the
115: 2727: 1348:-coordinates gives the centers of the first row in the B plane: 730: 274: 34: 2208: 2157: 2752: 88:{\displaystyle {\frac {\pi }{3{\sqrt {2}}}}\approx 0.74048} 2565: 2057:
The difference to the next plane, the A plane, is again
870:. Therefore, two centers would simply have a distance 2 2780: 2668:"Probable Nature of the Internal Symmetry of Crystals" 2120: 2114: 1704: 1357: 1275:
In an A-B-A-B-... stacking pattern, the odd numbered
1040: 713:(APFs) are equal to the number mentioned above, 0.74. 629: 601:
HCP = AB AB AB AB... (every other layer is the same).
539: 519: 481: 440: 364: 303: 59: 598:
FCC = ABC ABC ABC... (every third layer is the same)
1315:-coordinate difference between the two "planes" is 2619: 2610: 2264: 2046: 1684: 1245:The next row follows this pattern of shifting the 1231: 1031:. Thus, this row will have coordinates like this: 763:in ca. 1585 first pondered the mathematics of the 687: 545: 525: 505: 467: 426: 350: 87: 587:for the octahedral, when the sphere radius is 1. 3036: 2496:(1998). "An overview of the Kepler conjecture". 427:{\displaystyle {\frac {1}{6}}N(N+1)(2N+1)=M^{2}} 2665: 2372: 720: 2830: 131:FCC arrangement seen on 4-fold axis direction 434:and conjectured that the only solutions are 2357:component is mutually perpendicular to the 1021:-coordinate difference between the rows is 2837: 2823: 556: 351:{\displaystyle \sum _{n=1}^{N}n^{2}=M^{2}} 271:six-sided pyramid with a hexagonal base. 134: 2785:. Cambridge: Cambridge University Press. 2691: 2579: 2542: 2501: 1340:. This, combined with the offsets in the 675: 671: 2399:gyrated tetrahedral-octahedral honeycomb 2312: 997:, but there will be a shift of distance 881: 813: 798: 783: 751: 746:sphere, as shown by the dashed outline. 273: 241: 126: 18: 2519:"Mathematics: Does the proof stack up?" 122: 3037: 2516: 2418:trapezo-rhombic dodecahedral honeycomb 2407:trapezo-rhombic dodecahedral honeycomb 1299:row's first sphere will be different. 859:is the radius of the first sphere and 825:) shape of the cannonball arrangement. 2818: 2728: 2622:Sphere packings, lattices, and groups 2492: 877: 832: 231: 2844: 2653:The Internet Encyclopedia of Science 2317:Miller–Bravais index for HCP lattice 2760:. Oxford: Oxford University Press. 2646: 2397:. The HCP arrangement produces the 2102:-coordinates of the first A plane. 