Knowledge

Model category

Source 📝

2256: 2503: 2523: 2513: 144:
The definition given initially by Quillen was that of a closed model category, the assumptions of which seemed strong at the time, motivating others to weaken some of the assumptions to define a model category. In practice the distinction has not proven significant and most recent authors (e.g., Mark
1143:
Cofibrations can be characterized as the maps which have the left lifting property with respect to acyclic fibrations, and acyclic cofibrations are characterized as the maps which have the left lifting property with respect to fibrations. Similarly, fibrations can be characterized as the maps which
1172:
with respect to the class of weak equivalences. This definition of homotopy category does not depend on the choice of fibrations and cofibrations. However, the classes of fibrations and cofibrations are useful in describing the homotopy category in a different way and in particular avoiding
1124:. In general, not all objects are fibrant or cofibrant, though this is sometimes the case. For example, all objects are cofibrant in the standard model category of simplicial sets and all objects are fibrant for the standard model category structure given above for topological spaces. 148:
The definition has been separated to that of a model structure on a category and then further categorical conditions on that category, the necessity of which may seem unmotivated at first but becomes important later. The following definition follows that given by Hovey.
913:-modules admit natural model structures. This follows because there is an adjunction between simplicial sets and simplicial commutative rings (given by the forgetful and free functors), and in nice cases one can lift model structures under an adjunction. 386:: acyclic cofibrations have the left lifting property with respect to fibrations, and cofibrations have the left lifting property with respect to acyclic fibrations. Explicitly, if the outer square of the following diagram commutes, where 959:
candidates for distinct model structures: in one, the so-called projective model structure, fibrations and weak equivalences are those maps of functors which are fibrations and weak equivalences when evaluated at each object of
756:, but rather the narrower class of maps that have the left lifting property with respect to the acyclic Serre fibrations. Equivalently, they are the retracts of the relative cell complexes, as explained for example in Hovey's 98:: the category of topological spaces is a model category, with the homotopy corresponding to the usual theory. Similarly, objects that are thought of as spaces often admit a model category structure, such as the category of 964:. Dually, the injective model structure is similar with cofibrations and weak equivalences instead. In both cases the third class of morphisms is given by a lifting condition (see below). In some cases, when the category 1438: 1181:
which are both fibrant and cofibrant, and whose morphisms are left homotopy classes of maps (equivalently, right homotopy classes of maps) as defined above. (See for instance Model Categories by Hovey, Thm 1.2.10)
1135:. These notions coincide when the domain is cofibrant and the codomain is fibrant. In that case, homotopy defines an equivalence relation on the hom sets in the model category giving rise to homotopy classes. 1337: 354: 411: 760:. This structure is not unique; in general there can be many model category structures on a given category. For the category of topological spaces, another such structure is given by 1451:
are not equivalent, but their homotopy categories are. Therefore, simplicial sets are often used as models for topological spaces because of this equivalence of homotopy categories.
1239: 725: 848:-modules can be computed by either resolving the source projectively or the target injectively. These are cofibrant or fibrant replacements in the respective model structures. 234: 202: 650: 604: 1173:
set-theoretic issues arising in general localizations of categories. More precisely, the "fundamental theorem of model categories" states that the homotopy category of
501: 456: 727:
also admits a model structure so that weak equivalences correspond to their opposites, fibrations opposites of cofibrations and cofibrations opposites of fibrations.
132:, one of the first major applications of the theory. Because of the above example regarding homology, the study of closed model categories is sometimes thought of as 319: 1260:
preserves cofibrations and acyclic cofibrations or, equivalently by the closed model axioms, such that G preserves fibrations and acyclic fibrations. In this case
672: 1148:
with respect to acyclic cofibrations, and acyclic fibrations are characterized as the maps which have the right lifting property with respect to cofibrations.
990:
Denis-Charles Cisinski has developed a general theory of model structures on presheaf categories (generalizing simplicial sets, which are presheaves on the
1185:
Applying this to the category of topological spaces with the model structure given above, the resulting homotopy category is equivalent to the category of
969: 683:
The axioms imply that any two of the three classes of maps determine the third (e.g., cofibrations and weak equivalences determine fibrations).
975:
The process of forcing certain maps to become weak equivalences in a new model category structure on the same underlying category is known as
1367: 1544:
Barnea, Ilan; Schlank, Tomer M. (2016), "A projective model structure on pro-simplicial sheaves, and the relative étale homotopy type",
1900: 1521:
Cisinski, Denis-Charles. Les préfaisceaux comme modèles des types d'homotopie. (French) Astérisque No. 308 (2006), xxiv+390 pp.
