Knowledge

Derived category

Source 📝

4129: 3474:. A theorem of Serpé, generalizing work of Grothendieck and of Spaltenstein, asserts that in a Grothendieck abelian category, every complex is quasi-isomorphic to a K-injective complex with injective terms, and moreover, this is functorial. In particular, we may define morphisms in the derived category by passing to K-injective resolutions and computing morphisms in the homotopy category. The functoriality of Serpé's construction ensures that composition of morphisms is well-defined. Like the construction using roofs, this construction also ensures suitable set theoretic properties for the derived category, this time because these properties are already satisfied by the homotopy category. 3807: 4124:{\displaystyle {\begin{matrix}0&\to &{\mathcal {E}}_{n}&\to &0&\to &\cdots &\to &0&\to &0\\\uparrow &&\uparrow &&\uparrow &&\cdots &&\uparrow &&\uparrow \\0&\to &{\mathcal {E}}_{n}&\to &{\mathcal {E}}_{n-1}&\to &\cdots &\to &{\mathcal {E}}_{1}&\to &0\\\downarrow &&\downarrow &&\downarrow &&\cdots &&\downarrow &&\downarrow \\0&\to &0&\to &0&\to &\cdots &\to &{\mathcal {E}}_{0}&\to &0\end{matrix}}} 3718: 3144:
is a Grothendieck abelian category (meaning that it satisfies AB5 and has a set of generators), with the essential point being that only objects of bounded cardinality are relevant. In these cases, the limit may be calculated over a small subcategory, and this ensures that the result is a set. Then
2413:
is small, however, the construction by generators and relations generally results in a category whose structure is opaque, where morphisms are arbitrarily long paths subject to a mysterious equivalence relation. For this reason, it is conventional to construct the derived category more concretely
2385:
has a proper class of objects, all of which are isomorphic, then there is a proper class of paths between any two of these objects. The generators and relations construction therefore only guarantees that the morphisms between two objects form a proper class. However, the morphisms between two
3201:
There is a different approach based on replacing morphisms in the derived category by morphisms in the homotopy category. A morphism in the derived category with codomain being a bounded below complex of injective objects is the same as a morphism to this complex in the homotopy category; this
5327:. As remarked above, injective resolutions are not uniquely defined, but it is a fact that any two resolutions are homotopy equivalent to each other, i.e. isomorphic in the homotopy category. Moreover, morphisms of complexes extend uniquely to a morphism of two given injective resolutions. 183:
condition, a weakening of non-singularity, corresponds to the existence of a single dualizing sheaf; and this is far from the general case. From the top-down intellectual position, always assumed by Grothendieck, this signified a need to reformulate. With it came the idea that the 'real'
5153:
In concrete situations, it is very difficult or impossible to handle morphisms in the derived category directly. Therefore, one looks for a more manageable category which is equivalent to the derived category. Classically, there are two (dual) approaches to this: projective and
3556: 545: 3077: 104:
shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had made remarkable strides. The basic theory of Verdier was written down in his dissertation, published finally in 1996 in
5948: 918: 4614:), and hence has only a set of morphisms from one object to another. Grothendieck abelian categories include the category of modules over a ring, the category of sheaves of abelian groups on a topological space, and many other examples. 5074: 4617:
Composition of morphisms, i.e. roofs, in the derived category is accomplished by finding a third roof on top of the two roofs to be composed. It may be checked that this is possible and gives a well-defined, associative composition.
715: 5620:) which immediately proved useful in the study of singular spaces; see, for example, the book by Kashiwara and Schapira (Categories and Sheaves) on various applications of unbounded derived category. Spaltenstein used so-called 5433: 5306: 3339: 2333:
is a small category, then there is a direct construction of the derived category by formally adjoining inverses of quasi-isomorphisms. This is an instance of the general construction of a category by generators and relations.
1154: 1313: 4351: 1389: 2454:. This is a collection of conditions that allow complicated paths to be rewritten as simpler ones. The Gabriel–Zisman theorem implies that localization at a multiplicative system has a simple description in terms of 2223: 1888: 5581: 4887: 4250: 3713:{\displaystyle 0\to {\mathcal {E}}_{n}{\overset {\phi _{n,n-1}}{\rightarrow }}{\mathcal {E}}_{n-1}{\overset {\phi _{n-1,n-2}}{\rightarrow }}\cdots {\overset {\phi _{1,0}}{\rightarrow }}{\mathcal {E}}_{0}\to 0} 5148: 3799: 1053: 2680: 2634: 2168: 1988: 1938: 1676: 1452: 413: 349: 421: 6119: 3517: 817: 766: 5879: 3406: 2962: 2496: 1774: 1640: 971: 5445:
It is not difficult to see that this functor is actually inverse to the restriction of the canonical localization functor mentioned in the beginning. In other words, morphisms Hom(
4789: 3196: 4163: 622: 3472: 3439: 3202:
follows from termwise injectivity. By replacing termwise injectivity by a stronger condition, one gets a similar property that applies even to unbounded complexes. A complex
3176: 2900: 2813: 2529: 2448: 2276: 2132: 1252: 313: 3118: 2780: 1488: 5634:
and May (2006) describe the derived category of modules over DG-algebras. Keller also gives applications to Koszul duality, Lie algebra cohomology, and Hochschild homology.
4712: 3142: 2411: 2383: 2359: 2331: 1715: 1512: 1337: 1209: 576: 377: 264: 110: 2716: 3548: 3366: 3261: 3227: 2954: 2927: 2867: 2840: 2746: 2588: 2094: 2067: 1416: 1181: 822: 2225:
which is the identity on objects and which sends each morphism to its chain homotopy equivalence class. Since every chain homotopy equivalence is a quasi-isomorphism,
4561: 2040: 2014: 4525: 4462: 4399: 4488: 4425: 5092:, so the second step in the above construction may be omitted. The definition is usually given in this way because it reveals the existence of a canonical functor 2721:
Replacing chains of morphisms with roofs also enables the resolution of the set-theoretic issues involved in derived categories of large categories. Fix a complex
2561: 4973: 4183: 2243: 1600: 1580: 1552: 1532: 631: 5355: 5249: 3266: 1058: 2361:
is a large category, this construction does not work for set theoretic reasons. This construction builds morphisms as equivalence classes of paths. If
1257: 4258: 1342: 5165:
In the following we will describe the role of injective resolutions in the context of the derived category, which is the basis for defining right
2170:
but whose morphisms are equivalence classes of morphisms of complexes with respect to the relation of chain homotopy. There is a natural functor
2173: 1779: 5479: 4848: 4188: 203:
Despite the level of abstraction, derived categories became accepted over the following decades, especially as a convenient setting for
6232: 5098: 3726: 6268: 89:. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated 5838:), where the first equivalence of categories is described above. The classical derived functors are related to the total one via 5438:
from the bounded below derived category to the bounded below homotopy category of complexes whose terms are injective objects in
976: 6755: 5461:
and computing the morphisms in the homotopy category, which is at least theoretically easier. In fact, it is enough to resolve
6586: 125:. The original impulse to develop the "derived" formalism came from the need to find a suitable formulation of Grothendieck's 6693: 6664: 6631: 6293: 1894:. It is straightforward to show that two homotopic morphisms induce identical morphisms on cohomology groups. We say that 540:{\displaystyle \cdots \to X^{-1}\xrightarrow {d^{-1}} X^{0}\xrightarrow {d^{0}} X^{1}\xrightarrow {d^{1}} X^{2}\to \cdots ,} 6227: 5085: 2098: 2639: 2593: 2137: 1947: 1897: 1645: 1421: 382: 318: 3801:
by truncating the complex above, shifting it, and using the obvious morphisms above. In particular, we have the picture
3120:
is potentially a large category, in some cases it is controlled by a small category. This is the case, for example, if
6731: 5943:{\displaystyle {\mathcal {A}}{\stackrel {F}{\rightarrow }}{\mathcal {B}}{\stackrel {G}{\rightarrow }}{\mathcal {C}},\,} 4835: 208: 6078: 6470: 6147:
with two vertices. They are very different abelian categories, but their (bounded) derived categories are equivalent.
3072:{\displaystyle \varinjlim _{I_{X^{\bullet }}}\operatorname {Hom} _{K({\mathcal {A}})}((X')^{\bullet },Y^{\bullet }),} 2869:
whose structure maps are quasi-isomorphisms. Then the multiplicative system condition implies that the morphisms in
2386:
objects in a category are usually required to be sets, and so this construction fails to produce an actual category.
771: 720: 3371: 2461: 1720: 1605: 3485: 146: 6412: 923: 5870: 6444: 6750: 4723: 3181: 85:
of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of
6439: 6210: 5760: 5158:. In both cases, the restriction of the above canonical functor to an appropriate subcategory will be an 5637:
More generally, carefully adapting the definitions, it is possible to define the derived category of an
4185:, the only non-trivial upward arrow is the equality morphism, and the only-nontrivial downward arrow is 4137: 581: 6247: 3550:
is a quasi-isomorphism. To get a better picture of what elements look like, consider an exact sequence
3444: 3411: 3148: 2872: 2785: 2501: 2420: 2248: 2104: 1224: 1215: 285: 223: 118: 6434: 4356:
in the derived category. One application of this observation is the construction of the Atiyah-class.
3089: 2751: 6237: 5159: 2417:
These other constructions go through the homotopy category. The collection of quasi-isomorphisms in
1457: 913:{\displaystyle f^{\bullet }\colon (X^{\bullet },d_{X}^{\bullet })\to (Y^{\bullet },d_{Y}^{\bullet })} 4659: 4586:), then one has to give an additional argument to prove this. If, for example, the abelian category 3123: 2392: 2364: 2340: 2312: 1688: 1493: 1318: 1190: 557: 358: 245: 2685: 54: 6330:
Markarian, Nikita (2009). "The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem".
5676:
left derived functors come from right exact functors and are calculated via projective resolutions
3344: 3239: 3205: 2932: 2905: 2845: 2842:
and whose morphisms are commutative diagrams. Equivalently, this is the category of objects over
2818: 2724: 2566: 2072: 2045: 1394: 1159: 5721: 5673:
right derived functors come from left exact functors and are calculated via injective resolutions
180: 6462: 6456: 6282:
Gabriel, Peter; Zisman, M. (6 December 2012). "1.2 The Calculus of Fractions: Proposition 2.4".