1283:-coordinates and the even numbered 13: 2287:are indices starting at 0 for the 246:Cannonballs piled on a triangular 14: 3071: 2803: 2302: 1307:. All of the sides are equal to 2 2395:tetrahedral-octahedral honeycomb 729: 714: 160: 153: 146: 2783:Solid State Materials Chemistry 2774: 1287:of spheres will share the same 724:Comparison between HCP and FCC 709:of HCP and FCC is 12 and their 2966:Sphere-packing (Hamming) bound 2746: 2721: 2700: 2659: 2640: 2604: 2559: 2510: 2486: 2414:rhombic dodecahedral honeycomb 2403:rhombic dodecahedral honeycomb 2217: 2201: 2166: 2153: 2135: 2132: 2086:-direction and a shift in the 1264:. Add rows until reaching the 408: 393: 390: 378: 294:formulated the problem as the 1: 2758:Foams, Structure and Dynamics 2616:Sloane, Neil James Alexander 2381:are known, but they involve 1272:maximum borders of the box. 993:-coordinate differences of 2 7: 2590:10.4007/annals.2017.185.3.8 2447: 2373:Filling the remaining space 2329:) in which the third index 10: 3076: 2306: 914:-coordinate will vary by 2 594:The most regular ones are 235: 3011: 2990: 2974: 2921: 2873: 2852: 2733:"Hexagonal Close Packing" 2626:. Springer. Section 6.3. 2618:; Bannai, Eiichi (1999). 580:for the tetrahedral, and 506:{\displaystyle N=24,M=70} 168: 137: 2891:isosceles right triangle 2666:Barlow, William (1883). 2479: 934:-coordinates are simply 468:{\displaystyle N=1,M=1,} 183:triangular orthobicupola 2517:Szpiro, George (2003). 2474:Cylinder sphere packing 2435:There are two types of 838:line will therefore be 557:Positioning and spacing 33:close-packing of equal 2905:Circle packing theorem 2383:unequal sphere packing 2318: 2266: 2048: 1686: 1233: 888: 826: 811: 796: 781: 765:cannonball arrangement 711:atomic packing factors 689: 547: 527: 507: 469: 428: 352: 324: 283: 259: 132: 89: 24: 2568:Annals of Mathematics 2316: 2267: 2049: 1687: 1234: 885: 817: 802: 787: 755: 690: 620:(vertical) axis, is: 548: 528: 508: 470: 429: 353: 304: 277: 245: 130: 90: 22: 2887:equilateral triangle 2649:"Cannonball Problem" 2454:Cubic crystal system 2112: 1702: 1355: 1038: 627: 537: 517: 479: 438: 362: 301: 296:Diophantine equation 123:FCC and HCP lattices 57: 44:Carl Friedrich Gauss 3024:Slothouber–Graatsma 2708:"on Sphere Packing" 2684:1883Natur..29..186B 2612:Conway, John Horton 2535:2003Natur.424...12S 1305:regular tetrahedron 1017:, so the height or 986:), ... . 707:coordination number 193:face-centered cubic 2730:Weisstein, Eric W. 2437:interstitial holes 2430:Weaire–Phelan foam 2369:index directions. 2319: 2262: 2253: 2044: 1682: 1229: 889: 878:Simple HCP lattice 833:Lattice generation 827: 812: 797: 782: 685: 543: 523: 503: 465: 424: 348: 288:cannonball problem 284: 260: 238:Cannonball problem 232:Cannonball problem 217:), based on their 133: 119:first principles. 