Knowledge

Quasi-category

Source 📝

1424: 81:. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of two given morphisms are related to each other by higher order invertible morphisms (2-simplices thought of as "homotopies"). These higher order morphisms can also be composed, but again the composition is well-defined only up to still higher order invertible morphisms, etc. 1671: 1691: 1681: 84:
The idea of higher category theory (at least, higher category theory when higher morphisms are invertible) is that, as opposed to the standard notion of a category, there should be a mapping space (rather than a mapping set) between two objects. This suggests that a higher category should simply be a
639:
is an example of a quasi-category. In a Kan complex all maps from all horns—not just inner ones—can be filled, which again has the consequence that all morphisms in a Kan complex are invertible. Kan complexes are thus analogues to groupoids - the nerve of a category is a Kan complex iff the category
697:
All of (∞,1)-topos theory can be modeled in terms of sSet-categories. (ToënVezzosi). There is a notion of sSet-site C that models the notion of (∞,1)-site and a model structure on sSet-enriched presheaves on sSet-sites that is a presentation for the ∞-stack (∞,1)-toposes on
577:
is a quasi-category with the extra property that the filling of any inner horn is unique. Conversely a quasi-category such that any inner horn has a unique filling is isomorphic to the nerve of some category. The homotopy category of the nerve of
89:. The model of quasi-categories is, however, better suited to applications than that of topologically enriched categories, though it has been proved by Lurie that the two have natural model structures that are 690:
The notion of homotopy Kan extension and hence in particular that of homotopy limit and homotopy colimit has a direct formulation in terms of Kan-complex-enriched categories. See homotopy Kan extension for
66:
and some of the advanced notions and theorems have their analogues for Generalization of a category. An elaborate treatise of the theory of Generalization of a category has been expounded by
437: 369: 153: 511: 562: 327: 289: 220: 185: 499: 253: 371:
represents a composable pair. Thus, in a quasi-category, one cannot define a composition law on morphisms, since one can choose many ways to compose maps.
439:
is a trivial Kan fibration. In other words, while the composition law is not uniquely defined, it is unique up to a contractible choice.
1068: 1353: 467:
The morphisms are given by homotopy classes of edges between vertices. Composition is given using the horn filler condition for
909: 762: 853: 377: 1720: 667: 1061: 1265: 1220: 625: 1694: 1634: 1343: 594: 1684: 1470: 1334: 1242: 891: 332: 116: 926: 1643: 1287: 1225: 1148: 522: 1715: 1674: 1630: 1235: 1054: 713: 662: > 1 are equivalences. There are several models of (∞, 1)-categories, including 297: 258: 190: 1230: 1212: 1015: 158: 62:
has much advanced the study of Generalization of a category showing that most of the usual basic
1437: 1203: 1183: 1106: 723: 477: 48: 44: 1319: 1158: 931: 780: 229: 1013:
Toën, Bertrand; Vezzosi, Gabriele (2005), "Homotopical Algebraic Geometry I: Topos theory",
985: 1131: 1126: 919: 845: 816: 772: 671: 86: 855:
The theory of Generalization of a category and its applications, lectures at CRM Barcelona
109:
satisfying the inner Kan conditions (also called weak Kan condition): every inner horn in
8: 1475: 1423: 1349: 1153: 574: 223: 684:
There is a model structure on sSet-categories that presents the (∞,1)-category (∞,1)Cat.
1329: 1324: 1306: 1188: 1163: 1024: 999: 972: 895: 831: 830:, Contemp. Math., vol. 431, Providence, R.I.: Amer. Math. Soc., pp. 277–326, 90: 808: 616:) is a quasi-category in which every morphism is invertible. The homotopy category of 1638: 1575: 1563: 1465: 1390: 1385: 1339: 1121: 1116: 955: 905: 758: 456: 1599: 1485: 1460: 1395: 1380: 1375: 1314: 1143: 1111: 1034: 804: 750: 943: 874: 1511: 1077: 915: 841: 812: 768: 746: 329:
are supposed to represent commutative triangles (at least up to homotopy). A map
63: 20: 1548: 1527: 1490: 1480: 1400: 718: 708: 663: 106: 78: 1039: 862: 823: 792: 59: 1709: 1538: 1370: 1247: 1173: 968: 1292: 1193: 728: 1553: 1533: 1405: 1275: 826:; Tierney, Myles (2007), "Generalization of a category vs Segal spaces", 675: 636: 67: 1029: 900: 836: 1585: 1523: 1136: 754: 1579: 1270: 519:
the fundamental category is the same as the homotopy category, i.e.