5869:
Derived categories are, in a sense, the "right" place to study these functors. For example, the
4563:) complexes instead of unbounded ones. The corresponding derived categories are usually denoted 169: 122: 97: 82: 5315:* are injective objects. This idea generalizes to give resolutions of bounded-below complexes 5211:. (Neither the map nor the injective object has to be uniquely specified.) For example, every 5192:
In order to apply this technique, one has to assume that the abelian category in question has
4530: 3482:
As noted before, in the derived category the hom sets are expressed through roofs, or valleys
2019: 1993: 6068: 5212: 4626: 4595: 4497: 4434: 4371: 3522: 231: 141:. Recently derived categories have also become important in areas nearer to physics, such as 114: 6283: 4467: 4404: 6703: 6674: 6641: 6615: 6602: 6567: 6518: 6480: 6198: 6155: 5729: 5155: 5069:{\displaystyle {\text{Hom}}_{D({\mathcal {A}})}(X,Y)={\text{Ext}}_{\mathcal {A}}^{j}(X,Y).} 2534: 271: 230:. The homotopy category of spectra and the derived category of a ring are both examples of 172: 8: 6529: 6130: 5725: 5174: 279: 138: 42: 6726:. Cambridge Studies in Advanced Mathematics. Vol. 183. Cambridge University Press. 6213:. Varieties with equivalent derived categories of coherent sheaves are sometimes called 5182: 710:{\displaystyle H^{i}(X^{\bullet })=\operatorname {ker} d^{i}/\operatorname {im} d^{i-1}} 78: 6688:. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. 6574: 6357: 6339: 5330:
This is the point where the homotopy category comes into play again: mapping an object
4590:
is small, i.e. has only a set of objects, then this issue will be no problem. Also, if
4583: 4168: 2228: 1585: 1565: 1537: 1517: 275: 130: 101: 5428:{\displaystyle D^{+}({\mathcal {A}})\rightarrow K^{+}(\mathrm {Inj} ({\mathcal {A}}))} 5301:{\displaystyle 0\rightarrow X\rightarrow I^{0}\rightarrow I^{1}\rightarrow \cdots ,\,} 6727: 6707: 6689: 6660: 6627: 6590: 6555: 6506: 6466: 6289: 5593: 5178: 5089: 4579: 3334:{\displaystyle \operatorname {Hom} _{K({\mathcal {A}})}(X^{\bullet },I^{\bullet })=0} 90: 6361: 1218:
of the category of complexes with respect to quasi-isomorphisms. Specifically, the
1149:{\displaystyle H^{i}(f^{\bullet })\colon H^{i}(X^{\bullet })\to H^{i}(Y^{\bullet })} 6648: 6496: 6349: 6242: 6144: 5958: 5745: 5205: 5186: 2682:
is a chain homotopy equivalence class of morphisms. Conceptually, this represents
267: 204: 126: 35: 6719: 6699: 6670: 6656: 6637: 6623: 6598: 6563: 6543: 6514: 6476: 6452: 6190: 6126: 5654: 5166: 1308:{\displaystyle Q\colon \operatorname {Kom} ({\mathcal {A}})\to D({\mathcal {A}})} 227: 215:
school adopted the language of derived categories, and the subsequent history of
46: 6681: 6122: 5638: 5240: 4346:{\displaystyle \phi \in \mathbf {RHom} ({\mathcal {E}}_{0},{\mathcal {E}}_{n})} 2282: 185: 161: 6019:
J.-L. Verdier showed how derived functors associated with an abelian category
1384:{\displaystyle F\colon \operatorname {Kom} ({\mathcal {A}})\to {\mathcal {C}}} 192:
functors would be those existing on the derived level; with respect to those,
6744: 6594: 6559: 6510: 6024: 352: 165: 86: 66: 6711: 6538:
gives an interpretation of the derived category of modules over DG-algebras.
6525: 6166:
by reversing some arrows. In general, the categories of representations of
5733: 5201: 129:
theory. Derived categories have since become indispensable also outside of
6353: 5680:
In the following we will describe right derived functors. So, assume that
6064: 5602: 4948: 4944: 4578:
If one adopts the classical point of view on categories, that there is a
2218:{\displaystyle \operatorname {Kom} ({\mathcal {A}})\to K({\mathcal {A}})} 1883:{\displaystyle f^{i}-g^{i}=d_{Y}^{i-1}\circ h^{i}+h^{i+1}\circ d_{X}^{i}} 197: 193: 74: 20: 6501: 5992:), is an expression of the following identity of total derived functors 2309:
There are several possible constructions of the derived category. When
2293:) is the true 'homotopy category' of the category of complexes, whereas 5170: 2278:
can be equally well viewed as a localization of the homotopy category.
212: 5576:{\displaystyle \mathrm {Hom} _{D(A)}(X,Y)=\mathrm {Hom} _{K(A)}(X,Y).} 152:
Unbounded derived categories were introduced by Spaltenstein in 1988.
45:
introduced to refine and in a certain sense to simplify the theory of
6344: 4882:{\displaystyle 0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0} 1554:. Any two categories having this universal property are equivalent. 4245:{\displaystyle \phi _{1,0}:{\mathcal {E}}_{1}\to {\mathcal {E}}_{0}} 3341:. A straightforward consequence of this is that, for every complex 505: 478: 448: 6655:, Grundlehren der mathematischen Wissenschaften, Berlin, New York: 5779:
The derived category allows us to encapsulate all derived functors
5224: 216: 175:, the need to take a whole complex of sheaves in place of a single 134: 4947:. Morphisms in the derived category include information about all 5862:
forget the chain complex and keep only the cohomologies, whereas
5669:
be a functor of abelian categories. There are two dual concepts:
5347: 3083: 282:
of abelian groups on a topological space.) The derived category
142: 5653:
The derived category is a natural framework to define and study
5613:, one can use projective resolutions instead of injective ones. 315:
is defined by a universal property with respect to the category
211:
in dimensions greater than 1 in derived terms, around 1980. The
5143:{\displaystyle K({\mathcal {A}})\rightarrow D({\mathcal {A}}).} 4935:
as a complex concentrated in degree zero, the derived category
4606:) is equivalent to a full subcategory of the homotopy category 1214:
The universal property of the derived category is that it is a
3794:{\displaystyle \phi :{\mathcal {E}}_{0}\to {\mathcal {E}}_{n}} 6577:(1996), "Des Catégories Dérivées des Catégories Abéliennes", 5616:
In 1988 Spaltenstein defined an unbounded derived category (
5453:) in the derived category may be computed by resolving both 2718:. Two roofs are equivalent if they have a common overroof. 1048:{\displaystyle f_{i+1}\circ d_{X}^{i}=d_{Y}^{i}\circ f_{i}} 1055:. Such a morphism induces morphisms on cohomology groups 207:. Perhaps the biggest advance was the formulation of the 113:). The axiomatics required an innovation, the concept of 164:
theory, pushing to the limit of what could be done with
5079: 6143:-Rep be an abelian category of representations of the 3812: 6081: 6055:) are. Often this is an interesting relation between 5882: 5482: 5358: 5252: 5101: 4976: 4916:. Verdier explained that the definition of the shift 4851: 4726: 4662: 4533: 4500: 4470: 4437: 4407: 4374: 4261: 4191: 4171: 4140: 3810: 3729: 3559: 3525: 3488: 3447: 3414: 3374: 3347: 3269: 3242: 3208: 3184: 3151: 3126: 3092: 2965: 2935: 2908: 2875: 2848: 2821: 2788: 2754: 2727: 2688: 2642: 2596: 2569: 2537: 2504: 2464: 2423: 2395: 2367: 2343: 2315: 2251: 2231: 2176: 2140: 2107: 2075: 2048: 2022: 1996: 1950: 1900: 1782: 1723: 1691: 1648: 1608: 1588: 1568: 1540: 1520: 1496: 1460: 1424: 1397: 1345: 1321: 1260: 1227: 1193: 1162: 1061: 979: 926: 825: 774: 723: 634: 584: 560: 424: 385: 361: 321: 288: 248: 6609:
Four textbooks that discuss derived categories are:
4582:
of morphisms from one object to another (not just a
2675:{\displaystyle f\colon Z^{\bullet }\to Y^{\bullet }} 2629:{\displaystyle s\colon Z^{\bullet }\to X^{\bullet }} 2304: 2163:{\displaystyle \operatorname {Kom} ({\mathcal {A}})} 1983:{\displaystyle g\colon Y^{\bullet }\to X^{\bullet }} 1933:{\displaystyle f\colon X^{\bullet }\to Y^{\bullet }} 1671:{\displaystyle \operatorname {Kom} ({\mathcal {A}})} 1557: 1447:{\displaystyle \operatorname {Kom} ({\mathcal {A}})} 408:{\displaystyle \operatorname {Kom} ({\mathcal {A}})} 344:{\displaystyle \operatorname {Kom} ({\mathcal {A}})} 6531:
Derived categories from a topological point of view
6489:
Annales Scientifiques de l'École Normale Supérieure