85: 25: 3045:Discrete geometry 3032: 3031: 2991:Other 3-D packing 2975:Other 2-D packing 2900:Apollonian gasket 2464:Random close pack 2405:for FCC, and the 2246: 2240: 2199: 2178: 2149: 2143: 2028: 2016: 1997: 1988: 1956: 1944: 1932: 1913: 1904: 1872: 1860: 1848: 1829: 1820: 1788: 1776: 1764: 1745: 1736: 1666: 1654: 1635: 1626: 1597: 1585: 1573: 1554: 1545: 1516: 1504: 1492: 1473: 1464: 1435: 1423: 1411: 1392: 1383: 1204: 1178: 1157: 1131: 1110: 1084: 1063: 769:cannonball stack, 750: 749: 663: 650: 634: 546:{\displaystyle M} 526:{\displaystyle N} 373: 189: 188: 105:Kepler conjecture 77: 74: 3067: 3055:Packing problems 2913: 2853:Abstract packing 2846:Packing problems 2839: 2832: 2825: 2816: 2815: 2797: 2796: 2778: 2772: 2771: 2754:Cantat, Isabelle 2750: 2744: 2743: 2742: 2725: 2719: 2718: 2716: 2715: 2704: 2698: 2697: 2695: 2693:10.1038/029186a0 2678:(738): 186–188. 2663: 2657: 2656: 2647:Darling, David. 2644: 2638: 2637: 2625: 2608: 2602: 2601: 2583: 2574:(3): 1017–1033. 2563: 2557: 2556: 2546: 2514: 2508: 2507: 2505: 2490: 2459:Hermite constant 2271: 2269: 2268: 2263: 2258: 2257: 2247: 2242: 2241: 2236: 2230: 2224: 2220: 2216: 2215: 2200: 2192: 2179: 2174: 2165: 2164: 2147: 2141: 2081: 2079: 2078: 2075: 2072: 2067: 2066: 2053: 2051: 2050: 2045: 2034: 2030: 2029: 2024: 2017: 2012: 2009: 1998: 1993: 1989: 1984: 1978: 1954: 1950: 1946: 1945: 1940: 1933: 1928: 1925: 1914: 1909: 1905: 1900: 1894: 1870: 1866: 1862: 1861: 1856: 1849: 1844: 1841: 1830: 1825: 1821: 1816: 1810: 1786: 1782: 1778: 1777: 1772: 1765: 1760: 1757: 1746: 1741: 1737: 1732: 1726: 1691: 1689: 1688: 1683: 1672: 1668: 1667: 1662: 1655: 1650: 1647: 1636: 1631: 1627: 1622: 1619: 1595: 1591: 1587: 1586: 1581: 1574: 1569: 1566: 1555: 1550: 1546: 1541: 1538: 1514: 1510: 1506: 1505: 1500: 1493: 1488: 1485: 1474: 1469: 1465: 1460: 1457: 1433: 1429: 1425: 1424: 1419: 1412: 1407: 1404: 1393: 1388: 1384: 1379: 1376: 1339: 1337: 1336: 1333: 1330: 1325: 1324: 1263: 1262: 1238: 1236: 1235: 1230: 1219: 1215: 1205: 1200: 1176: 1172: 1168: 1158: 1153: 1129: 1125: 1121: 1111: 1106: 1082: 1078: 1074: 1064: 1059: 1027: 1026: 905:coordinate space 733: 721: 718: 694: 692: 691: 686: 664: 656: 651: 646: 641: 640: 635: 632: 586: 585: 579: 578: 577: 576: 572: 552: 550: 549: 544: 532: 530: 529: 524: 512: 510: 509: 504: 474: 472: 471: 466: 433: 431: 430: 425: 423: 422: 374: 366: 357: 355: 354: 349: 347: 346: 334: 333: 323: 318: 250:and rectangular 164: 157: 150: 135: 94: 92: 91: 86: 78: 76: 75: 70: 61: 3075: 3074: 3070: 3069: 3068: 3066: 3065: 3064: 3050:Crystallography 3035: 3034: 3033: 3028: 3007: 2986: 2970: 2917: 2911: 2910:Tammes problem 2869: 2848: 2843: 2806: 2801: 2800: 2793: 2779: 2775: 2768: 2751: 2747: 2726: 2722: 2713: 2711: 2706: 2705: 2701: 2664: 2660: 2645: 2641: 2634: 2609: 2605: 2564: 2560: 2544:10.1038/424012a 2529:(6944): 12–13. 