1648: 1280: 1178: 1004: 1046: 998:
Hinich, Vladimir (2017-09-19). "Lectures on infinity categories".
977: 1618: 1608: 1257: 1168: 745:, Lecture Notes in Mathematics, vol. 347, Berlin, New York: 971:(2011). "Workshop on the homotopy theory of homotopy theories". 1613: 1495: 743:
Homotopy invariant algebraic structures on topological spaces
654:
is a not-necessarily-quasi-category ∞-category in which all
989: 959: 947: 935: 795:(2002), "Generalization of a category and Kan complexes", 828:
Categories in algebra, geometry and mathematical physics
463:. The homotopy category has as objects the vertices of 525: 480: 380: 335: 300: 261: 232: 193: 161: 119: 678:. A quasi-category is also an (∞, 1)-category. 556: 493: 431: 363: 321: 283: 247: 214: 179: 147: 1707: 890:, Annals of Mathematics Studies, vol. 170, 474:For a general simplicial set there is a functor 187:, has a filler, that is, an extension to a map 54:Generalization of a category were introduced by 47:. The study of such generalizations is known as 432:{\displaystyle C^{\Delta }\to C^{\Lambda ^{1}}} 635:More general than the previous example, every 1062: 451:one can associate to it an ordinary category 822: 740: 55: 1012: 1690: 1680: 1436: 1069: 1055: 374:One consequence of the definition is that 43:) is a generalization of the notion of a 1038: 1028: 1003: 976: 899: 835: 77:Generalization of a category are certain 442: 226:for a definition of the simplicial sets 967: 1708: 997: 1435: 1088: 1050: 885: 851: 791: 782:A short course on infinity-categories 741:Boardman, J. M.; Vogt, R. M. (1973), 71: 1076: 797:Journal of Pure and Applied Algebra 13: 695:Presentation of (∞,1)-topos theory 409: 386: 337: 301: 263: 233: 194: 121: 113:, namely a map of simplicial sets 19:In mathematics, more specifically 14: 1732: 872: 778: 606:fundamental ∞-groupoid of X 364:{\displaystyle \Lambda ^{1}\to C} 148:{\displaystyle \Lambda ^{k}\to C} 1689: 1679: 1670: 1669: 1422: 1089: 101:By definition, a quasi-category 557:{\displaystyle \tau _{1}(C)=hC} 87:topologically enriched category 927:The theory of quasi-categories 668:simplicially enriched category 542: 536: 424: 418: 400: 395: 389: 355: 352: 346: 313: 310: 304: 278: 272: 242: 236: 206: 203: 197: 139: 136: 130: 1: 809:10.1016/S0022-4049(02)00135-4 734: 294:The idea is that 2-simplices 96: 932:Generalization-of-a-category 512:fundamental category functor 322:{\displaystyle \Delta \to C} 284:{\displaystyle \Lambda ^{k}} 215:{\displaystyle \Delta \to C} 16:Generalization of a category 7: 1364:Constructions on categories 702: 644: 567: 515:, and for a quasi-category 180:{\displaystyle 0<k<n} 10: 1737: 1471:Higher-dimensional algebra 892:Princeton University Press 589:Given a topological space 56:Boardman & Vogt (1973) 1665: 1598: 1562: 1510: 1503: 1454: 1444: 1431: 1420: 1363: 1305: 1256: 1211: 1202: 1099: 1095: 1084: 1040:10.1016/j.aim.2004.05.004 494:{\displaystyle \tau _{1}} 224:Kan fibration#Definitions 876:Notes on quasicategories 714:Stable infinity category 1281:Cokernels and quotients 1204:Universal constructions 1016:Advances in Mathematics 447:Given a quasi-category 248:{\displaystyle \Delta } 1721:Higher category theory 1438:Higher category theory 1184:Natural transformation 925:Joyal's Catlab entry: 724:Higher category theory 688:Homotopy Kan extension 558: 