2185: 1806: 1770: 1727: 1526: 1443:
involving the geometric realization of a simplicial set and the singular chains in some topological space. The categories
1274: 161: 40: 1037:
by cocompleteness, since these objects are the limit and colimit, respectively, of the empty diagram. Given an object
886:
Other examples of categories admitting model structures include the category of all small categories, the category of
541:
The above definition can be succinctly phrased by the following equivalent definition: a model category is a category
1694: 1679: 1664: 1639: 121:. Homology can then be viewed as a type of homotopy, allowing generalizations of homology to other objects, such as 921: 741: 1893: 1206: 2097: 2052: 752:
and with weak equivalences as weak homotopy equivalences. The cofibrations are not the usual notion found
1342:
between the homotopy categories. There is also an explicit criterion for the latter to be an equivalence (
526: 2526: 2466: 906: 696: 2175: 2516: 2302: 2166: 2074: 1165: 860: 784:-modules carries at least two model structures, which both feature prominently in homological algebra: 207: 145:
Hovey and Philip Hirschhorn) work with closed model categories and simply drop the adjective 'closed'.
175: 2475: 2119: 2057: 1980: 607: 287: 2552: 2547: 2506: 2462: 2067: 1886: 830: 2062: 2044: 1546: 617: 571: 522: 2269: 2035: 2015: 1938: 1145: 976: 480: 435: 2151: 1990: 1872: 1470: 1963: 1958: 1816: 1780: 1737: 1649: 1616: 1612: 1587: 1565: 1532: 297: 905:
Simplicial objects in a category are a frequent source of model categories; for instance,
236:
subject to the following axioms. A fibration that is also a weak equivalence is called an
8: 2307: 2255: 2181: 1985: 1138: 980: 891: 133: 126: 122: 118: 1569: 765: 2161: 2156: 2138: 2020: 1995: 1820: 1631: 1555: 1460: 1253: 761: 657: 83: 75: 2470: 2407: 2395: 2297: 2222: 2217: 2171: 1953: 1948: 1848: 1824: 1802: 1766: 1723: 1690: 1675: 1660: 1635: 1604: 1522: 895: 691: 530: 52: 2431: 2317: 2292: 2227: 2212: 2207: 2146: 1975: 1943: 1794: 1758: 1715: 1627: 1573: 1465: 991: 899: 898:, the category of topological spectra, and the categories of simplicial spectra or 160:
consists of three distinguished classes of morphisms (equivalently subcategories):
74:
In recent decades, the language of model categories has been used in some parts of
60: 972:, there is a third model structure lying in between the projective and injective. 2343: 1909: 1812: 1776: 1754: 1733: 1645: 1583: 1529: 1198: 1132: 1030: 95: 32: 24: 983:
can be obtained as a Bousfield localization of the model category of simplicial
2380: 2375: 2359: 2322: 2232: 1860: 1746: 1358: 1128: 1034: 887: 99: 64: 51:' satisfying certain axioms relating them. These abstract from the category of 1798: 1578: 1488:
Some readers find the term "trivial" ambiguous and so prefer to use "acyclic".
2541: 2370: 2202: 2079: 2005: 1719: 777: 106: 56: 2124: 2025: 1186: 837: 796: 380:
is defined and any two of these are weak equivalences then so is the third.
325:
belongs to the same distinguished class. Explicitly, the requirement that
2385: 2365: 2237: 2107: 924:
with a model structure that is compatible with the simplicial structure.
866:
cofibrations are monomorphisms that are split as morphisms of underlying
826: 819: 807: 789: 753: 410: 353: 169: 48: 20: 16:
Mathematical category with weak equivalences, fibrations and cofibrations
1753:, Lecture Notes in Mathematics, No. 43, vol. 43, Berlin, New York: 2417: 2355: 1968: 1762: 1433:{\displaystyle |-|:\mathbf {sSet} \leftrightarrows \mathbf {Top} :Sing} 1006: 1139:
Characterizations of fibrations and cofibrations by lifting properties
873:
fibrations are epimorphisms that are split as morphisms of underlying
764:
and standard cofibrations, and the weak equivalences are the (strong)
2411: 2102: 1510: 749: 165: 44: 1041:
in the model category, if the unique map from the initial object to
2480: 2112: 2010: 1837: 984: 800: 36: 1878: 1842: 1560: 2450: 2440: 2089: 2000: 936: 282:
is a morphism belonging to one of the distinguished classes, and
1017:) can also be constructed by imposing a weaker set of axioms to 2445: 1177:
is equivalent to the category whose objects are the objects of
248:
and a cofibration that is also a weak equivalence is called an
2327: 1543: 748:, admits a standard model category structure with the usual 536: 1864: 86:, where homotopy-theoretic approaches led to deep results. 1189:
and homotopy classes of continuous maps, whence the name.