2515: 2511: 2491: 2487: 2482: 2450: 2379:sphere packings 2375: 2311: 2305: 2252: 2251: 2235: 2231: 2229: 2226: 2225: 2211: 2207: 2191: 2184: 2180: 2173: 2170: 2169: 2160: 2156: 2116: 2115: 2113: 2110: 2109: 2094:to match those 2076: 2073: 2064: 2062: 2061: 2060: 2058: 2011: 2010: 2008: 1983: 1979: 1977: 1961: 1957: 1927: 1926: 1924: 1899: 1895: 1893: 1877: 1873: 1843: 1842: 1840: 1815: 1811: 1809: 1793: 1789: 1759: 1758: 1756: 1731: 1727: 1725: 1709: 1705: 1703: 1700: 1699: 1649: 1648: 1646: 1621: 1620: 1618: 1602: 1598: 1568: 1567: 1565: 1540: 1539: 1537: 1521: 1517: 1487: 1486: 1484: 1459: 1458: 1456: 1440: 1436: 1406: 1405: 1403: 1378: 1377: 1375: 1362: 1358: 1356: 1353: 1352: 1334: 1331: 1322: 1320: 1319: 1318: 1316: 1303:centers form a 1260: 1258: 1257:-coordinate by 1249:-coordinate by 1199: 1183: 1179: 1152: 1136: 1132: 1105: 1089: 1085: 1058: 1045: 1041: 1039: 1036: 1035: 1024: 1022: 880: 865: 858: 851: 844: 835: 829: 743:Bravais lattice 655: 645: 636: 631: 630: 628: 625: 624: 583: 581: 574: 570: 569: 568: 566: 559: 538: 535: 534: 518: 515: 514: 480: 477: 476: 439: 436: 435: 418: 414: 365: 363: 360: 359: 342: 338: 329: 325: 319: 308: 302: 299: 298: 278:Collections of 240: 234: 224: 199:) (also called 125: 101:packing density 69: 65: 60: 58: 55: 54: 17: 12: 11: 5: 3073: 3063: 3062: 3057: 3052: 3047: 3030: 3029: 3027: 3026: 3021: 3015: 3013: 3009: 3008: 3006: 3005: 3000: 2994: 2992: 2988: 2987: 2985: 2984: 2982:Square packing 2978: 2976: 2972: 2971: 2969: 2968: 2963: 2961:Kissing number 2958: 2953: 2948: 2943: 2938: 2933: 2927: 2925: 2923:Sphere packing 2919: 2918: 2916: 2915: 2907: 2902: 2897: 2879: 2877: 2875:Circle packing 2871: 2870: 2868: 2867: 2862: 2856: 2854: 2850: 2849: 2842: 2841: 2834: 2827: 2819: 2813: 2812: 2805: 2804:External links 2802: 2799: 2798: 2791: 2773: 2766: 2745: 2720: 2699: 2658: 2639: 2632: 2603: 2558: 2509: 2503:math/9811071v2 2484: 2483: 2481: 2478: 2477: 2476: 2471: 2469:Sphere packing 2466: 2461: 2456: 2449: 2446: 2422:Plateau's laws 2374: 2371: 2307:Main article: 2304: 2303:Miller indices 2301: 2299:-coordinates. 2273: 2272: 2261: 2256: 2250: 2245: 2239: 2234: 2228: 2227: 2223: 2219: 2214: 2210: 2206: 2203: 2198: 2195: 2190: 2187: 2183: 2177: 2172: 2171: 2168: 2163: 2159: 2155: 2152: 2146: 2140: 2137: 2134: 2131: 2128: 2125: 2122: 2121: 2119: 2055: 2054: 2043: 2040: 2037: 2033: 2027: 2023: 2020: 2015: 2007: 2004: 2001: 1996: 1992: 1987: 1982: 1976: 1973: 1970: 1967: 1964: 1960: 1953: 1949: 1943: 1939: 1936: 1931: 1923: 1920: 1917: 1912: 1908: 1903: 1898: 1892: 1889: 1886: 1883: 1880: 1876: 1869: 1865: 1859: 1855: 1852: 1847: 1839: 1836: 1833: 1828: 1824: 1819: 1814: 1808: 1805: 1802: 1799: 1796: 1792: 1785: 1781: 1775: 1771: 1768: 1763: 1755: 1752: 1749: 1744: 1740: 1735: 1730: 1724: 1721: 1718: 1715: 1712: 1708: 1693: 1692: 1681: 1678: 1675: 1671: 1665: 1661: 1658: 1653: 1645: 1642: 1639: 1634: 1630: 1625: 1617: 1614: 1611: 1608: 1605: 1601: 1594: 1590: 1584: 1580: 1577: 1572: 1564: 1561: 1558: 1553: 1549: 1544: 1536: 1533: 