495: 433: 365: 323: 285: 249: 216: 181: 149: 49:higher category theory 886:Lurie, Jacob (2009), 604:), also known as the 593:, one can define its 559: 496: 443:The homotopy category 434: 366: 324: 286: 250: 217: 182: 150: 1307:Algebraic categories 986:(∞, 1)-category 956:fundamental+category 676:complete Segal space 672:topological category 652:(∞, 1)-category 626:fundamental groupoid 523: 478: 378: 333: 298: 259: 230: 191: 159: 117: 1476:Homotopy hypothesis 1154:Commutative diagram 888:Higher topos theory 575:nerve of a category 1189:Universal property 852:Joyal, A. (2008), 755:10.1007/BFb0068547 554: 491: 429: 361: 319: 281: 245: 212: 177: 145: 91:Quillen equivalent 1703: 1702: 1661: 1660: 1657: 1656: 1639:monoidal category 1594: 1593: 1466:Enriched category 1418: 1417: 1414: 1413: 1391:Quotient category 1386:Opposite category 1301: 1300: 944:infinity-category 911:978-0-691-14049-0 764:978-3-540-06479-4 582:is isomorphic to 457:homotopy category 33:infinity category 29:inner Kan complex 1728: 1693: 1692: 1683: 1682: 1673: 1672: 1508: 1507: 1486:Simplex category 1461:Categorification 1452: 1451: 1433: 1432: 1426: 1396:Product category 1381:Kleisli category 1376:Functor category 1221:Terminal objects 1209: 1208: 1144:Adjoint functors 1097: 1096: 1086: 1085: 1071: 1064: 1057: 1048: 1047: 1043: 1042: 1032: 1009: 1007: 982: 980: 969:Bergner, Julia E 922: 903: 882: 881: 869: 867: 861:, archived from 860: 848: 839: 819: 788: 787: 775: 563: 561: 560: 555: 535: 534: 500: 498: 497: 492: 490: 489: 471: = 2. 438: 436: 435: 430: 428: 427: 417: 416: 399: 398: 370: 368: 367: 362: 345: 344: 328: 326: 325: 320: 290: 288: 287: 282: 271: 270: 254: 252: 251: 246: 221: 219: 218: 213: 186: 184: 183: 178: 154: 152: 151: 146: 129: 128: 41:Boardman complex 25:weak Kan complex 1736: 1735: 1731: 1730: 1729: 1727: 1726: 1725: 1716:Homotopy theory 1706: 1705: 1704: 1699: 1653: 1623: 1590: 1567: 1558: 1515: 1499: 1450: 1440: 1427: 1410: 1359: 1297: 1266:Initial objects 1252: 1198: 1091: 1080: 1078:Category theory 1075: 1030:math.AG/0207028 912: 901:math.CT/0608040 879: 868:on July 6, 2011 865: 858: 837:math.AT/0607820 785: 779:Groth, Moritz, 765: 747:Springer-Verlag 737: 705: 682:Model structure 658:-morphisms for 647: 570: 530: 526: 524: 521: 520: 509:, known as the 485: 481: 479: 476: 475: 445: 412: 408: 407: 403: 385: 381: 379: 376: 375: 340: 336: 334: 331: 330: 299: 296: 295: 266: 262: 260: 257: 256: 231: 228: 227: 192: 189: 188: 160: 157: 156: 124: 120: 118: 115: 114: 99: 79:simplicial sets 68:Jacob Lurie 64:category theory 21:category theory 17: 12: 11: 5: 1734: 1724: 1723: 1718: 1701: 1700: 1698: 1697: 1687: 1677: 1666: 1663: 1662: 1659: 1658: 1655: 1654: 1652: 1651: 1646: 1641: 1627: 1621: 1616: 1611: 1605: 1603: 1596: 1595: 1592: 1591: 1589: 1588: 1583: 1572: 1570: 1565: 1560: 1559: 1557: 1556: 1551: 1546: 1541: 1536: 1531: 1520: 1518: 1513: 1505: 1501: 1500: 1498: 1493: 1491:String diagram 1488: 1483: 1481:Model category 1478: 1473: 1468: 1463: 1458: 1456: 1449: 1448: 1445: 1442: 1441: 1429: 1428: 1421: 1419: 1416: 1415: 1412: 1411: 1409: 1408: 1403: 1401:Comma category 1398: 1393: 1388: 1383: 1378: 1373: 1367: 1365: 1361: 1360: 1358: 1357: 1347: 1337: 1335:Abelian groups 1332: 1327: 1322: 1317: 1311: 1309: 1303: 1302: 1299: 1298: 1296: 1295: 1290: 1285: 1284: 1283: 