521:
is a category that has a model structure and all (small)
1843:"(infinity,1)-categories directly from model categories" 678: 955:) is also a model category. In fact, there are always 1605:
Les préfaisceaux commes modèles des types d'homotopie
1370: 1357:
A typical example is the standard adjunction between
1277: 1209: 1151: 699: 660: 620: 574: 483: 438: 300: 210: 178: 1793:, Algebra and Applications, vol. 27, Springer, 545:and three classes of (so-called) weak equivalences 94:Model categories can provide a natural setting for 1432: 1331: 1233: 1080:is cofibrant and there is a weak equivalence from 855:-modules has a model structure that is defined by 719: 666: 644: 598: 495: 450: 313: 228: 196: 1332:{\displaystyle LF:Ho(C)\leftrightarrows Ho(D):RG} 1001:is a model category, then so is the category Pro( 935:, under certain extra hypothesis the category of 2539: 1104:is fibrant and there is a weak equivalence from 1611: 1131:and right homotopy is defined with respect to 321:, where 2 is the 2-element ordered set), then 1894: 1626:, Amsterdam: North-Holland, pp. 73–126, 851:The category of arbitrary chain-complexes of 1687:Abstract homotopy and simple homotopy theory 349:, such that the following diagram commutes: 1057:to the terminal object is a fibration then 2522: 2512: 2268: 1901: 1887: 1076:are objects of a model category such that 979:. For example, the category of simplicial 105:Another model category is the category of 1702:La théorie de l'homotopie de Grothendieck 1577: 1559: 1127:Left homotopy is defined with respect to 537:Definition via weak factorization systems 1657:Model Categories and Their Localizations 1617:"Homotopy theories and model categories" 1849:Model Categories and Simplicial Methods 1788: 1745: 1685:Klaus Heiner Kamps and Timothy Porter: 1234:{\displaystyle F:C\leftrightarrows D:G} 818:weak equivalences are maps that induce 788:weak equivalences are maps that induce 776:The category of (nonnegatively graded) 68: 63:theory). The concept was introduced by 2540: 1847:Paul Goerss and Kristen Schemmerhorn, 1608:, Astérisque, (308) 2006, xxiv+392 pp. 1192: 1053:. Analogously, if the unique map from 686:Also, the definition is self-dual: if 2267: 1920: 1882: 1709: 1497: 1024: 735: 117:. Homotopy theory in this context is 1838:"Do we still need model categories?" 1704:. Astérisque, (301) 2005, vi+140 pp. 1013:. However, a model structure on Pro( 679:First consequences of the definition 172:, and two functorial factorizations 139: 1908: 881: 720:{\displaystyle {\mathcal {C}}^{op}} 13: 1831: 1152:Homotopy and the homotopy category 1029:Every closed model category has a 771: 703: 294:(as objects in the arrow category 14: 2564: 1854: 229:{\displaystyle (\gamma ,\delta )} 2521: 2511: 2502: 2501: 2254: 1921: 1632:10.1016/B978-044481779-2/50003-1 1411: 1408: 1405: 1397: 1394: 1391: 1388: 900:presheaves of simplicial spectra 844:This explains why Ext-groups of 531:complete and cocomplete category 409: 352: 197:{\displaystyle (\alpha ,\beta )} 113:-modules for a commutative ring 836:cofibrations are maps that are 799:in each degree with projective 795:cofibrations are maps that are 1791:A Handbook of Model Categories 1714:, Cambridge University Press, 1624:Handbook of algebraic topology 1537: 1515: 1503: 1491: 1482: 1401: 1380: 1372: 1317: 1311: 1302: 1299: 1293: 1219: 902:on a small Grothendieck site. 829:in each degree with injective 742:category of topological spaces 690:is a model category, then its 674:satisfies the 2 of 3 property. 