1530: 1527: 1524: 1520: 1513: 1509: 1503: 1499: 1496: 1491: 1483: 1480: 1477: 1472: 1468: 1463: 1455: 1452: 1449: 1446: 1443: 1439: 1432: 1428: 1422: 1418: 1415: 1410: 1402: 1399: 1396: 1391: 1387: 1382: 1374: 1371: 1368: 1365: 1361: 1240: 1239: 1228: 1225: 1222: 1218: 1214: 1211: 1208: 1203: 1198: 1195: 1192: 1189: 1186: 1182: 1175: 1171: 1167: 1164: 1161: 1156: 1151: 1148: 1145: 1142: 1139: 1135: 1128: 1124: 1120: 1117: 1114: 1109: 1104: 1101: 1098: 1095: 1092: 1088: 1081: 1077: 1073: 1070: 1067: 1062: 1057: 1054: 1051: 1048: 1044: 879: 876: 863: 856: 849: 842: 834: 831: 761:Thomas Harriot 748: 747: 735: 734: 726: 725: 696: 695: 684: 681: 678: 674: 670: 667: 662: 659: 654: 649: 644: 639: 607:William Barlow 603: 602: 599: 558: 555: 542: 522: 502: 499: 496: 493: 490: 487: 484: 464: 461: 458: 455: 452: 449: 446: 443: 421: 417: 413: 410: 407: 404: 401: 398: 395: 392: 389: 386: 383: 380: 377: 372: 369: 345: 341: 337: 332: 328: 322: 317: 314: 311: 307: 268:Walter Raleigh 264:Thomas Harriot 236:Main article: 233: 230: 222: 187: 186: 166: 165: 158: 151: 143: 142: 139: 124: 121: 97: 96: 84: 81: 73: 68: 64: 15: 9: 6: 4: 3: 2: 3072: 3061: 3058: 3056: 3053: 3051: 3048: 3046: 3043: 3042: 3040: 3025: 3022: 3020: 3017: 3016: 3014: 3010: 3004: 3001: 2999: 2996: 2995: 2993: 2989: 2983: 2980: 2979: 2977: 2973: 2967: 2964: 2962: 2959: 2957: 2956:Close-packing 2954: 2952: 2951:In a cylinder 2949: 2947: 2944: 2942: 2939: 2937: 2934: 2932: 2929: 2928: 2926: 2924: 2920: 2914: 2908: 2906: 2903: 2901: 2898: 2896: 2892: 2888: 2884: 2881: 2880: 2878: 2876: 2872: 2866: 2863: 2861: 2858: 2857: 2855: 2851: 2847: 2840: 2835: 2833: 2828: 2826: 2821: 2820: 2817: 2811: 2808: 2807: 2794: 2792:9780521873253 2788: 2784: 2777: 2769: 2767:9780199662890 2763: 2759: 2755: 2749: 2740: 2739: 2734: 2731: 2724: 2709: 2703: 2694: 2689: 2685: 2681: 2677: 2673: 2669: 2662: 2654: 2650: 2643: 2635: 2633:9780387985855 2629: 2624: 2623: 2617: 2613: 2607: 2599: 2595: 2591: 2587: 2582: 2577: 2573: 2569: 2562: 2554: 2550: 2545: 2540: 2536: 2532: 2528: 2524: 2520: 2513: 2504: 2499: 2495: 2489: 2485: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2451: 2445: 2441: 2438: 2433: 2431: 2427: 2423: 2419: 2415: 2410: 2408: 2404: 2400: 2396: 2390: 2388: 2384: 2380: 2370: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2340: 2337: âˆ’  2336: 2332: 2328: 2324: 2315: 2310: 2300: 2298: 2294: 2290: 2286: 2282: 2278: 2259: 2254: 2248: 2243: 2237: 2232: 2221: 2212: 2204: 2196: 2193: 2188: 2185: 2181: 2175: 2161: 2150: 2144: 2138: 2129: 2126: 2123: 2117: 2108: 2107: 2106: 2103: 2101: 2097: 2093: 2089: 2085: 2070: 2041: 2038: 2035: 2031: 2025: 2021: 2018: 2013: 2005: 2002: 1999: 1994: 1990: 1985: 1980: 1974: 1971: 1968: 1965: 1962: 1958: 1951: 1947: 1941: 1937: 