1273: 1268: 1262: 1260: 1254: 1253: 1251: 1250: 1245: 1240: 1239: 1238: 1228: 1223: 1217: 1215: 1206: 1200: 1199: 1197: 1196: 1191: 1186: 1181: 1176: 1171: 1166: 1161: 1156: 1151: 1146: 1141: 1140: 1139: 1134: 1129: 1124: 1119: 1114: 1103: 1101: 1093: 1092: 1082: 1081: 1074: 1073: 1066: 1059: 1051: 1045: 1044: 1023:(2): 257–372, 1010: 995: 983: 965: 953: 941: 929: 923: 910: 883: 870: 849: 820: 803:(1): 207–222, 789: 776: 763: 736: 733: 732: 731: 726: 721: 716: 711: 709:Model category 704: 701: 700: 699: 692: 685: 679: 664:Segal category 646: 643: 642: 641: 640:is a groupoid. 633: 587: 569: 566: 553: 550: 547: 544: 541: 538: 533: 529: 488: 484: 444: 441: 426: 423: 420: 415: 411: 406: 402: 397: 394: 391: 388: 384: 360: 357: 354: 351: 348: 343: 339: 318: 315: 312: 309: 306: 303: 280: 277: 274: 269: 265: 244: 241: 238: 235: 211: 208: 205: 202: 199: 196: 176: 173: 170: 167: 164: 144: 141: 138: 135: 132: 127: 123: 107:simplicial set 98: 95: 15: 9: 6: 4: 3: 2: 1733: 1722: 1719: 1717: 1714: 1713: 1711: 1696: 1688: 1686: 1678: 1676: 1668: 1667: 1664: 1650: 1647: 1645: 1642: 1640: 1636: 1632: 1628: 1626: 1624: 1617: 1615: 1612: 1610: 1607: 1606: 1604: 1601: 1597: 1587: 1584: 1581: 1577: 1574: 1573: 1571: 1569: 1561: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1539:Tetracategory 1537: 1535: 1532: 1529: 1528:pseudofunctor 1525: 1522: 1521: 1519: 1517: 1509: 1506: 1502: 1497: 1494: 1492: 1489: 1487: 1484: 1482: 1479: 1477: 1474: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1453: 1447: 1446: 1443: 1439: 1434: 1430: 1425: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1371:Free category 1369: 1368: 1366: 1362: 1355: 1354:Vector spaces 1351: 1348: 1345: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1312: 1310: 1308: 1304: 1294: 1291: 1289: 1286: 1282: 1279: 1278: 1277: 1274: 1272: 1269: 1267: 1264: 1263: 1261: 1259: 1255: 1249: 1248:Inverse limit 1246: 1244: 1241: 1237: 1234: 1233: 1232: 1229: 1227: 1224: 1222: 1219: 1218: 1216: 1214: 1210: 1207: 1205: 1201: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1174:Kan extension 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1109: 1108: 1105: 1104: 1102: 1098: 1094: 1087: 1083: 1079: 1072: 1067: 1065: 1060: 1058: 1053: 1052: 1049: 1041: 1036: 1031: 1026: 1022: 1018: 1017: 1011: 1006: 1001: 996: 994: 992: 987: 984: 979: 974: 970: 966: 964: 962: 957: 954: 952: 950: 945: 942: 940: 938: 933: 930: 928: 924: 921: 917: 913: 907: 902: 897: 893: 889: 884: 878: 877: 871: 864: 857: 856: 850: 847: 843: 838: 833: 829: 825: 821: 818: 814: 810: 806: 802: 798: 794: 790: 784: 783: 777: 774: 770: 766: 760: 756: 752: 748: 744: 739: 738: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 706: 696: 693: 689: 686: 683: 680: 677: 673: 669: 665: 661: 657: 653: 649: 648: 638: 634: 631: 627: 623: 619: 615: 611: 607: 603: 599: 596: 592: 588: 585: 581: 576: 572: 571: 565: 551: 548: 545: 539: 531: 527: 518: 514: 513: 508: 504: 486: 482: 472: 470: 466: 462: 458: 454: 450: 440: 421: 413: 404: 392: 382: 372: 358: 349: 341: 316: 307: 292: 275: 267: 239: 225: 209: 200: 174: 171: 168: 165: 162: 142: 133: 125: 112: 108: 104: 94: 92: 88: 82: 80: 75: 73: 69: 65: 61: 57: 52: 50: 46: 42: 38: 34: 30: 26: 22: 1619: 1600:Categorified 1543: 1504:n-categories 1455:Key concepts 1293:Direct limit 1276:Coequalizers 1194:Yoneda