6487:Keller, Bernhard (1994), "Deriving DG categories", 6047:
are not equivalent, but their derived categories D(
5648: 1315:, having the following universal property: Suppose 6113: 5942: 5575: 5427: 5300: 5142: 5068: 4881: 4783: 4706: 4555: 4519: 4482: 4456: 4419: 4393: 4345: 4244: 4177: 4157: 4123: 3793: 3712: 3542: 3511: 3466: 3433: 3400: 3360: 3333: 3255: 3221: 3190: 3170: 3136: 3112: 3071: 2948: 2921: 2894: 2861: 2834: 2807: 2774: 2740: 2710: 2674: 2628: 2582: 2555: 2523: 2490: 2442: 2405: 2377: 2353: 2325: 2270: 2237: 2217: 2162: 2126: 2088: 2061: 2034: 2008: 1982: 1932: 1882: 1768: 1709: 1670: 1634: 1594: 1574: 1546: 1526: 1506: 1482: 1446: 1410: 1383: 1339:is another category (not necessarily abelian) and 1331: 1307: 1246: 1203: 1175: 1148: 1047: 965: 912: 819:are two objects in this category, then a morphism 811: 760: 709: 616: 570: 539: 407: 371: 343: 307: 258: 133:, for example in the formulation of the theory of 53:. The construction proceeds on the basis that the 6647: 6374: 6063:. Such equivalences are related to the theory of 2301:) might be called the 'naive homotopy category'. 2042:are chain homotopic to the identity morphisms on 6742: 6114:{\displaystyle \mathrm {Coh} (\mathbb {P} ^{1})} 1187:if each of these morphisms is an isomorphism in 5169:, which in turn have important applications in 4252:. This diagram of complexes defines a morphism 812:{\displaystyle (Y^{\bullet },d_{Y}^{\bullet })} 761:{\displaystyle (X^{\bullet },d_{X}^{\bullet })} 4842:. In particular, for a short exact sequence 6281: 6613: 6541: 6386: 5617: 3401:{\displaystyle X^{\bullet }\to I^{\bullet }} 2491:{\displaystyle X^{\bullet }\to Y^{\bullet }} 2245:factors through this functor. Consequently 1769:{\displaystyle h^{i}\colon X^{i}\to Y^{i-1}} 1635:{\displaystyle X^{\bullet }\to Y^{\bullet }} 96:The development of the derived category, by 81:that induces an isomorphism on the level of 4794:By definition, a distinguished triangle in 3512:{\displaystyle X\rightarrow Y'\leftarrow Y} 222:A parallel development was the category of 73:, with two such chain complexes considered 6332:Journal of the London Mathematical Society 6039:It may happen that two abelian categories 5181:or more advanced cohomology theories like 4364:For certain purposes (see below) one uses 966:{\displaystyle f_{i}\colon X^{i}\to Y^{i}} 219:was of a theory expressed in those terms. 6718: 6500: 6343: 6329: 6285:Calculus of Fractions and Homotopy Theory 6233:Derived noncommutative algebraic geometry 6098: 5939: 5297: 3178:may be defined to have these sets as its 2134:is the category with the same objects as 6269:Categories for the Working Mathematician 3723:We can use this to construct a morphism 2782:whose objects are quasi-isomorphisms in 200:become more like computational devices. 6573: 6398: 1254:is a category, together with a functor 920:is defined to be a family of morphisms 6743: 6686:An introduction to homological algebra 6680: 6486: 6450: 6410: 6308: 6034: 5642: 5631: 2414:even when set theory is not at issue. 2099:homotopy category of cochain complexes 628:th cohomology group of the complex is 6461:, Amsterdam: North Holland, pp.  6432: 5783:in one functor, namely the so-called 4633:is also triangulated. For an integer 6544:"Resolutions of unbounded complexes" 6228:Homotopy category of chain complexes 5806:). It is the following composition: 5684:is left exact. Typical examples are 5080:Projective and injective resolutions 4798:is a triangle that is isomorphic in 4784:{\displaystyle d_{X}=(-1)^{n}d_{X}.} 3191:{\displaystyle \operatorname {Hom} } 270:. (Examples include the category of 6524: 6453:"Derived categories and their uses" 6031:into suitable derived categories . 5732:. Their right derived functors are 3477: 117:, and the construction is based on 109:(a summary had earlier appeared in 106: 13: 6089: 6086: 6083: 5931: 5908: 5885: 5873:of a composition of two functors 5866:does keep track of the complexes. 5536: 5533: 5530: 5491: 5488: 5485: 5414: 5405: 5402: 5399: 5374: 5129: 5110: 5037: 4992: 4305: 4288: 4231: 4214: 4158:{\displaystyle {\mathcal {E}}_{0}} 4144: 4096: 3991: 3954: 3933: 3828: 3756: 3739: 3693: 3612: 3569: 3456: 3441:are the same as such morphisms in 3423: 3283: 3160: 3129: 3013: 2884: 2797: 2513: 2432: 2398: 2370: 2346: 2318: 2260: 2207: 2188: 2152: 2116: 1660: 1499: 1436: 1376: 1363: 1324: 1297: 1278: 1236: 1196: 617:{\displaystyle d^{i+1}\circ d^{i}} 563: 397: 364: 333: 297: 251: 14: 6767: 5215:has enough injectives. Embedding 3467:{\displaystyle D({\mathcal {A}})} 3434:{\displaystyle K({\mathcal {A}})} 3171:{\displaystyle D({\mathcal {A}})} 2895:{\displaystyle D({\mathcal {A}})} 2808:{\displaystyle K({\mathcal {A}})} 2524:{\displaystyle D({\mathcal {A}})} 2443:{\displaystyle K({\mathcal {A}})} 2305:Constructing the derived category 2271:{\displaystyle D({\mathcal {A}})} 2127:{\displaystyle K({\mathcal {A}})} 1558:Relation to the homotopy category 1391:is a functor such that, whenever 1247:{\displaystyle D({\mathcal {A}})} 308:{\displaystyle D({\mathcal {A}})} 6413:"Derived categories and tilting" 6178:-Rep) is always equivalent to D( 5988: > 0 and injective 5649:The relation to derived functors 5227:of this map into some injective 5196:, which means that every object 4278: 4275: 4272: 4269: 3113:{\displaystyle I_{X^{\bullet }}} 2775:{\displaystyle I_{X^{\bullet }}} 5243:(in general infinite) sequence 4924:to be the cone of the morphism 1483:{\displaystyle F(f^{\bullet })} 6620:Methods of Homological Algebra 6587:Société Mathématique de France 6404: 6392: 6380: 6368: 6323: 6314: 6302: 6275: 6260: 6108: 6093: 5917: 5894: 5871:Grothendieck spectral sequence 5567: 5555: 5550: 5544: 5522: 5510: 5505: 5499: 5469:and any bounded below complex 5422: 5419: 5409: 5395: 5382: 5379: 5369: 5338:to (any) injective resolution 5288: 5275: 5262: 5256: 5134: 5124: 5118: 5115: 5105: 5060: 5048: 5023: 5020: 5014: 5002: 4997: 4987: 4873: 4867: 4861: 4855: 4759: 4749: 4741: 4735: 4707:{\displaystyle X^{i}=X^{n+i},} 4673: 4666: 4543: 4535: 4340: 4337: 4334: 4322: 4316: 4282: 4225: 4109: 4088: 4078: 4068: 4058: 4046: 4040: 4028: 4022: 4016: 4004: 3983: 3973: 3946: 3925: 3913: 3907: 3895: 3889: 3883: 3871: 3861: 3851: 3841: 3820: 3788: 3785: 3773: 3767: 3750: 3704: 3669: 3631: 3582: 3563: 3529: 3503: 3492: 3461: 3451: 3428: 3418: 3385: 3322: 3296: 3288: 3278: 3236:if, for every acyclic complex 3165: 3155: 3137:{\displaystyle {\mathcal {A}}} 3063: 3041: 3029: 3026: 3018: 3008: 2889: 2879: 2802: 2792: 2659: 2613: 2550: 2538: 2518: 2508: 2475: 2437: 2427: 2406:{\displaystyle {\mathcal {A}}} 2378:{\displaystyle {\mathcal {A}}} 2354:{\displaystyle {\mathcal {A}}} 2326:{\displaystyle {\mathcal {A}}} 2265: 2255: 2212: 2202: 2196: 2193: 2183: 2157: 2147: 2121: 2111: 1967: 1917: 1747: 1710:{\displaystyle h\colon f\to g} 1701: 1665: 1655: 1619: 1507:{\displaystyle {\mathcal {C}}} 1477: 1464: 1441: 1431: 1371: 1368: 1358: 1332:{\displaystyle {\mathcal {C}}} 1302: 1292: 1286: 1283: 1273: 1241: 1231: 1204:{\displaystyle {\mathcal {A}}} 1143: 1130: 1117: 1114: 1101: 1085: 1072: 950: 907: 876: 873: 870: 839: 806: 775: 755: 724: 658: 645: 571:{\displaystyle {\mathcal {A}}} 528: 428: 402: 392: 372:{\displaystyle {\mathcal {A}}} 338: 328: 302: 292: 259:{\displaystyle {\mathcal {A}}} 209:Riemann–Hilbert correspondence 155: 1: 6756:Categories in category theory 6426: 6375:Kashiwara & Schapira 2006 5213:Grothendieck abelian category 4596:Grothendieck abelian category 4134:where the bottom complex has 2711:{\displaystyle f\circ s^{-1}} 1717:is a collection of morphisms 237: 179:became apparent. In fact the 4598:, then the derived category 3361:{\displaystyle X^{\bullet }} 3256:{\displaystyle X^{\bullet }} 3222:{\displaystyle I^{\bullet }} 2949:{\displaystyle Y^{\bullet }} 2922:{\displaystyle X^{\bullet }} 2862:{\displaystyle X^{\bullet }} 2835:{\displaystyle X^{\bullet }} 2741:{\displaystyle X^{\bullet }} 2583:{\displaystyle Z^{\bullet }} 2089:{\displaystyle Y^{\bullet }} 2062:{\displaystyle X^{\bullet }} 1411:{\displaystyle f^{\bullet }} 1176:{\displaystyle f^{\bullet }} 168:without the assumption of a 7: 6651:; Schapira, Pierre (2006), 6455:, in Hazewinkel, M. (ed.), 6440:Encyclopedia of Mathematics 6433:Doorn, M.G.M. van (2001) , 6221: 5858:)). One might say that the 5219:into some injective object 5084:One can easily show that a 2636:is a quasi-isomorphism and 2531:may be described as a pair 578:and each of the composites 10: 6772: 6311:, remark 10.4.5 and errata 6248:Derived algebraic geometry 6205:)) is equivalent to D(Coh( 6162:be a quiver obtained from 6121:be an abelian category of 6071:. Here are some examples. 