652:is a weak factorization system 639: 621: 593: 575: 402:is acyclic, then there exists 223: 211: 191: 179: 35:with distinguished classes of 1: 1596: 1244:between two model categories 825:fibrations are maps that are 806:fibrations are maps that are 89: 907:simplicial commutative rings 564:has all limits and colimits, 7: 2196:Constructions on categories 1712:Categorical homotopy theory 1454: 861:chain homotopy equivalences 730: 645:{\displaystyle (C,F\cap W)} 599:{\displaystyle (C\cap W,F)} 462:and an acyclic cofibration 10: 2569: 2303:Higher-dimensional algebra 1689:, 1997, World Scientific, 2497: 2430: 2394: 2342: 2335: 2286: 2276: 2263: 2252: 2195: 2137: 2088: 2043: 2034: 1931: 1927: 1916: 1799:10.1007/978-3-030-75035-0 1615:; Spaliński, Jan (1995), 1579:10.1016/j.aim.2015.11.014 918:simplicial model category 608:weak factorization system 503:for an acyclic fibration 1720:10.1017/CBO9781107261457 1602:Denis-Charles Cisinski: 1476: 1361:and topological spaces: 533:with a model structure. 496:{\displaystyle p\circ i} 451:{\displaystyle p\circ i} 406:completing the diagram. 260:(or sometimes called an 2113:Cokernels and quotients 2036:Universal constructions 1789:Balchin, Scott (2021), 1547:Advances in Mathematics 1045:is a cofibration, then 1033:by completeness and an 840:in each nonzero degree. 333:means that there exist 2270:Higher category theory 2016:Natural transformation 1700:Georges Maltsiniotis: 1655:Philip S. Hirschhorn: 1434: 1333: 1235: 1146:right lifting property 977:Bousfield localization 859:weak equivalences are 810:in each nonzero degree 721: 668: 646: 600: 497: 452: 315: 230: 198: 1710:Riehl, Emily (2014), 1471:Stable model category 1435: 1334: 1268:induce an adjunction 1236: 1094:cofibrant replacement 931:and a model category 892:simplicial presheaves 766:homotopy equivalences 722: 669: 647: 601: 498: 453: 390:is a cofibration and 316: 314:{\displaystyle C^{2}} 231: 199: 65:Daniel G. Quillen 2139:Algebraic categories 1368: 1275: 1207: 1160:of a model category 697: 658: 618: 572: 481: 436: 394:is a fibration, and 298: 208: 176: 2308:Homotopy hypothesis 1986:Commutative diagram 1751:Homotopical algebra 1570:2011arXiv1109.5477B 1509:Definition 2.1. of 1352:Quillen equivalence 1193:Quillen adjunctions 1118:fibrant replacement 927:Given any category 922:simplicial category 863:of chain-complexes; 762:Hurewicz fibrations 134:homotopical algebra 119:homological algebra 39:('arrows') called ' 2021:Universal property 1763:10.1007/BFb0097438 1747:Quillen, Daniel G. 1430: 1329: 1254:Quillen adjunction 1231: 1133:path space objects 1025:Some constructions 750:(Serre) fibrations 736:Topological spaces 717: 664: 642: 596: 507:and a cofibration 493: 477:can be written as 448: 432:can be written as 311: 226: 194: 84:algebraic geometry 53:topological spaces 23:, particularly in 2535: 2534: 2493: 2492: 2489: 2488: 2471:monoidal category 2426: 2425: 2298:Enriched category 2250: 2249: 2246: 2245: 2223:Quotient category 2218:Opposite category 2133: 2132: 1875:in Joyal's catlab 1808:978-3-030-75034-3 1772:978-3-540-03914-3 1729:978-1-107-04845-4 1613:Dwyer, William G. 1527:978-2-85629-225-9 1158:homotopy category 896:Grothendieck site 692:opposite category 667:{\displaystyle W} 553:and cofibrations 162:weak equivalences 