lemma 1100:Key concepts 1090:Key concepts 1020: 1014: 990: 960: 948: 936: 887: 875: 863:the original 854: 827: 824:Joyal, André 800: 796: 793:Joyal, André 781: 742: 729:Globular set 694: 687: 681: 659: 655: 651: 629: 621: 617: 613: 609: 605: 601: 597: 595:singular set 590: 583: 579: 516: 510: 506: 502: 473: 468: 464: 460: 452: 448: 446: 373: 293: 110: 102: 100: 83: 76: 53: 40: 36: 32: 28: 24: 18: 1568:-categories 1544:Kan complex 1534:Tricategory 1516:-categories 1406:Subcategory 1164:Exponential 1132:Preadditive 1127:Pre-abelian 873:Joyal, A., 637:Kan complex 455:called the 60:André Joyal 1710:Categories 1586:3-category 1576:2-category 1549:∞-groupoid 1524:Bicategory 1271:Coproducts 1231:Equalizers 1137:Bicategory 1005:1709.06271 735:References 719:∞-groupoid 97:Definition 37:∞-category 1635:Symmetric 1580:2-functor 1320:Relations 1243:Pullbacks 978:1108.2001 624:) is the 528:τ 483:τ 410:Λ 401:→ 387:Δ 356:→ 338:Λ 314:→ 302:Δ 264:Λ 234:Δ 207:→ 195:Δ 140:→ 122:Λ 1695:Glossary 1675:Category 1649:n-monoid 1602:concepts 1258:Colimits 1226:Products 1179:Morphism 1122:Concrete 1117:Additive 1107:Category 703:See also 645:Variants 568:Examples 45:category 1685:Outline 1644:n-group 1609:2-group 1564:Strict 1554:∞-topos 1350:Modules 1288:Pushout 1236:Kernels 1169:Functor 1112:Abelian 988:at the 958:at the 946:at the 934:at the 920:2522659 846:2342834 817:1935979 773:0420609 222:. (See 70: ( 1631:Traced 1614:2-ring 1344:Fields 1330:Groups 1325:Magmas 1213:Limits 918:  908:  844:  815:  771:  761:  155:where 1625:-ring 1512:Weak 1496:Topos 1340:Rings 1025:arXiv 1000:arXiv 973:arXiv 896:arXiv 880:(PDF) 866:(PDF) 859:(PDF) 832:arXiv 786:(PDF) 691:more. 501:from 105:is a 1315:Sets 906:ISBN 759:ISBN 573:The 503:sSet 255:and 172:< 166:< 72:2009 23:, a 1159:End 1149:CCC 1035:doi 1021:193 993:Lab 963:Lab 951:Lab 939:Lab 805:doi 801:175 751:doi 650:An 628:of 507:Cat 505:to 459:of 453:hC, 291:.) 74:). 58:. 27:, 1712:: 1637:) 1633:)( 1033:, 1019:, 916:MR 914:, 904:, 894:, 842:MR 840:, 813:MR 811:, 799:, 769:MR 767:, 757:, 749:, 698:C. 674:, 670:, 666:, 608:. 564:. 465:C. 449:C, 93:. 51:. 39:, 35:, 31:, 1629:( 1622:n 1620:E 1582:) 1578:( 1566:n 1530:) 1526:( 1514:n 1356:) 1352:( 1346:) 1342:( 1070:e 1063:t 1056:v 1037:: 1027:: 1008:. 1002:: 991:n 981:. 975:: 961:n 949:n 937:n 898:: 834:: 807:: 753:: 660:n 656:n 632:. 630:X 622:X 620:( 618:S 614:X 612:( 610:S 602:X 600:( 598:S 591:X 586:. 584:C 580:C 552:C 549:h 546:= 543:) 540:C 537:( 532:1 517:C 487:1 469:n 461:C 425:] 422:2 419:[ 414:1 405:C 396:] 393:2 390:[ 383:C 359:C 353:] 350:2 347:[ 342:1 317:C 311:] 308:2 305:[ 279:] 276:n 273:[ 268:k 243:] 240:n 237:[ 210:C 204:] 201:n 198:[ 175:n 169:k 163:0 143:C 137:] 134:n 131:[ 126:k 111:C 103:C

Index

category theory
category
higher category theory
Boardman & Vogt (1973)
André Joyal
category theory
Jacob Lurie
2009
simplicial sets
topologically enriched category
Quillen equivalent
simplicial set
Kan fibration#Definitions
homotopy category
fundamental category functor
nerve of a category
singular set
fundamental groupoid
Kan complex
Segal category
simplicially enriched category
topological category
complete Segal space
Model category
Stable infinity category
∞-groupoid
Higher category theory
Globular set
Springer-Verlag
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.