4818:for some map of complexes 4359: 2748:and consider the category 2281:From the point of view of 1942:chain homotopy equivalence 1418:is a quasi-isomorphism in 119:localization of a category 6542:Spaltenstein, N. (1988), 6451:Keller, Bernhard (1996), 6411:Keller, Bernhard (2003). 6320:Stacks Project, tag 079P. 6238:Coherent sheaf cohomology 5984:)) = 0 for all 5605:from a projective object 5200:of the category admits a 5160:equivalence of categories 3086:is in fact a set. While 2563:, where for some complex 6387:Gelfand & Manin 2003 6288:. Springer. p. 14. 6253: 6211:Fourier–Mukai transforms 5716:) for some fixed object 5657:. In the following, let 5597:, i.e. for every object 5231:etc., one constructs an 4931:By viewing an object of 4556:{\displaystyle |n|\gg 0} 2035:{\displaystyle f\circ g} 2009:{\displaystyle g\circ f} 16:Homological construction 6069:triangulated categories 5722:global sections functor 5323:for sufficiently small 4920:is forced by requiring 4520:{\displaystyle X^{n}=0} 4457:{\displaystyle X^{n}=0} 4394:{\displaystyle X^{n}=0} 4165:concentrated in degree 3543:{\displaystyle Y\to Y'} 2285:, the derived category 232:triangulated categories 6653:Categories and Sheaves 6548:Compositio Mathematica 6215:Fourier–Mukai partners 6115: 5944: 5586:Dually, assuming that 5577: 5429: 5302: 5144: 5070: 4883: 4785: 4708: 4557: 4521: 4484: 4483:{\displaystyle n\gg 0} 4458: 4421: 4420:{\displaystyle n\ll 0} 4395: 4347: 4246: 4179: 4159: 4125: 3795: 3714: 3544: 3513: 3468: 3435: 3402: 3362: 3335: 3257: 3223: 3192: 3172: 3138: 3114: 3073: 2950: 2923: 2896: 2863: 2836: 2809: 2776: 2742: 2712: 2676: 2630: 2584: 2557: 2525: 2492: 2444: 2407: 2379: 2355: 2327: 2272: 2239: 2219: 2164: 2128: 2090: 2063: 2036: 2010: 1984: 1934: 1884: 1770: 1711: 1672: 1636: 1596: 1576: 1548: 1528: 1508: 1484: 1448: 1412: 1385: 1333: 1309: 1248: 1205: 1177: 1150: 1049: 967: 914: 813: 762: 711: 618: 572: 541: 409: 373: 345: 309: 260: 123:localization of a ring 121:, a generalization of 98:Alexander Grothendieck 6616:Manin, Yuri Ivanovich 6174:are different, but D( 6116: 5945: 5785:total derived functor 5578: 5430: 5303: 5156:injective resolutions 5145: 5071: 4884: 4786: 4709: 4641:, define the complex 4627:triangulated category 4558: 4522: 4485: 4459: 4422: 4396: 4348: 4247: 4180: 4160: 4126: 3796: 3715: 3545: 3514: 3469: 3436: 3403: 3363: 3336: 3258: 3224: 3193: 3173: 3139: 3115: 3074: 2951: 2924: 2897: 2864: 2837: 2810: 2777: 2743: 2713: 2677: 2631: 2585: 2558: 2556:{\displaystyle (s,f)} 2526: 2493: 2452:multiplicative system 2445: 2408: 2380: 2356: 2328: 2273: 2240: 2220: 2165: 2129: 2096:, respectively. The 2091: 2064: 2037: 2011: 1985: 1935: 1885: 1771: 1712: 1673: 1637: 1597: 1577: 1549: 1529: 1509: 1490:is an isomorphism in 1485: 1449: 1413: 1386: 1334: 1310: 1249: 1206: 1178: 1151: 1050: 968: 915: 814: 763: 712: 619: 573: 542: 410: 374: 346: 310: 261: 115:triangulated category 41:is a construction of 6622:, Berlin, New York: 6614:Gelfand, Sergei I.; 6401:, Appendice to Ch. 1 6209:)) by the theory of 6199:dual abelian variety 6079: 6027:along embeddings of 5880: 5730:direct image functor 5480: 5356: 5250: 5233:injective resolution 5099: 5086:homotopy equivalence 4974: 4912:is distinguished in 4849: 4724: 4660: 4531: 4498: 4468: 4435: 4405: 4372: 4259: 4189: 4169: 4138: 3808: 3727: 3557: 3523: 3486: 3445: 3412: 3372: 3345: 3267: 3240: 3206: 3182: 3149: 3124: 3090: 2963: 2933: 2906: 2873: 2846: 2819: 2786: 2752: 2725: 2686: 2640: 2594: 2567: 2535: 2502: 2462: 2421: 2393: 2365: 2341: 2313: 2249: 2229: 2174: 2138: 2105: 2073: 2046: 2020: 1994: 1948: 1898: 1780: 1721: 1689: 1646: 1606: 1586: 1566: 1538: 1518: 1494: 1458: 1422: 1395: 1343: 1319: 1258: 1225: 1191: 1160: 1059: 977: 924: 823: 772: 721: 632: 582: 558: 422: 383: 359: 319: 286: 278:and the category of 246: 6751:Homological algebra 6575:Verdier, Jean-Louis 6502:10.24033/asens.1689 6458:Handbook of algebra 6354:10.1112/jlms/jdn064 6035:Derived equivalence 5618:Spaltenstein (1988) 5047: 4629:, its localization 3082:assuming that this 1879: 1829: 1031: 1013: 906: 869: 805: 754: 516: 489: 462: 181:Cohen–Macaulay ring 139:microlocal analysis 43:homological algebra 6724:Derived Categories 6682:Weibel, Charles A. 6435:"Derived category" 6111: 5940: 5573: 5465:: for any complex 5425: 5298: 5179:topological spaces 5140: 5066: 5029: 4951:: for any objects 4879: 4781: 4717:with differential 4704: 4553: 4517: 4480: 4454: 4417: 4391: 4343: 4242: 4175: 4155: 4121: 4119: 3791: 3710: 3540: 3509: 3464: 3431: 3398: 3358: 3331: 3253: 3219: 3188: 3168: 3134: 3110: 3069: 2996: 2975: 2946: 2919: 2892: 2859: 2832: 2805: 2772: 2738: 2708: 2672: 2626: 2580: 2553: 2521: 2488: 2440: 2403: 2375: 2351: 2323: 2268: 2235: 2215: 2160: 2124: 2086: 2059: 2032: 2006: 1980: 1930: 1880: 1865: 1809: 1766: 1707: 1668: 1632: 1602:are two morphisms 1592: 1572: 1544: 1524: 1504: 1480: 1444: 1408: 1381: 1329: 1305: 1244: 1201: 1173: 1146: 1045: 1017: 999: 963: 910: 892: 855: 809: 791: 758: 740: 707: 614: 568: 537: 405: 379:. The objects of 369: 341: 305: 256: 131:algebraic geometry 102:Jean-Louis Verdier 91:spectral sequences 6695:978-0-521-55987-4 6666:978-3-540-27949-5 6649:Kashiwara, Masaki 6633:978-3-540-43583-9 6295:978-3-642-85844-4 6023:can be viewed as 5959:injective objects 5926: 5903: 5194:enough injectives 5090:quasi-isomorphism 5033: 4981: 4178:{\displaystyle 0} 3688: 3662: 3607: 2968: 2966: 2238:{\displaystyle Q} 1595:{\displaystyle g} 1575:{\displaystyle f} 1547:{\displaystyle Q} 1527:{\displaystyle F} 1185:quasi-isomorphism 517: 490: 463: 353:cochain complexes 6763: 6737: 6720:Yekutieli, Amnon 6715: 6677: 6644: 6605: 6570: 6537: 6536: 6521: 6504: 6483: 6447: 6420: 6419: 6417: 6408: 6402: 6396: 6390: 6384: 6378: 6377:, Theorem 14.3.1 6372: 6366: 6365: 6347: 6327: 6321: 6318: 6312: 6306: 6300: 6299: 6279: 6273: 6264: 6243:Coherent duality 6145:Kronecker quiver 6123:coherent sheaves 6120: 6118: 6117: 6112: 6107: 6106: 6101: 6092: 5969:-acyclics (i.e. 5949: 5947: 5946: 5941: 5935: 5934: 5928: 5927: 5925: 5920: 5915: 5912: 5911: 5905: 5904: 5902: 5897: 5892: 5889: 5888: 5776:, respectively. 5655:derived functors 5582: 5580: 5579: 5574: 5554: 5553: 5539: 5509: 5508: 5494: 5434: 5432: 5431: 5426: 5418: 5417: 5408: 5394: 5393: 5378: 5377: 5368: 5367: 5307: 5305: 5304: 5299: 5287: 5286: 5274: 5273: 5206:injective object 5187:group cohomology 5183:étale cohomology 5167:derived functors 5149: 5147: 5146: 5141: 5133: 5132: 5114: 5113: 5075: 5073: 5072: 5067: 5046: 5041: 5040: 5034: 5031: 5001: 5000: 4996: 4995: 4982: 4979: 4963:and any integer 4945:full subcategory 4888: 4886: 4885: 4880: 4802:to the triangle 4790: 4788: 4787: 4782: 4777: 4776: 4767: 4766: 4745: 4744: 4713: 4711: 4710: 4705: 4700: 4699: 4681: 4680: 4649:shifted down by 4575:, respectively. 