140:Formal definition 41:weak equivalences 2560: 2525: 2524: 2515: 2514: 2505: 2504: 2340: 2339: 2318:Simplex category 2293:Categorification 2284: 2283: 2265: 2264: 2258: 2228:Product category 2213:Kleisli category 2208:Functor category 2053:Terminal objects 2041: 2040: 1976:Adjoint functors 1929: 1928: 1918: 1917: 1903: 1896: 1889: 1880: 1879: 1827: 1783: 1740: 1672:Model Categories 1652: 1621: 1591: 1590: 1581: 1563: 1541: 1535: 1519: 1513: 1507: 1501: 1495: 1489: 1486: 1466:Cocycle category 1439: 1437: 1436: 1431: 1414: 1400: 1383: 1375: 1338: 1336: 1335: 1330: 1240: 1238: 1237: 1232: 1199:adjoint functors 1129:cylinder objects 1116:is said to be a 1100:. Similarly, if 1092:is said to be a 992:simplex category 882:Further examples 758:Model Categories 726: 724: 723: 718: 716: 715: 707: 706: 673: 671: 670: 665: 651: 649: 648: 643: 605: 603: 602: 597: 502: 500: 499: 494: 458:for a fibration 457: 455: 454: 449: 413: 356: 329:is a retract of 320: 318: 317: 312: 310: 309: 262:anodyne morphism 235: 233: 232: 227: 203: 201: 200: 195: 61:derived category 2568: 2567: 2563: 2562: 2561: 2559: 2558: 2557: 2553:Category theory 2548:Homotopy theory 2538: 2537: 2536: 2531: 2485: 2455: 2422: 2399: 2390: 2347: 2331: 2282: 2272: 2259: 2242: 2191: 2129: 2098:Initial objects 2084: 2030: 1923: 1912: 1910:Category theory 1907: 1857: 1834: 1832:Further reading 1809: 1773: 1755:Springer-Verlag 1730: 1642: 1619: 1599: 1594: 1542: 1538: 1520: 1516: 1508: 1504: 1496: 1492: 1487: 1483: 1479: 1457: 1404: 1387: 1379: 1371: 1369: 1366: 1365: 1359:simplicial sets 1276: 1273: 1272: 1208: 1205: 1204: 1195: 1154: 1141: 1031:terminal object 1027: 947:) (also called 888:simplicial sets 884: 778:chain complexes 774: 772:Chain complexes 738: 733: 708: 702: 701: 700: 698: 695: 694: 681: 659: 656: 655: 619: 616: 615: 573: 570: 569: 539: 482: 479: 478: 469:every morphism 437: 434: 433: 424:every morphism 305: 301: 299: 296: 295: 209: 206: 205: 177: 174: 173: 154:model structure 142: 107:chain complexes 100:simplicial sets 96:homotopy theory 92: 57:chain complexes 25:homotopy theory 17: 12: 11: 5: 2566: 2556: 2555: 2550: 2533: 2532: 2530: 2529: 2519: 2509: 2498: 2495: 2494: 2491: 2490: 2487: 2486: 2484: 2483: 2478: 2473: 2459: 2453: 2448: 2443: 2437: 2435: 2428: 2427: 2424: 2423: 2421: 2420: 2415: 2404: 2402: 2397: 2392: 2391: 2389: 2388: 2383: 2378: 2373: 2368: 2363: 2352: 2350: 2345: 2337: 2333: 2332: 2330: 2325: 2323:String diagram 2320: 2315: 2313:Model category 2310: 2305: 2300: 2295: 2290: 2288: 2281: 2280: 2277: 2274: 2273: 2261: 2260: 2253: 2251: 2248: 2247: 2244: 2243: 2241: 2240: 2235: 2233:Comma category 2230: 2225: 2220: 2215: 2210: 2205: 2199: 2197: 2193: 2192: 2190: 2189: 2179: 2169: 2167:Abelian groups 2164: 2159: 2154: 2149: 2143: 2141: 2135: 2134: 2131: 2130: 2128: 2127: 2122: 2117: 2116: 2115: 2105: 2100: 2094: 2092: 2086: 2085: 2083: 2082: 2077: 2072: 2071: 2070: 2060: 2055: 2049: 2047: 2038: 2032: 2031: 2029: 2028: 2023: 2018: 2013: 2008: 2003: 1998: 1993: 1988: 1983: 1978: 1973: 1972: 1971: 1966: 1961: 1956: 1951: 1946: 1935: 1933: 1925: 1924: 1914: 1913: 1906: 1905: 1898: 1891: 1883: 1877: 1876: 1873:Model category 1870: 1861:Model category 1856: 1855:External links 1853: 1852: 1851: 1845: 1840: 1833: 1830: 1829: 1828: 1807: 1785: 1784: 1771: 1742: 1741: 1728: 1706: 1705: 1698: 1683: 1668: 1653: 1640: 1609: 1598: 1595: 1593: 1592: 1536: 1514: 1502: 