1934: 1929: 1921: 1918: 1915: 1910: 1906: 1901: 1896: 1890: 1887: 1884: 1881: 1878: 1874: 1867: 1863: 1857: 1853: 1850: 1845: 1837: 1834: 1831: 1826: 1822: 1817: 1812: 1806: 1803: 1800: 1797: 1794: 1790: 1783: 1779: 1773: 1769: 1766: 1761: 1753: 1750: 1747: 1742: 1738: 1733: 1728: 1722: 1719: 1716: 1713: 1710: 1706: 1698: 1697: 1696: 1679: 1676: 1673: 1669: 1663: 1659: 1656: 1651: 1643: 1640: 1637: 1632: 1628: 1623: 1615: 1612: 1609: 1606: 1603: 1599: 1592: 1588: 1582: 1578: 1575: 1570: 1562: 1559: 1556: 1551: 1547: 1542: 1534: 1531: 1528: 1525: 1522: 1518: 1511: 1507: 1501: 1497: 1494: 1489: 1481: 1478: 1475: 1470: 1466: 1461: 1453: 1450: 1447: 1444: 1441: 1437: 1430: 1426: 1420: 1416: 1413: 1408: 1400: 1397: 1394: 1389: 1385: 1380: 1372: 1369: 1366: 1363: 1359: 1351: 1350: 1349: 1347: 1343: 1328: 1314: 1310: 1306: 1300: 1298: 1294: 1290: 1286: 1282: 1278: 1273: 1271: 1267: 1256: 1252: 1248: 1243: 1226: 1223: 1220: 1216: 1212: 1209: 1206: 1201: 1196: 1193: 1190: 1187: 1184: 1180: 1173: 1169: 1165: 1162: 1159: 1154: 1149: 1146: 1143: 1140: 1137: 1133: 1126: 1122: 1118: 1115: 1112: 1107: 1102: 1099: 1096: 1093: 1090: 1086: 1079: 1075: 1071: 1068: 1065: 1060: 1055: 1052: 1049: 1046: 1042: 1034: 1033: 1032: 1030: 1020: 1016: 1012: 1008: 1004: 1000: 996: 992: 987: 985: 981: 977: 973: 969: 965: 961: 957: 953: 949: 945: 941: 937: 933: 929: 925: 921: 917: 913: 908: 906: 904: 900: 896: 884: 875: 873: 869: 862: 855: 848: 845: +  841: 830: 824: 820: 816: 809: 808:Figure 1 805: 801: 794: 793:Figure 1 790: 786: 779: 778:Figure 4 775: 774:Figure 1 770: 766: 762: 758: 757:Figure 2 754: 744: 740: 737: 736: 732: 728: 727: 723: 722: 719: 717: 712: 708: 703: 701: 682: 679: 676: 672: 668: 665: 660: 657: 652: 647: 642: 637: 623: 622: 621: 619: 615: 610: 608: 600: 597: 596: 595: 592: 588: 564: 554: 540: 520: 500: 497: 494: 491: 488: 485: 482: 462: 459: 456: 453: 450: 447: 444: 441: 419: 415: 411: 405: 402: 399: 396: 387: 384: 381: 375: 370: 367: 343: 339: 335: 330: 326: 320: 315: 312: 309: 305: 297: 293: 292:Édouard Lucas 289: 281: 276: 272: 269: 265: 257: 253: 249: 244: 239: 229: 227: 220: 216: 212: 210: 205: 203: 198: 194: 185:arrangement. 184: 180: 176: 175:cuboctahedron 172: 167: 163: 159: 156: 152: 149: 145: 144: 140: 136: 129: 120: 117: 112: 110: 106: 102: 82: 79: 71: 66: 62: 53: 52: 51: 49: 45: 41: 37: 36: 30: 21: 2955: 2893: / 2889: / 2885: / 2782: 2776: 2757: 2748: 2736: 2723: 2712:. Retrieved 2710:. Grunch.net 2702: 2675: 2671: 2661: 2652: 2642: 2621: 2606: 2571: 2567: 2561: 2526: 2522: 2512: 2494:Hales, T. C. 2488: 2442: 2434: 2411: 2391: 2376: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2338: 2334: 2330: 2326: 2323:Miller index 2320: 2309:Miller index 2296: 2292: 2288: 2284: 2280: 2276: 2274: 2104: 2099: 