4562: 4560: 4559: 4554: 4546: 4538: 4526: 4524: 4523: 4518: 4510: 4509: 4489: 4487: 4486: 4481: 4463: 4461: 4460: 4455: 4447: 4446: 4426: 4424: 4423: 4418: 4400: 4398: 4397: 4392: 4384: 4383: 4352: 4350: 4349: 4344: 4315: 4314: 4309: 4308: 4298: 4297: 4292: 4291: 4281: 4251: 4249: 4248: 4243: 4241: 4240: 4235: 4234: 4224: 4223: 4218: 4217: 4207: 4206: 4184: 4182: 4181: 4176: 4164: 4162: 4161: 4156: 4154: 4153: 4148: 4147: 4130: 4128: 4127: 4122: 4120: 4106: 4105: 4100: 4099: 4044: 4038: 4032: 4026: 4020: 4001: 4000: 3995: 3994: 3970: 3969: 3958: 3957: 3943: 3942: 3937: 3936: 3911: 3905: 3899: 3893: 3887: 3838: 3837: 3832: 3831: 3800: 3798: 3797: 3792: 3766: 3765: 3760: 3759: 3749: 3748: 3743: 3742: 3719: 3717: 3716: 3711: 3703: 3702: 3697: 3696: 3689: 3687: 3686: 3668: 3663: 3661: 3660: 3630: 3628: 3627: 3616: 3615: 3608: 3606: 3605: 3581: 3579: 3578: 3573: 3572: 3549: 3547: 3546: 3541: 3539: 3518: 3516: 3515: 3510: 3502: 3478:Derived Hom-sets 3473: 3471: 3470: 3465: 3460: 3459: 3440: 3438: 3437: 3432: 3427: 3426: 3407: 3405: 3404: 3399: 3397: 3396: 3384: 3383: 3367: 3365: 3364: 3359: 3357: 3356: 3340: 3338: 3337: 3332: 3321: 3320: 3308: 3307: 3292: 3291: 3287: 3286: 3262: 3260: 3259: 3254: 3252: 3251: 3228: 3226: 3225: 3220: 3218: 3217: 3197: 3195: 3194: 3189: 3177: 3175: 3174: 3169: 3164: 3163: 3143: 3141: 3140: 3135: 3133: 3132: 3119: 3117: 3116: 3111: 3109: 3108: 3107: 3106: 3078: 3076: 3075: 3070: 3062: 3061: 3049: 3048: 3039: 3022: 3021: 3017: 3016: 2995: 2994: 2993: 2992: 2991: 2976: 2955: 2953: 2952: 2947: 2945: 2944: 2928: 2926: 2925: 2920: 2918: 2917: 2901: 2899: 2898: 2893: 2888: 2887: 2868: 2866: 2865: 2860: 2858: 2857: 2841: 2839: 2838: 2833: 2831: 2830: 2814: 2812: 2811: 2806: 2801: 2800: 2781: 2779: 2778: 2773: 2771: 2770: 2769: 2768: 2747: 2745: 2744: 2739: 2737: 2736: 2717: 2715: 2714: 2709: 2707: 2706: 2681: 2679: 2678: 2673: 2671: 2670: 2658: 2657: 2635: 2633: 2632: 2627: 2625: 2624: 2612: 2611: 2589: 2587: 2586: 2581: 2579: 2578: 2562: 2560: 2559: 2554: 2530: 2528: 2527: 2522: 2517: 2516: 2497: 2495: 2494: 2489: 2487: 2486: 2474: 2473: 2449: 2447: 2446: 2441: 2436: 2435: 2412: 2410: 2409: 2404: 2402: 2401: 2384: 2382: 2381: 2376: 2374: 2373: 2360: 2358: 2357: 2352: 2350: 2349: 2332: 2330: 2329: 2324: 2322: 2321: 2283:model categories 2277: 2275: 2274: 2269: 2264: 2263: 2244: 2242: 2241: 2236: 2224: 2222: 2221: 2216: 2211: 2210: 2192: 2191: 2169: 2167: 2166: 2161: 2156: 2155: 2133: 2131: 2130: 2125: 2120: 2119: 2095: 2093: 2092: 2087: 2085: 2084: 2068: 2066: 2065: 2060: 2058: 2057: 2041: 2039: 2038: 2033: 2015: 2013: 2012: 2007: 1989: 1987: 1986: 1981: 1979: 1978: 1966: 1965: 1944:if there exists 1939: 1937: 1936: 1931: 1929: 1928: 1916: 1915: 1889: 1887: 1886: 1881: 1878: 1873: 1861: 1860: 1842: 1841: 1828: 1817: 1805: 1804: 1792: 1791: 1775: 1773: 1772: 1767: 1765: 1764: 1746: 1745: 1733: 1732: 1716: 1714: 1713: 1708: 1677: 1675: 1674: 1669: 1664: 1663: 1641: 1639: 1638: 1633: 1631: 1630: 1618: 1617: 1601: 1599: 1598: 1593: 1581: 1579: 1578: 1573: 1553: 1551: 1550: 1545: 1534:factors through 1533: 1531: 1530: 1525: 1513: 1511: 1510: 1505: 1503: 1502: 1489: 1487: 1486: 1481: 1476: 1475: 1453: 1451: 1450: 1445: 1440: 1439: 1417: 1415: 1414: 1409: 1407: 1406: 1390: 1388: 1387: 1382: 1380: 1379: 1367: 1366: 1338: 1336: 1335: 1330: 1328: 1327: 1314: 1312: 1311: 1306: 1301: 1300: 1282: 1281: 1253: 1251: 1250: 1245: 1240: 1239: 1220:derived category 1210: 1208: 1207: 1202: 1200: 1199: 1182: 1180: 1179: 1174: 1172: 1171: 1155: 1153: 1152: 1147: 1142: 1141: 1129: 1128: 1113: 1112: 1100: 1099: 1084: 1083: 1071: 1070: 1054: 1052: 1051: 1046: 1044: 1043: 1030: 1025: 1012: 1007: 995: 994: 972: 970: 969: 964: 962: 961: 949: 948: 936: 935: 919: 917: 916: 911: 905: 900: 888: 887: 868: 863: 851: 850: 835: 834: 818: 816: 815: 810: 804: 799: 787: 786: 767: 765: 764: 759: 753: 748: 736: 735: 716: 714: 713: 708: 706: 705: 684: 679: 678: 657: 656: 644: 643: 623: 621: 620: 615: 613: 612: 600: 599: 577: 575: 574: 569: 567: 566: 554:is an object of 546: 544: 543: 538: 527: 526: 515: 514: 501: 500: 499: 488: 487: 474: 473: 472: 461: 460: 444: 443: 442: 415:are of the form 414: 412: 411: 406: 401: 400: 378: 376: 375: 370: 368: 367: 350: 348: 347: 342: 337: 336: 314: 312: 311: 306: 301: 300: 268:abelian category 265: 263: 262: 257: 255: 254: 205:sheaf cohomology 127:coherent duality 100:and his student 77:when there is a 47:derived functors 36:abelian category 25:derived category 6771: 6770: 6766: 6765: 6764: 6762: 6761: 6760: 6741: 6740: 6734: 6696: 6667: 6657:Springer-Verlag 6634: 6624:Springer-Verlag 6534: 6473: 6429: 6424: 6423: 6415: 6409: 6405: 6397: 6393: 6385: 6381: 6373: 6369: 6328: 6324: 6319: 6315: 6307: 6303: 6296: 6280: 6276: 6265: 6261: 6256: 6224: 6191:abelian variety 6142: 6127:projective line 6102: 6097: 6096: 6082: 6080: 6077: 6076: 6037: 5930: 5929: 5921: 5916: 5914: 5913: 5907: 5906: 5898: 5893: 5891: 5890: 5884: 5883: 5881: 5878: 5877: 5769: 5651: 5540: 5529: 5528: 5495: 5484: 5483: 5481: 5478: 5477: 5473:of injectives, 5413: 5412: 5398: 5389: 5385: 5373: 5372: 5363: 5359: 5357: 5354: 5353: 5282: 5278: 5269: 5265: 5251: 5248: 5247: 5128: 5127: 5109: 5108: 5100: 5097: 5096: 5082: 5042: 5036: 5035: 5030: 4991: 4990: 4983: 4978: 4977: 4975: 4972: 4971: 4896:, the triangle 4850: 4847: 4846: 4772: 4768: 4762: 4758: 4731: 4727: 4725: 4722: 4721: 4689: 4685: 4676: 4672: 4661: 4658: 4657: 4542: 4534: 4532: 4529: 4528: 4505: 4501: 4499: 4496: 4495: 4469: 4466: 4465: 4442: 4438: 4436: 4433: 4432: 4406: 4403: 4402: 4379: 4375: 4373: 4370: 4369: 4362: 4310: 4304: 4303: 4302: 4293: 4287: 4286: 4285: 4268: 4260: 4257: 4256: 4236: 4230: 4229: 4228: 4219: 4213: 4212: 4211: 4196: 4192: 4190: 4187: 4186: 4170: 4167: 4166: 4149: 4143: 4142: 4141: 4139: 4136: 4135: 4118: 4117: 4112: 4107: 4101: 4095: 4094: 4093: 4091: 4086: 4081: 4076: 4071: 4066: 4061: 4056: 4050: 4049: 4043: 4037: 4031: 4025: 4019: 4013: 4012: 4007: 4002: 3996: 3990: 3989: 3988: 3986: 3981: 3976: 3971: 3959: 3953: 3952: 3951: 3949: 3944: 3938: 3932: 3931: 3930: 3928: 3923: 3917: 3916: 3910: 3904: 3898: 3892: 3886: 3880: 3879: 3874: 3869: 3864: 3859: 3854: 3849: 3844: 3839: 3833: 3827: 3826: 3825: 3823: 3818: 3811: 3809: 3806: 3805: 3761: 3755: 3754: 3753: 3744: 3738: 3737: 3736: 3728: 3725: 3724: 3698: 3692: 3691: 3690: 3676: 3672: 3667: 3638: 3634: 3629: 3617: 3611: 3610: 3609: 3589: 3585: 3580: 3574: 3568: 3567: 3566: 3558: 3555: 3554: 3532: 3524: 3521: 3520: 3495: 3487: 3484: 3483: 3480: 3455: 3454: 3446: 3443: 3442: 3422: 3421: 3413: 3410: 3409: 3392: 3388: 3379: 3375: 3373: 3370: 3369: 3352: 3348: 3346: 3343: 3342: 3316: 3312: 3303: 3299: 3282: 3281: 3274: 3270: 3268: 3265: 3264: 3247: 3243: 3241: 3238: 3237: 3213: 3209: 3207: 3204: 3203: 3183: 3180: 3179: 3159: 3158: 3150: 3147: 3146: 3128: 3127: 3125: 3122: 3121: 3102: 3098: 3097: 3093: 3091: 3088: 3087: 3057: 3053: 3044: 3040: 3032: 3012: 3011: 3004: 3000: 2987: 2983: 2982: 2978: 2977: 2967: 2964: 2961: 2960: 2940: 2936: 2934: 2931: 2930: 2913: 2909: 2907: 2904: 2903: 2883: 2882: 2874: 2871: 2870: 2853: 2849: 2847: 2844: 2843: 2826: 2822: 2820: 2817: 2816: 2796: 2795: 2787: 2784: 2783: 2764: 2760: 2759: 2755: 2753: 2750: 2749: 2732: 2728: 2726: 2723: 2722: 2699: 2695: 2687: 2684: 2683: 2666: 2662: 2653: 2649: 2641: 2638: 2637: 2620: 2616: 2607: 2603: 2595: 2592: 2591: 2574: 2570: 2568: 2565: 2564: 2536: 2533: 2532: 2512: 2511: 2503: 2500: 2499: 2482: 2478: 2469: 2465: 2463: 2460: 2459: 2431: 2430: 2422: 2419: 2418: 2397: 2396: 2394: 2391: 2390: 2369: 2368: 2366: 2363: 2362: 2345: 2344: 2342: 2339: 2338: 2317: 2316: 2314: 2311: 2310: 2307: 2259: 2258: 2250: 2247: 2246: 2230: 2227: 2226: 2206: 2205: 2187: 2186: 2175: 2172: 2171: 2151: 2150: 2139: 2136: 2135: 2115: 2114: 2106: 2103: 2102: 2080: 2076: 2074: 2071: 2070: 2053: 2049: 2047: 2044: 2043: 2021: 2018: 2017: 1995: 1992: 1991: 1974: 1970: 1961: 1957: 1949: 1946: 1945: 1924: 1920: 1911: 1907: 1899: 1896: 1895: 1874: 1869: 1850: 1846: 1837: 1833: 1818: 1813: 1800: 1796: 1787: 1783: 1781: 1778: 1777: 1754: 1750: 1741: 1737: 1728: 1724: 1722: 1719: 1718: 1690: 1687: 1686: 1659: 1658: 1647: 1644: 1643: 1626: 1622: 1613: 1609: 1607: 1604: 1603: 1587: 1584: 1583: 1567: 1564: 1563: 1560: 1539: 1536: 1535: 1519: 1516: 1515: 1498: 1497: 1495: 1492: 1491: 1471: 1467: 1459: 1456: 1455: 