1490: 1480: 1478: 1475: 1474: 1473: 1468: 1463: 1461:(∞,1)-category 1456: 1453: 1441: 1440: 1429: 1426: 1423: 1420: 1417: 1413: 1410: 1407: 1403: 1399: 1396: 1393: 1390: 1386: 1382: 1378: 1374: 1340: 1339: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1242: 1241: 1230: 1227: 1224: 1221: 1218: 1215: 1212: 1194: 1191: 1153: 1150: 1140: 1137: 1061:is said to be 1049:is said to be 1035:initial object 1026: 1023: 970:Reedy category 909:or simplicial 883: 880: 879: 878: 871: 864: 842: 841: 834: 823: 812: 811: 804: 793: 773: 770: 737: 734: 732: 729: 714: 711: 705: 680: 677: 676: 675: 663: 653: 641: 638: 635: 632: 629: 626: 623: 612: 611: 595: 592: 589: 586: 583: 580: 577: 566: 565: 538: 535: 519:model category 515: 514: 513: 512: 492: 489: 486: 467: 447: 444: 441: 416: 415: 414: 381: 359: 358: 357: 308: 304: 272: 271: 269: 225: 222: 219: 216: 213: 193: 190: 187: 184: 181: 156:on a category 141: 138: 91: 88: 29:model category 15: 9: 6: 4: 3: 2: 2565: 2554: 2551: 2549: 2546: 2545: 2543: 2528: 2520: 2518: 2510: 2508: 2500: 2499: 2496: 2482: 2479: 2477: 2474: 2472: 2468: 2464: 2460: 2458: 2456: 2449: 2447: 2444: 2442: 2439: 2438: 2436: 2433: 2429: 2419: 2416: 2413: 2409: 2406: 2405: 2403: 2401: 2393: 2387: 2384: 2382: 2379: 2377: 2374: 2372: 2371:Tetracategory 2369: 2367: 2364: 2361: 2360:pseudofunctor 2357: 2354: 2353: 2351: 2349: 2341: 2338: 2334: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2294: 2291: 2289: 2285: 2279: 2278: 2275: 2271: 2266: 2262: 2257: 2239: 2236: 2234: 2231: 2229: 2226: 2224: 2221: 2219: 2216: 2214: 2211: 2209: 2206: 2204: 2203:Free category 2201: 2200: 2198: 2194: 2187: 2186:Vector spaces 2183: 2180: 2177: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2144: 2142: 2140: 2136: 2126: 2123: 2121: 2118: 2114: 2111: 2110: 2109: 2106: 2104: 2101: 2099: 2096: 2095: 2093: 2091: 2087: 2081: 2080:Inverse limit 2078: 2076: 2073: 2069: 2066: 2065: 2064: 2061: 2059: 2056: 2054: 2051: 2050: 2048: 2046: 2042: 2039: 2037: 2033: 2027: 2024: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2006:Kan extension 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1942: 1941: 1940: 1937: 1936: 1934: 1930: 1926: 1919: 1915: 1911: 1904: 1899: 1897: 1892: 1890: 1885: 1884: 1881: 1874: 1871: 1869: 1867: 1862: 1859: 1858: 1850: 1846: 1844: 1841: 1839: 1836: 1835: 1826: 1822: 1818: 1814: 1810: 1804: 1800: 1796: 1792: 1787: 1786: 1782: 1778: 1774: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1743: 1739: 1735: 1731: 1725: 1721: 1717: 1713: 1708: 1707: 1703: 1699: 1696: 1695:981-02-1602-5 1692: 1688: 1684: 1681: 1680:0-8218-1359-5 1677: 1673: 1669: 1666: 1665:0-8218-3279-4 1662: 1658: 1654: 1651: 1647: 1643: 1641:9780444817792 1637: 1633: 1629: 1625: 1618: 1614: 1610: 1607: 1606: 1601: 1600: 1589: 1585: 1580: 1575: 1571: 1567: 1562: 1557: 1553: 1549: 1548: 1540: 1534: 1531: 1528: 1524: 1518: 1511: 1506: 1499: 1494: 1485: 1481: 1472: 1469: 1467: 1464: 1462: 1459: 1458: 1452: 1450: 1446: 1427: 1424: 1421: 1418: 1415: 1384: 1376: 1364: 1363: 1362: 1360: 1355: 1353: 1350:are called a 1349: 1345: 1326: 1323: 1320: 1314: 1308: 1305: 1296: 1290: 1287: 1284: 1281: 1278: 1271: 1270: 1269: 1267: 1263: 1259: 1255: 1251: 1247: 1228: 1225: 1222: 1216: 1213: 1210: 1203: 1202: 1201: 1200: 1190: 1188: 1183: 1180: 1176: 1171: 1167: 1163: 1159: 1149: 1147: 1136: 1134: 1130: 1125: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1066: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1022: 