2095: 2091: 2087: 2083: 2068: 2056: 1694: 1345: 1341: 1326: 1312: 1308: 1301: 1296: 1292: 1288: 1284: 1280: 1276: 1274: 1269: 1265: 1254: 1250: 1246: 1244: 1241: 1028: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 988: 983: 979: 975: 971: 967: 963: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 919: 915: 911: 909: 902: 898: 894: 890: 871: 867: 860: 853: 846: 839: 836: 828: 818: 807: 803: 792: 788: 777: 773: 768: 764: 756: 738: 704: 699: 697: 617: 613: 611: 604: 593: 589: 560: 285: 261: 251: 247: 214: 211:close-packed 207: 204:close packed 200: 196: 192: 190: 178: 170: 113: 98: 32: 26: 2998:Tetrahedron 2941:In a sphere 2912:(on sphere) 2883:In a circle 2426:Kelvin foam 2325:notation ( 823:tetrahedral 776:above, and 254:base, both 226:root system 109:T. C. Hales 50:packing is 3039:Categories 2931:Apollonian 2714:2014-06-12 2581:1603.06518 2387:honeycombs 563:octahedral 3003:Ellipsoid 2946:In a cube 2738:MathWorld 2598:119281758 2409:for HCP. 2039:… 1677:… 1224:… 666:≈ 653:⋅ 306:∑ 280:snowballs 258:lattices. 209:hexagonal 99:The same 80:≈ 63:π 2553:12840727 2448:See also 2428:and the 1253:and the 887:created. 819:Figure 5 804:Figure 4 789:Figure 3 739:Figure 1 219:symmetry 29:geometry 3060:Spheres 3012:Puzzles 2680:Bibcode 2531:Bibcode 2082:in the 2080:⁠ 2063:√ 2059:⁠ 1338:⁠ 1321:√ 1317:⁠ 1259:√ 1023:√ 1001:in the 982:,  978: , 970:,  966: , 958:,  954:,  946:,  942:,  780:below). 759:  582:√ 573:⁄ 567:√ 513:. Here 248:(front) 116:crystal 83:0.74048 48:lattice 40:lattice 35:spheres 3019:Conway 2936:Finite 2895:square 2789:  2764:  2672:Nature 2630:  2596:  2551:  2523:Nature 2424:. The 2341:. The 2295:- and 2275:where 2148:  2142:  2098:- and 1955:  1871:  1787:  1596:  1515:  1434:  1291:- and 1285:planes 1277:planes 1177:  1130:  1083:  930:- and 922:. The 852:where 698:where 252:(back) 206:) and 2594:S2CID 2576:arXiv 2498:arXiv 2480:Notes 1297:first 1011:touch 974:), (8 962:), (6 950:), (4 669:0.816 633:pitch 202:cubic 114:Many 2787:ISBN 2762:ISBN 2628:ISBN 2549:PMID 2365:and 2349:and 2327:hkil 2283:and 2090:and 1344:and 1268:and 705:The 475:and 286:The 169:The 141:HCP 138:FCC 2865:Set 2860:Bin 2688:doi 2586:doi 2572:185 2539:doi 2527:424 2416:or 2291:-, 2209:mod 2158:mod 767:or 673:496 358:or 256:FCC 215:HCP 197:FCC 179:HCP 171:FCC 42:). 27:In 3041:: 2735:. 2686:. 2676:29 2674:. 2670:. 2651:. 2614:; 2592:. 2584:. 2570:. 2547:. 2537:. 2525:. 2521:. 2389:. 2361:, 2345:, 2279:, 907:. 874:. 677:58 614:xy 609:. 501:70 489:24 228:. 31:, 2838:e 2831:t 2824:v 2795:. 2770:. 2741:. 2717:. 2696:. 2690:: 2682:: 2655:. 2636:. 2600:. 2588:: 2578:: 2555:. 2541:: 2533:: 2506:. 