1435: 1434: 1423: 1420: 1419: 1402: 1398: 1396: 1393: 1392: 1375: 1374: 1362: 1361: 1344: 1341: 1340: 1323: 1322: 1320: 1317: 1316: 1296: 1295: 1277: 1276: 1259: 1256: 1255: 1235: 1234: 1226: 1223: 1222: 1195: 1194: 1192: 1189: 1188: 1167: 1163: 1161: 1158: 1157: 1137: 1133: 1124: 1120: 1108: 1104: 1095: 1091: 1079: 1075: 1066: 1062: 1060: 1057: 1056: 1039: 1035: 1026: 1021: 1008: 1003: 984: 980: 978: 975: 974: 957: 953: 944: 940: 931: 927: 925: 922: 921: 901: 896: 883: 879: 864: 859: 846: 842: 830: 826: 824: 821: 820: 800: 795: 782: 778: 773: 770: 769: 749: 744: 731: 727: 722: 719: 718: 695: 691: 680: 674: 670: 652: 648: 639: 635: 633: 630: 629: 608: 604: 589: 585: 583: 580: 579: 562: 561: 559: 556: 555: 522: 518: 510: 506: 495: 491: 483: 479: 468: 464: 453: 449: 435: 431: 423: 420: 419: 396: 395: 384: 381: 380: 363: 362: 360: 357: 356: 332: 331: 320: 317: 316: 296: 295: 287: 284: 283: 250: 249: 247: 244: 243: 240: 228:homotopy theory 177:dualizing sheaf 158: 147:mirror symmetry 87:hypercohomology 67:chain complexes 17: 12: 11: 5: 6769: 6759: 6758: 6753: 6739: 6738: 6733:978-1108419338 6732: 6716: 6694: 6678: 6665: 6645: 6632: 6607: 6606: 6571: 6554:(2): 121–154, 6539: 6522: 6484: 6471: 6448: 6428: 6425: 6422: 6421: 6403: 6391: 6379: 6367: 6322: 6313: 6301: 6294: 6274: 6258: 6257: 6255: 6252: 6251: 6250: 6245: 6240: 6235: 6230: 6223: 6220: 6219: 6218: 6183: 6148: 6140: 6110: 6105: 6100: 6095: 6091: 6088: 6085: 6036: 6033: 6025:Kan extensions 6017: 6016: 5951: 5950: 5938: 5933: 5924: 5919: 5910: 5901: 5896: 5887: 5767: 5692:→ Ab given by 5678: 5677: 5674: 5650: 5647: 5639:exact category 5584: 5583: 5572: 5569: 5566: 5563: 5560: 5557: 5552: 5549: 5546: 5543: 5538: 5535: 5532: 5527: 5524: 5521: 5518: 5515: 5512: 5507: 5504: 5501: 5498: 5493: 5490: 5487: 5436: 5435: 5424: 5421: 5416: 5411: 5407: 5404: 5401: 5397: 5392: 5388: 5384: 5381: 5376: 5371: 5366: 5362: 5309: 5308: 5296: 5293: 5290: 5285: 5281: 5277: 5272: 5268: 5264: 5261: 5258: 5255: 5151: 5150: 5139: 5136: 5131: 5126: 5123: 5120: 5117: 5112: 5107: 5104: 5081: 5078: 5077: 5076: 5065: 5062: 5059: 5056: 5053: 5050: 5045: 5039: 5028: 5025: 5022: 5019: 5016: 5013: 5010: 5007: 5004: 4999: 4994: 4989: 4986: 4890: 4889: 4878: 4875: 4872: 4869: 4866: 4863: 4860: 4857: 4854: 4834:) denotes the 4792: 4791: 4780: 4775: 4771: 4765: 4761: 4757: 4754: 4751: 4748: 4743: 4740: 4737: 4734: 4730: 4715: 4714: 4703: 4698: 4695: 4692: 4688: 4684: 4679: 4675: 4671: 4668: 4665: 4637:and a complex 4552: 4549: 4545: 4541: 4537: 4516: 4513: 4508: 4504: 4479: 4476: 4473: 4453: 4450: 4445: 4441: 4416: 4413: 4410: 4390: 4387: 4382: 4378: 4361: 4358: 4354: 4353: 4342: 4339: 4336: 4333: 4330: 4327: 4324: 4321: 4318: 4313: 4307: 4301: 4296: 4290: 4284: 4280: 4277: 4274: 4271: 4267: 4264: 4239: 4233: 4227: 4222: 4216: 4210: 4205: 4202: 4199: 4195: 4174: 4152: 4146: 4132: 4131: 4116: 4113: 4111: 4108: 4104: 4098: 4092: 4090: 4087: 4085: 4082: 4080: 4077: 4075: 4072: 4070: 4067: 4065: 4062: 4060: 4057: 4055: 4052: 4051: 4048: 4045: 4042: 4039: 4036: 4033: 4030: 4027: 4024: 4021: 4018: 4015: 4014: 4011: 4008: 4006: 4003: 3999: 3993: 3987: 3985: 3982: 3980: 3977: 3975: 3972: 3968: 3965: 3962: 3956: 3950: 3948: 3945: 3941: 3935: 3929: 3927: 3924: 3922: 3919: 3918: 3915: 3912: 3909: 3906: 3903: 3900: 3897: 3894: 3891: 3888: 3885: 3882: 3881: 3878: 3875: 3873: 3870: 3868: 3865: 3863: 3860: 3858: 3855: 3853: 3850: 3848: 3845: 3843: 3840: 3836: 3830: 3824: 3822: 3819: 3817: 3814: 3813: 3790: 3787: 3784: 3781: 3778: 3775: 3772: 3769: 3764: 3758: 3752: 3747: 3741: 3735: 3732: 3721: 3720: 3709: 3706: 3701: 3695: 3685: 3682: 3679: 3675: 3671: 3666: 3659: 3656: 3653: 3650: 3647: 3644: 3641: 3637: 3633: 3626: 3623: 3620: 3614: 3604: 3601: 3598: 3595: 3592: 3588: 3584: 3577: 3571: 3565: 3562: 3538: 3535: 3531: 3528: 3508: 3505: 3501: 3498: 3494: 3491: 3479: 3476: 3463: 3458: 3453: 3450: 3430: 3425: 3420: 3417: 3395: 3391: 3387: 3382: 3378: 3355: 3351: 3330: 3327: 3324: 3319: 3315: 3311: 3306: 3302: 3298: 3295: 3290: 3285: 3280: 3277: 3273: 3250: 3246: 3216: 3212: 3187: 3167: 3162: 3157: 3154: 3131: 3105: 3101: 3096: 3080: 3079: 3068: 3065: 3060: 3056: 3052: 3047: 3043: 3038: 3035: 3031: 3028: 3025: 3020: 3015: 3010: 3007: 3003: 2999: 2990: 2986: 2981: 2974: 2971: 2943: 2939: 2916: 2912: 2891: 2886: 2881: 2878: 2856: 2852: 2829: 2825: 2815:with codomain 2804: 2799: 2794: 2791: 2767: 2763: 2758: 2735: 2731: 2705: 2702: 2698: 2694: 2691: 2669: 2665: 2661: 2656: 2652: 2648: 2645: 2623: 2619: 2615: 2610: 2606: 2602: 2599: 2577: 2573: 2552: 2549: 2546: 2543: 2540: 2520: 2515: 2510: 2507: 2485: 2481: 2477: 2472: 2468: 2458:. A morphism 2439: 2434: 2429: 2426: 2400: 2372: 2348: 2320: 2306: 2303: 2267: 2262: 2257: 2254: 2234: 2214: 2209: 2204: 2201: 2198: 2195: 2190: 2185: 2182: 2179: 2159: 2154: 2149: 2146: 2143: 2123: 2118: 2113: 2110: 2083: 2079: 2056: 2052: 2031: 2028: 2025: 2005: 2002: 1999: 1977: 1973: 1969: 1964: 1960: 1956: 1953: 1927: 1923: 1919: 1914: 1910: 1906: 1903: 1877: 1872: 1868: 1864: 1859: 1856: 1853: 1849: 1845: 1840: 1836: 1832: 1827: 1824: 1821: 1816: 1812: 1808: 1803: 1799: 1795: 1790: 1786: 1763: 1760: 1757: 1753: 1749: 1744: 1740: 1736: 1731: 1727: 1706: 1703: 1700: 1697: 1694: 1680:chain homotopy 1667: 1662: 1657: 1654: 1651: 1629: 1625: 1621: 1616: 1612: 1591: 1571: 1559: 1556: 1543: 1523: 1501: 1479: 1474: 1470: 1466: 1463: 1443: 1438: 1433: 1430: 1427: 1405: 1401: 1378: 1373: 1370: 1365: 1360: 1357: 1354: 1351: 1348: 1326: 1304: 1299: 1294: 1291: 1288: 1285: 1280: 1275: 1272: 1269: 1266: 1263: 1243: 1238: 1233: 1230: 1198: 1170: 1166: 1145: 1140: 1136: 1132: 1127: 1123: 1119: 1116: 1111: 1107: 1103: 1098: 1094: 1090: 1087: 1082: 1078: 1074: 1069: 1065: 1042: 1038: 1034: 1029: 1024: 1020: 1016: 1011: 1006: 1002: 998: 993: 990: 987: 983: 960: 956: 952: 947: 943: 939: 934: 930: 909: 904: 899: 895: 891: 886: 882: 878: 875: 872: 867: 862: 858: 854: 849: 845: 841: 838: 833: 829: 808: 803: 798: 794: 790: 785: 781: 777: 757: 752: 747: 743: 739: 734: 730: 726: 704: 701: 698: 694: 690: 687: 683: 677: 673: 669: 666: 663: 660: 655: 651: 647: 642: 638: 624:is zero. The 611: 607: 603: 598: 595: 592: 588: 565: 548: 547: 536: 533: 530: 525: 521: 513: 509: 504: 498: 494: 486: 482: 477: 471: 467: 459: 456: 452: 447: 441: 438: 434: 430: 427: 404: 399: 394: 391: 388: 366: 355:with terms in 340: 335: 330: 327: 324: 304: 299: 294: 291: 253: 239: 236: 186:tensor product 162:coherent sheaf 157: 154: 15: 9: 6: 4: 3: 2: 6768: 6757: 6754: 6752: 6749: 6748: 6746: 6735: 6729: 6725: 6721: 6717: 6713: 6709: 6705: 6701: 6697: 6691: 6687: 6683: 6679: 6676: 6672: 6668: 6662: 6658: 6654: 6650: 6646: 6643: 6639: 6635: 6629: 6625: 6621: 6617: 6612: 6611: 6610: 6604: 6600: 6596: 6592: 6588: 6584: 6581:(in French), 6580: 6576: 6572: 6569: 6565: 6561: 6557: 6553: 6549: 6545: 6540: 6533: 6532: 6527: 6523: 6520: 6516: 6512: 6508: 6503: 6498: 6495:(1): 63–102, 6494: 6490: 6485: 6482: 6478: 6474: 6472:0-444-82212-7 6468: 6464: 6460: 6459: 6454: 6449: 6446: 6442: 6441: 6436: 6431: 6430: 6414: 6407: 6400: 6395: 6388: 6383: 6376: 6371: 6363: 6359: 6355: 6351: 6346: 6341: 6337: 6333: 6326: 6317: 6310: 6305: 6297: 6291: 6287: 6286: 6278: 6272: 6270: 6263: 6259: 6249: 6246: 6244: 6241: 6239: 6236: 6234: 6231: 6229: 6226: 6225: 6216: 6212: 6208: 6204: 6201:. Then D(Coh( 6200: 6196: 6192: 6188: 6184: 6181: 6177: 6173: 6169: 6165: 6161: 6157: 6153: 6149: 6146: 6139: 6135: 6132: 6128: 6124: 6103: 6074: 6073: 6072: 6070: 6066: 6062: 6058: 6054: 6050: 6046: 6042: 6032: 6030: 6026: 6022: 6014: 6010: 6006: 6002: 5998: 5995: 5994: 5993: 5991: 5987: 5983: 5979: 5975: 5972: 5968: 5964: 5960: 5956: 5936: 5922: 5899: 5876: 5875: 5874: 5872: 5867: 5865: 5861: 5857: 5853: 5849: 5845: 5841: 5837: 5833: 5829: 5825: 5821: 5817: 5813: 5809: 5805: 5801: 5797: 5793: 5789: 5786: 5782: 5777: 5775: 5773: 5766: 5763: 5758: 5756: 5752: 5748: 5743: 5739: 5737: 5731: 5727: 5723: 5719: 5715: 5711: 5707: 5703: 5699: 5695: 5691: 5687: 5683: 5675: 5672: 5671: 5670: 5668: 5664: 5660: 5656: 5646: 5644: 5640: 5635: 5633: 5632:Keller (1994) 5629: 5628:resolutions. 