1020: 1016: 1012: 1008: 1004: 1000: 995: 993: 988: 986: 982: 978: 973: 971: 967: 963: 958: 954: 951:-diagrams in 950: 946: 942: 938: 934: 930: 925: 923: 919: 914: 912: 908: 903: 901: 897: 894:on any small 893: 889: 876: 872: 870:-modules; and 869: 865: 862: 858: 857: 856: 854: 849: 847: 839: 838:monomorphisms 835: 832: 828: 824: 821: 817: 816: 815: 809: 805: 802: 798: 797:monomorphisms 794: 791: 787: 786: 785: 783: 779: 769: 767: 763: 759: 755: 751: 747: 743: 728: 712: 709: 693: 689: 684: 661: 654: 636: 633: 630: 627: 624: 614: 613: 609: 590: 587: 584: 581: 578: 568: 567: 563: 560: 559: 558: 556: 552: 549:, fibrations 548: 544: 534: 532: 528: 524: 520: 510: 506: 490: 487: 484: 476: 472: 468: 465: 461: 445: 442: 439: 431: 427: 423: 422: 420: 419:Factorization 417: 412: 408: 407: 405: 401: 397: 393: 389: 385: 382: 379: 375: 371: 367: 363: 360: 355: 351: 350: 348: 344: 340: 336: 332: 328: 324: 306: 302: 293: 289: 285: 281: 277: 274: 273: 270: 267: 266: 265: 263: 259: 255: 251: 247: 243: 239: 220: 217: 214: 188: 185: 182: 171: 167: 163: 159: 155: 150: 146: 137: 135: 131: 129: 124: 120: 116: 112: 108: 103: 101: 97: 87: 85: 81: 79: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 2451: 2432:Categorified 2336:n-categories 2312: 2287:Key concepts 2125:Direct limit 2108:Coequalizers 2026:Yoneda lemma 1932:Key concepts 1922:Key concepts 1865: 1790: 1750: 1711: 1701: 1686: 1671: 1670:Mark Hovey: 1656: 1623: 1603: 1551: 1545: 1539: 1517: 1505: 1493: 1484: 1448: 1444: 1442: 1356: 1351: 1347: 1343: 1341: 1265: 1261: 1257: 1252:is called a 1249: 1245: 1243: 1196: 1187:CW complexes 1184: 1178: 1174: 1169: 1166:localization 1161: 1157: 1155: 1142: 1126: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1067: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1028: 1018: 1014: 1010: 1002: 998: 996: 989: 974: 965: 961: 956: 952: 948: 944: 940: 932: 928: 926: 917: 915: 910: 904: 885: 874: 867: 852: 850: 845: 843: 827:epimorphisms 822:in homology; 820:isomorphisms 813: 808:epimorphisms 792:in homology; 790:isomorphisms 781: 775: 757: 745: 739: 687: 685: 682: 561: 554: 550: 546: 542: 540: 518: 516: 508: 504: 474: 470: 463: 459: 429: 425: 418: 403: 399: 395: 391: 387: 383: 377: 373: 372:are maps in 369: 365: 361: 346: 342: 338: 334: 330: 326: 322: 291: 283: 279: 275: 261: 257: 253: 249: 245: 241: 237: 170:cofibrations 157: 153: 151: 147: 143: 127: 114: 110: 104: 93: 77: 73: 49:cofibrations 28: 18: 2400:-categories 2376:Kan complex 2366:Tricategory 2348:-categories 2238:Subcategory 1996:Exponential 1964:Preadditive 1959:Pre-abelian 1554:: 784–858, 1498:Riehl (2014 1007:pro-objects 258:cofibration 21:mathematics 2542:Categories 2418:3-category 2408:2-category 2381:∞-groupoid 2356:Bicategory 2103:Coproducts 2063:Equalizers 1969:Bicategory 1597:References 1197:A pair of 985:presheaves 529:, i.e., a 376:such that 166:fibrations 90:Motivation 76:algebraic 45:fibrations 2467:Symmetric 2412:2-functor 2152:Relations 2075:Pullbacks 1825:240268465 1561:1109.5477 1402:⇆ 1377:− 1303:⇆ 1220:⇆ 1144:have the 1051:cofibrant 877:-modules. 