2500:: 2367:k 2363:i 2359:h 2355:l 2351:k 2347:i 2343:h 2339:k 2335:h 2331:i 2297:z 2293:y 2289:x 2285:k 2281:j 2277:i 2260:r 2255:] 2249:k 2244:3 2238:6 2233:2 2222:] 2218:) 2213:2 2205:k 2202:( 2197:3 2194:1 2189:+ 2186:j 2182:[ 2176:3 2167:) 2162:2 2154:) 2151:k 2145:+ 2139:j 2136:( 2133:( 2130:+ 2127:i 2124:2 2118:[ 2100:y 2096:x 2092:y 2088:x 2084:z 2077:3 2074:/ 2071:2 2069:r 2065:6 2042:. 2036:, 2032:) 2026:3 2022:2 2019:r 2014:6 2006:+ 2003:r 2000:, 1995:3 1991:r 1986:3 1981:4 1975:+ 1972:r 1969:, 1966:r 1963:8 1959:( 1952:, 1948:) 1942:3 1938:2 1935:r 1930:6 1922:+ 1919:r 1916:, 1911:3 1907:r 1902:3 1897:4 1891:+ 1888:r 1885:, 1882:r 1879:6 1875:( 1868:, 1864:) 1858:3 1854:2 1851:r 1846:6 1838:+ 1835:r 1832:, 1827:3 1823:r 1818:3 1813:4 1807:+ 1804:r 1801:, 1798:r 1795:4 1791:( 1784:, 1780:) 1774:3 1770:2 1767:r 1762:6 1754:+ 1751:r 1748:, 1743:3 1739:r 1734:3 1729:4 1723:+ 1720:r 1717:, 1714:r 1711:2 1707:( 1680:. 1674:, 1670:) 1664:3 1660:2 1657:r 1652:6 1644:+ 1641:r 1638:, 1633:3 1629:r 1624:3 1616:+ 1613:r 1610:, 1607:r 1604:7 1600:( 1593:, 1589:) 1583:3 1579:2 1576:r 1571:6 1563:+ 1560:r 1557:, 1552:3 1548:r 1543:3 1535:+ 1532:r 1529:, 1526:r 1523:5 1519:( 1512:, 1508:) 1502:3 1498:2 1495:r 1490:6 1482:+ 1479:r 1476:, 1471:3 1467:r 1462:3 1454:+ 1451:r 1448:, 1445:r 1442:3 1438:( 1431:, 1427:) 1421:3 1417:2 1414:r 1409:6 1401:+ 1398:r 1395:, 1390:3 1386:r 1381:3 1373:+ 1370:r 1367:, 1364:r 1360:( 1346:y 1342:x 1335:3 1332:/ 1329:2 1327:r 1323:6 1313:z 1309:r 1293:y 1289:x 1281:z 1270:y 1266:x 1261:3 1255:y 1251:r 1247:x 1227:. 1221:, 1217:) 1213:r 1210:, 1207:r 1202:3 1197:+ 1194:r 1191:, 1188:r 1185:7 1181:( 1174:, 1170:) 1166:r 1163:, 1160:r 1155:3 1150:+ 1147:r 1144:, 1141:r 1138:5 1134:( 1127:, 1123:) 1119:r 1116:, 1113:r 1108:3 1103:+ 1100:r 1097:, 1094:r 1091:3 1087:( 1080:, 1076:) 1072:r 1069:, 1066:r 1061:3 1056:+ 1053:r 1050:, 1047:r 1043:( 1029:r 1025:3 1019:y 1015:r 1007:x 1003:x 999:r 995:r 991:x 984:r 980:r 976:r 972:r 968:r 964:r 960:r 956:r 952:r 948:r 944:r 940:r 936:r 932:z 928:y 924:y 920:r 916:r 912:x 903:z 901:- 899:y 897:- 895:x 872:r 868:r 864:2 861:r 857:1 854:r 850:2 847:r 843:1 840:r 795:. 700:d 683:, 680:d 661:3 658:d 648:6 643:= 638:Z 618:z 584:2 575:2 571:3 541:M 521:N 498:= 495:M 492:, 486:= 483:N 463:, 460:1 457:= 454:M 451:, 448:1 445:= 442:N 420:2 416:M 412:= 409:) 406:1 403:+ 400:N 397:2 394:( 391:) 388:1 385:+ 382:N 379:( 376:N 371:6 368:1 344:2 340:M 336:= 331:2 327:n 321:N 316:1 313:= 310:n 223:3 213:( 195:( 95:. 72:2 67:3

Index


geometry
spheres
lattice
Carl Friedrich Gauss
lattice
packing density
Kepler conjecture
T. C. Hales
crystal




cuboctahedron
triangular orthobicupola
cubic
hexagonal
symmetry
root system
Cannonball problem

FCC
Thomas Harriot
Walter Raleigh

snowballs
cannonball problem
Édouard Lucas
Diophantine equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