5627: 5623: 5619: 5614: 5612: 5608: 5604: 5600: 5596: 5595: 5589: 5570: 5564: 5561: 5558: 5547: 5541: 5525: 5519: 5516: 5513: 5502: 5496: 5476: 5475: 5474: 5472: 5468: 5464: 5460: 5456: 5452: 5448: 5443: 5441: 5390: 5386: 5364: 5360: 5352: 5351: 5350: 5349: 5346:extends to a 5345: 5341: 5337: 5333: 5328: 5326: 5322: 5318: 5314: 5294: 5291: 5283: 5279: 5270: 5266: 5259: 5253: 5246: 5245: 5244: 5242: 5238: 5234: 5230: 5226: 5222: 5218: 5214: 5210: 5207: 5203: 5199: 5195: 5190: 5188: 5184: 5180: 5176: 5172: 5168: 5163: 5161: 5157: 5137: 5121: 5102: 5095: 5094: 5093: 5091: 5087: 5063: 5057: 5054: 5051: 5043: 5026: 5017: 5011: 5008: 5005: 4984: 4970: 4969: 4968: 4966: 4962: 4958: 4954: 4950: 4946: 4942: 4938: 4934: 4929: 4927: 4923: 4919: 4915: 4911: 4907: 4903: 4899: 4895: 4876: 4870: 4864: 4858: 4852: 4845: 4844: 4843: 4841: 4837: 4833: 4829: 4825: 4821: 4817: 4813: 4809: 4805: 4801: 4797: 4778: 4773: 4769: 4763: 4755: 4752: 4746: 4738: 4732: 4728: 4720: 4719: 4718: 4701: 4696: 4693: 4690: 4686: 4682: 4677: 4669: 4663: 4656: 4655: 4654: 4652: 4648: 4644: 4640: 4636: 4632: 4628: 4624: 4619: 4615: 4613: 4609: 4605: 4601: 4597: 4593: 4589: 4585: 4581: 4576: 4574: 4570: 4566: 4550: 4547: 4539: 4514: 4511: 4506: 4502: 4493: 4477: 4474: 4471: 4451: 4448: 4443: 4439: 4430: 4429:bounded-above 4414: 4411: 4408: 4388: 4385: 4380: 4376: 4367: 4366:bounded-below 4357: 4331: 4328: 4325: 4319: 4311: 4299: 4294: 4265: 4262: 4255: 4254: 4253: 4237: 4220: 4208: 4203: 4200: 4197: 4193: 4172: 4150: 4114: 4102: 4083: 4073: 4063: 4053: 4034: 4009: 3997: 3978: 3966: 3963: 3960: 3939: 3920: 3901: 3876: 3866: 3856: 3846: 3834: 3815: 3804: 3803: 3802: 3782: 3779: 3776: 3770: 3762: 3745: 3733: 3730: 3707: 3699: 3683: 3680: 3677: 3673: 3664: 3657: 3654: 3651: 3648: 3645: 3642: 3639: 3635: 3624: 3621: 3618: 3602: 3599: 3596: 3593: 3590: 3586: 3575: 3560: 3553: 3552: 3551: 3536: 3533: 3526: 3506: 3499: 3496: 3489: 3475: 3448: 3415: 3393: 3389: 3380: 3376: 3353: 3349: 3328: 3325: 3317: 3313: 3309: 3304: 3300: 3293: 3275: 3271: 3248: 3244: 3235: 3233: 3214: 3210: 3199: 3185: 3152: 3103: 3099: 3094: 3085: 3066: 3058: 3054: 3050: 3045: 3036: 3033: 3023: 3005: 3001: 2997: 2988: 2984: 2979: 2972: 2969: 2959: 2958: 2957: 2941: 2937: 2914: 2910: 2876: 2854: 2850: 2827: 2823: 2789: 2765: 2761: 2756: 2733: 2729: 2719: 2703: 2700: 2696: 2692: 2689: 2667: 2663: 2654: 2650: 2646: 2643: 2621: 2617: 2608: 2604: 2600: 2597: 2575: 2571: 2547: 2544: 2541: 2505: 2483: 2479: 2470: 2466: 2457: 2453: 2424: 2415: 2387: 2335: 2302: 2300: 2296: 2292: 2288: 2284: 2279: 2252: 2232: 2199: 2180: 2177: 2144: 2141: 2108: 2101: 2100: 2081: 2077: 2054: 2050: 2029: 2026: 2023: 2003: 2000: 1997: 1975: 1971: 1962: 1958: 1954: 1951: 1943: 1925: 1921: 1912: 1908: 1904: 1901: 1893: 1875: 1870: 1866: 1862: 1857: 1854: 1851: 1847: 1843: 1838: 1834: 1830: 1825: 1822: 1819: 1814: 1810: 1806: 1801: 1797: 1793: 1788: 1784: 1761: 1758: 1755: 1751: 1742: 1738: 1734: 1729: 1725: 1704: 1698: 1695: 1692: 1685: 1681: 1652: 1649: 1627: 1623: 1614: 1610: 1589: 1569: 1555: 1541: 1521: 1472: 1468: 1461: 1428: 1425: 1403: 1399: 1355: 1352: 1349: 1346: 1289: 1270: 1267: 1264: 1261: 1228: 1221: 1217: 1212: 1186: 1168: 1164: 1138: 1134: 1125: 1121: 1109: 1105: 1096: 1092: 1088: 1080: 1076: 1067: 1063: 1040: 1036: 1032: 1027: 1022: 1018: 1014: 1009: 1004: 1000: 996: 991: 988: 985: 981: 958: 954: 945: 941: 937: 932: 928: 902: 897: 893: 889: 884: 880: 865: 860: 856: 852: 847: 843: 836: 831: 827: 801: 796: 792: 788: 783: 779: 750: 745: 741: 737: 732: 728: 702: 699: 696: 692: 688: 685: 681: 675: 671: 667: 664: 661: 653: 649: 640: 636: 627: 609: 605: 601: 596: 593: 590: 586: 553: 534: 531: 523: 519: 511: 507: 502: 496: 492: 484: 480: 475: 469: 465: 457: 454: 450: 445: 439: 436: 432: 425: 418: 417: 416: 389: 386: 354: 325: 322: 289: 281: 277: 273: 269: 235: 233: 229: 225: 220: 218: 214: 210: 206: 201: 199: 195: 191: 187: 182: 178: 174: 171: 167: 166:Serre duality 163: 153: 150: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 103: 99: 94: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 37: 33: 29: 26: 22: 6723: 6685: 6652: 6619: 6608: 6582: 6578: 6551: 6547: 6530: 6492: 6488: 6457: 6438: 6406: 6399:Verdier 1996 6394: 6382: 6370: 6345:math/0610553 6335: 6331: 6325: 6316: 6304: 6284: 6277: 6267: 6262: 6214: 6206: 6202: 6194: 6186: 6179: 6175: 6171: 6167: 6163: 6159: 6151: 6137: 6133: 6065:t-structures 6060: 6056: 6052: 6048: 6044: 6040: 6038: 6028: 6020: 6018: 6012: 6008: 6004: 6000: 5996: 5989: 5985: 5981: 5977: 5973: 5970: 5966: 5962: 5954: 5952: 5868: 5863: 5859: 5855: 5851: 5847: 5843: 5839: 5835: 5831: 5827: 5823: 5819: 5815: 5811: 5807: 5803: 5799: 5795: 5791: 5787: 5784: 5780: 5778: 5771: 5764: 5761: 5754: 5750: 5746: 5741: 5735: 5734:Ext(–, 5717: 5713: 5709: 5705: 5701: 5697: 5693: 5689: 5685: 5681: 5679: 5666: 5662: 5658: 5652: 5636: 5630: 5626:K-projective 5625: 5621: 5615: 5610: 5606: 5601:there is an 5598: 5591: 5587: 5585: 5470: 5466: 5462: 5458: 5454: 5450: 5446: 5444: 5439: 5437: 5343: 5339: 5335: 5331: 5329: 5324: 5320: 5316: 5312: 5310: 5236: 5232: 5228: 5220: 5216: 5208: 5202:monomorphism 5197: 5193: 5191: 5164: 5152: 5083: 4964: 4960: 4956: 4952: 4940: 4936: 4932: 4930: 4925: 4921: 4917: 4913: 4909: 4905: 4901: 4897: 4893: 4891: 4839: 4836:mapping cone 4831: 4830:. Here Cone( 4827: 4823: 4819: 4815: 4811: 4807: 4803: 4799: 4795: 4793: 4716: 4650: 4646: 4642: 4638: 4634: 4630: 4622: 4620: 4616: 4611: 4607: 4603: 4599: 4591: 4587: 4577: 4572: 4568: 4564: 4491: 4428: 4365: 4363: 4355: 4133: 3722: 3481: 3368:, morphisms 3231: 3230: 3200: 3081: 2720: 2455: 2451: 2416: 2388: 2336: 2308: 2298: 2294: 2290: 2286: 2280: 2097: 1941: 1891: 1683: 1679: 1561: 1454:, its image 1219: 1216:localization 1213: 1184: 1183:is called a 625: 551: 549: 241: 221: 202: 189: 176: 170:non-singular 159: 151: 95: 70: 65:) should be 62: 58: 50: 38: 31: 27: 24: 18: 6491:, Série 4, 6338:: 129–143. 6309:Weibel 1994 5744:,–), 5643:Keller 1996 5622:K-injective 5603:epimorphism 5594:projectives 4653:, so that 550:where each 156:Motivations 49:defined on 21:mathematics 6745:Categories 6579:Astérisque 6526:May, J. P. 6427:References 6266:Mac Lane, 5953:such that 5311:where the 5239:, i.e. an 5171:cohomology 4949:Ext groups 3263:, we have 3234:-injective 2389:Even when 1990:such that 1890:for every 1776:such that 1682:or simply 973:such that 238:Definition 107:Astérisque 75:isomorphic 6595:0303-1179 6585:, Paris: 6560:0010-437X 6511:0012-9593 6445:EMS Press 6389:, III.3.2 5918:→ 5895:→ 5720:, or the 5383:→ 5292:⋯ 5289:→ 5276:→ 5263:→ 5257:→ 5119:→ 4939:contains 4874:→ 4868:→ 4862:→ 4856:→ 4753:− 4548:≫ 4475:≫ 4412:≪ 4329:− 4266:∈ 4263:ϕ 4226:→ 4194:ϕ 4110:→ 4089:→ 4084:⋯ 4079:→ 4069:→ 4059:→ 4047:↓ 4041:↓ 4035:⋯ 4029:↓ 4023:↓ 4017:↓ 4005:→ 3984:→ 3979:⋯ 3974:→ 3964:− 3947:→ 3926:→ 3914:↑ 3908:↑ 3902:⋯ 3896:↑ 3890:↑ 3884:↑ 3872:→ 3862:→ 3857:⋯ 3852:→ 3842:→ 3821:→ 3780:− 3751:→ 3731:ϕ 3705:→ 3674:ϕ 3670:→ 3665:⋯ 3655:− 3643:− 3636:ϕ 3632:→ 3622:− 3600:− 3587:ϕ 3583:→ 3564:→ 3530:→ 3504:← 3493:→ 3394:∙ 3386:→ 3381:∙ 3354:∙ 3318:∙ 3305:∙ 3294:⁡ 3249:∙ 3215:∙ 3104:∙ 3059:∙ 3046:∙ 3024:⁡ 2998:⁡ 2989:∙ 2973:→ 2942:∙ 2915:∙ 2855:∙ 2828:∙ 2766:∙ 2734:∙ 2701:− 2693:∘ 2668:∙ 2660:→ 2655:∙ 2647:: 2622:∙ 2614:→ 2609:∙ 2601:: 2576:∙ 2484:∙ 2476:→ 2471:∙ 2197:→ 2181:⁡ 2145:⁡ 2082:∙ 2055:∙ 2027:∘ 2001:∘ 1976:∙ 1968:→ 1963:∙ 1955:: 1926:∙ 1918:→ 1913:∙ 1905:: 1863:∘ 1831:∘ 1823:− 1794:− 1759:− 1748:→ 1735:: 1702:→ 1696:: 1678:, then a 1653:⁡ 1628:∙ 1620:→ 1615:∙ 1473:∙ 1429:⁡ 1404:∙ 1372:→ 1356:⁡ 1350:: 1287:→ 1271:⁡ 1265:: 1169:∙ 1139:∙ 1118:→ 1110:∙ 1089:: 1081:∙ 1033:∘ 997:∘ 951:→ 938:: 903:∙ 885:∙ 874:→ 866:∙ 848:∙ 837:: 832:∙ 802:∙ 784:∙ 751:∙ 733:∙ 700:− 689:⁡ 668:⁡ 654:∙ 602:∘ 532:⋯ 529:→ 455:− 437:− 429:→ 426:⋯ 390:⁡ 326:⁡ 217:D-modules 135:D-modules 79:chain map 34:) of an 6722:(2019). 