634:∩ 582:∩ 488:∘ 443:∘ 246:fibration 221:δ 215:γ 189:β 183:α 130:-algebras 37:morphisms 2527:Glossary 2507:Category 2481:n-monoid 2434:concepts 2090:Colimits 2058:Products 2011:Morphism 1954:Concrete 1949:Additive 1939:Category 1749:(1967), 1674:, 1999, 1659:, 2003, 1500:, §11.3) 1455:See also 937:functors 801:cokernel 731:Examples 557:so that 527:colimits 276:Retracts 33:category 2517:Outline 2476:n-group 2441:2-group 2396:Strict 2386:∞-topos 2182:Modules 2120:Pushout 2068:Kernels 2001:Functor 1944:Abelian 1863:at the 1817:4385504 1781:0223432 1738:3221774 1650:1361887 1588:3459031 1566:Bibcode 1533:2294028 1354:then). 1164:is the 1063:fibrant 981:sheaves 384:Lifting 288:retract 254:trivial 250:acyclic 242:trivial 238:acyclic 80:-theory 67: ( 47:' and ' 2463:Traced 2446:2-ring 2176:Fields 2162:Groups 2157:Magmas 2045:Limits 1823:  1815:  1805:  1779:  1769:  1736:  1726:  1693:  1678:  1663:  1648:  1638:  1586:  1525:  831:kernel 523:limits 362:2 of 3 345:, and 268:Axioms 168:, and 123:groups 55:or of 2457:-ring 2344:Weak 2328:Topos 2172:Rings 1821:S2CID 1620:(PDF) 1556:arXiv 1477:Notes 1112:then 1088:then 1005:) of 968:is a 939:Fun ( 920:is a 833:; and 803:; and 606:is a 364:: if 286:is a 278:: if 31:is a 2147:Sets 1803:ISBN 1767:ISBN 1724:ISBN 1691:ISBN 1676:ISBN 1661:ISBN 1636:ISBN 1523:ISBN 1447:and 1445:sSet 1346:and 1264:and 1248:and 1156:The 1120:for 1096:for 1072:and 754:here 740:The 525:and 368:and 252:(or 240:(or 204:and 125:and 82:and 69:1967 43:', ' 27:, a 1991:End 1981:CCC 1868:Lab 1795:doi 1759:doi 1716:doi 1628:doi 1574:doi 1552:291 1449:Top 1256:if 1168:of 1108:to 1084:to 1068:If 1009:in 997:If 994:). 957:two 890:or 814:or 780:of 746:Top 473:in 428:in 398:or 290:of 264:). 109:of 71:). 19:In 2544:: 2469:) 2465:)( 1819:, 1813:MR 1811:, 1801:, 1777:MR 1775:, 1765:, 1757:, 1734:MR 1732:, 1722:, 1646:MR 1644:, 1634:, 1622:, 1584:MR 1582:, 1572:, 1564:, 1550:, 1530:MR 1065:. 1021:. 987:. 943:, 916:A 768:. 744:, 517:A 421:: 378:gf 341:, 337:, 256:) 244:) 164:, 152:A 136:. 102:. 2461:( 2454:n 2452:E 2414:) 2410:( 2398:n 2362:) 2358:( 2346:n 2188:) 2184:( 2178:) 2174:( 1902:e 1895:t 1888:v 1866:n 1797:: 1761:: 1718:: 1697:. 1682:. 1667:. 1630:: 1576:: 1568:: 1558:: 1512:. 1428:g 1425:n 1422:i 1419:S 1416:: 1412:p 1409:o 1406:T 1398:t 1395:e 1392:S 1389:s 1385:: 1381:| 1373:| 1348:G 1344:F 1327:G 1324:R 1321:: 1318:) 1315:D 1312:( 1309:o 1306:H 1300:) 1297:C 1294:( 1291:o 1288:H 1285:: 1282:F 1279:L 1266:G 1262:F 1258:F 1250:D 1246:C 1229:G 1226:: 1223:D 1217:C 1214:: 1211:F 1179:C 1175:C 1170:C 1162:C 1122:X 1114:Z 1110:Z 1106:X 1102:Z 1098:X 1090:Z 1086:X 1082:Z 1078:Z 1074:X 1070:Z 1059:X 1055:X 1047:X 1043:X 1039:X 1019:C 1015:C 1011:C 1003:C 999:C 966:C 962:C 953:M 949:C 945:M 941:C 933:M 929:C 911:R 875:R 868:R 853:R 846:R 782:R 713:p 710:o 704:C 688:C 662:W 640:) 637:W 631:F 628:, 625:C 622:( 610:, 594:) 591:F 588:, 585:W 579:C 576:( 562:C 555:C 551:F 547:W 543:C 511:. 509:i 505:p 491:i 485:p 475:C 471:f 466:; 464:i 460:p 446:i 440:p 430:C 426:f 404:h 400:p 396:i 392:p 388:i 374:C 370:g 366:f 347:s 343:r 339:j 335:i 331:g 327:f 323:f 307:2 303:C 292:g 284:f 280:g 224:) 218:, 212:( 192:) 186:, 180:( 158:C 128:R 115:R 111:R 78:K 59:(

Index

mathematics
homotopy theory
category
morphisms
weak equivalences
fibrations
cofibrations
topological spaces
chain complexes
derived category
Daniel G. Quillen
1967
algebraic K-theory
algebraic geometry
homotopy theory
simplicial sets
chain complexes
homological algebra
groups
R-algebras
homotopical algebra
weak equivalences
fibrations
cofibrations
retract


limits
colimits
complete and cocomplete category

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.