6712:36131259 6684:(1994). 6618:(2003), 6528:(2006), 6362:16236000 6222:See also 6051:) and D( 5225:cokernel 3537:′ 3519:, where 3500:′ 3037:′ 2450:forms a 1684:homotopy 503:→ 476:→ 446:→ 143:D-branes 83:homology 6704:1269324 6675:2182076 6642:1950475 6603:1453167 6568:0932640 6519:1258406 6481:1421815 6463:671–701 6154:be any 6129:over a 6125:on the 5768:∗ 5728:or the 5726:sheaves 5592:enough 5348:functor 5319:, i.e. 5175:sheaves 4810:→ Cone( 4492:bounded 4360:Remarks 3084:colimit 1514:; then 280:sheaves 274:over a 272:modules 224:spectra 55:objects 6730:  6710:  6702:  6692:  6673:  6663:  6640:  6630:  6601:  6593:  6566:  6558:  6517:  6509:  6479:  6469:  6360:  6292:  6189:be an 6182:-Rep). 6156:quiver 6136:. Let 5740:, Ext( 5708:↦ Hom( 5696:↦ Hom( 5223:, the 5204:to an 4645:to be 4621:Since 3198:sets. 1156:, and 717:. If 266:be an 173:scheme 111:SGA 4½ 23:, the 6535:(PDF) 6416:(PDF) 6358:S2CID 6340:arXiv 6254:Notes 6131:field 5957:maps 5822:)) → 5818:(Inj( 5704:) or 5342:* of 5321:X = 0 5241:exact 5088:is a 4943:as a 4928:→ 0. 4625:is a 4594:is a 4584:class 4490:) or 2902:from 2456:roofs 2337:When 1940:is a 6728:ISBN 6708:OCLC 6690:ISBN 6661:ISBN 6628:ISBN 6591:ISSN 6556:ISSN 6507:ISSN 6467:ISBN 6290:ISBN 6197:its 6185:Let 6170:and 6158:and 6150:Let 6075:Let 6059:and 6043:and 6007:) ≅ 5846:) = 5830:) → 5814:) ≅ 5798:) → 5624:and 5590:has 5457:and 4955:and 4937:D(A) 4914:D(A) 4814:) → 4800:D(A) 4796:D(A) 4631:D(A) 4623:K(A) 4573:D(A) 4571:and 4569:D(A) 4565:D(A) 4527:for 4464:for 4401:for 2956:are 2069:and 2016:and 1582:and 768:and 276:ring 242:Let 213:Sato 196:and 188:and 145:and 137:and 6583:239 6497:doi 6350:doi 6067:in 5965:to 5961:in 5759:or 5724:on 5645:). 5609:to 5334:of 5235:of 5185:or 5177:on 5173:of 5032:Ext 4980:Hom 4959:in 4892:in 4838:of 4580:set 4427:), 3408:in 3272:Hom 3229:is 3186:Hom 3002:Hom 2970:lim 2929:to 2498:in 2178:Kom 2142:Kom 1650:Kom 1642:in 1562:If 1426:Kom 1353:Kom 1268:Kom 665:ker 387:Kom 351:of 323:Kom 226:in 198:Ext 194:Tor 190:Hom 160:In 69:in 57:of 19:In 6747:: 6706:. 6700:MR 6698:. 6671:MR 6669:, 6659:, 6638:MR 6636:, 6626:, 6599:MR 6597:, 6589:, 6564:MR 6562:, 6552:65 6550:, 6546:, 6515:MR 6513:, 6505:, 6493:27 6477:MR 6475:, 6465:, 6443:, 6437:, 6356:. 6348:. 6336:79 6334:. 6193:, 6013:RF 6009:RG 5864:RF 5860:RF 5852:RF 5840:RF 5790:: 5788:RF 5781:RF 5753:, 5712:, 5700:, 5688:: 5665:→ 5661:: 5442:. 5189:. 5162:. 4967:, 4908:→ 4904:→ 4900:→ 4826:→ 4822:: 4806:→ 4567:, 2590:, 1211:. 686:im 234:. 149:. 93:. 6736:. 6714:. 6499:: 6418:. 6364:. 6352:: 6342:: 6298:. 6271:. 6217:. 6207:Y 6203:X 6195:Y 6187:X 6180:P 6176:Q 6172:P 6168:Q 6164:Q 6160:P 6152:Q 6141:2 6138:K 6134:k 6109:) 6104:1 6099:P 6094:( 6090:h 6087:o 6084:C 6061:B 6057:A 6053:B 6049:A 6045:B 6041:A 6029:A 6021:A 6015:. 6011:∘ 6005:F 6003:∘ 6001:G 5999:( 5997:R 5990:I 5986:i 5982:I 5980:( 5978:F 5976:( 5974:G 5971:R 5967:G 5963:A 5955:F 5937:, 5932:C 5923:G 5909:B 5900:F 5886:A 5856:X 5854:( 5850:( 5848:H 5844:X 5842:( 5836:B 5834:( 5832:D 5828:B 5826:( 5824:K 5820:A 5816:K 5812:A 5810:( 5808:D 5804:B 5802:( 5800:D 5796:A 5794:( 5792:D 5774:) 5772:F 5770:( 5765:f 5762:R 5757:) 5755:F 5751:X 5749:( 5747:H 5742:A 5738:) 5736:A 5718:A 5714:X 5710:A 5706:X 5702:A 5698:X 5694:X 5690:A 5686:F 5682:F 5667:B 5663:A 5659:F 5641:( 5611:X 5607:P 5599:X 5588:A 5571:. 5568:) 5565:Y 5562:, 5559:X 5556:( 5551:) 5548:A 5545:( 5542:K 5537:m 5534:o 5531:H 5526:= 5523:) 5520:Y 5517:, 5514:X 5511:( 5506:) 5503:A 5500:( 5497:D 5492:m 5489:o 5486:H 5471:Y 5467:X 5463:Y 5459:Y 5455:X 5451:Y 5449:, 5447:X 5440:A 5423:) 5420:) 5415:A 5410:( 5406:j 5403:n 5400:I 5396:( 5391:+ 5387:K 5380:) 5375:A 5370:( 5365:+ 5361:D 5344:A 5340:I 5336:A 5332:X 5325:n 5317:X 5313:I 5295:, 5284:1 5280:I 5271:0 5267:I 5260:X 5254:0 5237:X 5229:I 5221:I 5217:X 5209:I 5198:X 5138:. 5135:) 5130:A 5125:( 5122:D 5116:) 5111:A 5106:( 5103:K 5064:. 5061:) 5058:Y 5055:, 5052:X 5049:( 5044:j 5038:A 5027:= 5024:) 5021:] 5018:j 5015:[ 5012:Y 5009:, 5006:X 5003:( 4998:) 4993:A 4988:( 4985:D 4965:j 4961:A 4957:Y 4953:X 4941:A 4933:A 4926:X 4922:X 4918:X 4910:X 4906:Z 4902:Y 4898:X 4894:A 4877:0 4871:Z 4865:Y 4859:X 4853:0 4840:f 4832:f 4828:Y 4824:X 4820:f 4816:X 4812:f 4808:Y 4804:X 4779:. 4774:X 4770:d 4764:n 4760:) 4756:1 4750:( 4747:= 4742:] 4739:n 4736:[ 4733:X 4729:d 4702:, 4697:i 4694:+ 4691:n 4687:X 4683:= 4678:i 4674:] 4670:n 4667:[ 4664:X 4651:n 4647:X 4643:X 4639:X 4635:n 4612:A 4610:( 4608:K 4604:A 4602:( 4600:D 4592:A 4588:A 4551:0 4544:| 4540:n 4536:| 4515:0 4512:= 4507:n 4503:X 4494:( 4478:0 4472:n 4452:0 4449:= 4444:n 4440:X 4431:( 4415:0 4409:n 4389:0 4386:= 4381:n 4377:X 4368:( 4341:) 4338:] 4335:) 4332:1 4326:n 4323:( 4320:+ 4317:[ 4312:n 4306:E 4300:, 4295:0 4289:E 4283:( 4279:m 4276:o 4273:H 4270:R 4238:0 4232:E 4221:1 4215:E 4209:: 4204:0 4201:, 4198:1 4173:0 4151:0 4145:E 4115:0 4103:0 4097:E 4074:0 4064:0 4054:0 4010:0 3998:1 3992:E 3967:1 3961:n 3955:E 3940:n 3934:E 3921:0 3877:0 3867:0 3847:0 3835:n 3829:E 3816:0 3789:] 3786:) 3783:1 3777:n 3774:( 3771:+ 3768:[ 3763:n 3757:E 3746:0 3740:E 3734:: 3708:0 3700:0 3694:E 3684:0 3681:, 3678:1 3658:2 3652:n 3649:, 3646:1 3640:n 3625:1 3619:n 3613:E 3603:1 3597:n 3594:, 3591:n 3576:n 3570:E 3561:0 3534:Y 3527:Y 3507:Y 3497:Y 3490:X 3462:) 3457:A 3452:( 3449:D 3429:) 3424:A 3419:( 3416:K 3390:I 3377:X 3350:X 3329:0 3326:= 3323:) 3314:I 3310:, 3301:X 3297:( 3289:) 3284:A 3279:( 3276:K 3245:X 3232:K 3211:I 3166:) 3161:A 3156:( 3153:D 3130:A 3100:X 3095:I 3067:, 3064:) 3055:Y 3051:, 3042:) 3034:X 3030:( 3027:( 3019:) 3014:A 3009:( 3006:K 2985:X 2980:I 2938:Y 2911:X 2890:) 2885:A 2880:( 2877:D 2851:X 2824:X 2803:) 2798:A 2793:( 2790:K 2762:X 2757:I 2730:X 2704:1 2697:s 2690:f 2664:Y 2651:Z 2644:f 2618:X 2605:Z 2598:s 2572:Z 2551:) 2548:f 2545:, 2542:s 2539:( 2519:) 2514:A 2509:( 2506:D 2480:Y 2467:X 2438:) 2433:A 2428:( 2425:K 2399:A 2371:A 2347:A 2319:A 2299:A 2297:( 2295:K 2291:A 2289:( 2287:D 2266:) 2261:A 2256:( 2253:D 2233:Q 2213:) 2208:A 2203:( 2200:K 2194:) 2189:A 2184:( 2158:) 2153:A 2148:( 2122:) 2117:A 2112:( 2109:K 2078:Y 2051:X 2030:g 2024:f 2004:f 1998:g 1972:X 1959:Y 1952:g 1922:Y 1909:X 1902:f 1892:i 1876:i 1871:X 1867:d 1858:1 1855:+ 1852:i 1848:h 1844:+ 1839:i 1835:h 1826:1 1820:i 1815:Y 1811:d 1807:= 1802:i 1798:g 1789:i 1785:f 1762:1 1756:i 1752:Y 1743:i 1739:X 1730:i 1726:h 1705:g 1699:f 1693:h 1666:) 1661:A 1656:( 1624:Y 1611:X 1590:g 1570:f 1542:Q 1522:F 1500:C 1478:) 1469:f 1465:( 1462:F 1442:) 1437:A 1432:( 1400:f 1377:C 1369:) 1364:A 1359:( 1347:F 1325:C 1303:) 1298:A 1293:( 1290:D 1284:) 1279:A 1274:( 1262:Q 1242:) 1237:A 1232:( 1229:D 1197:A 1165:f 1144:) 1135:Y 1131:( 1126:i 1122:H 1115:) 1106:X 1102:( 1097:i 1093:H 1086:) 1077:f 1073:( 1068:i 1064:H 1041:i 1037:f 1028:i 1023:Y 1019:d 1015:= 1010:i 1005:X 1001:d 992:1 989:+ 986:i 982:f 959:i 955:Y 946:i 942:X 933:i 929:f 908:) 898:Y 894:d 890:, 881:Y 877:( 871:) 861:X 857:d 853:, 844:X 840:( 828:f 807:) 797:Y 793:d 789:, 780:Y 776:( 756:) 746:X 742:d 738:, 729:X 725:( 703:1 697:i 693:d 682:/ 676:i 672:d 662:= 659:) 650:X 646:( 641:i 637:H 626:i 610:i 606:d 597:1 594:+ 591:i 587:d 564:A 552:X 535:, 524:2 520:X 512:1 508:d 497:1 493:X 485:0 481:d 470:0 466:X 458:1 451:d 440:1 433:X 403:) 398:A 393:( 365:A 339:) 334:A 329:( 303:) 298:A 293:( 290:D 252:A 71:A 63:A 61:( 59:D 51:A 39:A 32:A 30:( 28:D

Index

mathematics
abelian category
homological algebra
derived functors
objects
chain complexes
isomorphic
chain map
homology
hypercohomology
spectral sequences
Alexander Grothendieck
Jean-Louis Verdier
Astérisque
SGA 4½
triangulated category
localization of a category
localization of a ring
coherent duality
algebraic geometry
D-modules
microlocal analysis
D-branes
mirror symmetry
coherent sheaf
Serre duality
non-singular
scheme
Cohen–Macaulay ring
tensor product

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.