Knowledge

Quantum phase transition

Source đź“ť

766: 481: 551:, known as the quantum critical region. This quantum critical behavior manifests itself in unconventional and unexpected physical behavior like novel non Fermi liquid phases. From a theoretical point of view, a phase diagram like the one shown on the right is expected: the QPT separates an ordered from a disordered phase (often, the low temperature disordered phase is referred to as 'quantum' disordered). 126:
of its thermal fluctuations. A classical system does not have entropy at zero temperature and therefore no phase transition can occur. Their order is determined by the first discontinuous derivative of a thermodynamic potential. A phase transition from water to ice, for example, involves latent heat
554:
At high enough temperatures, the system is disordered and purely classical. Around the classical phase transition, the system is governed by classical thermal fluctuations (light blue area). This region becomes narrower with decreasing energies and converges towards the quantum critical point (QCP).
162:
for Ehrenfest's classification of phase transitions by the derivative of free energy which is discontinuous at the transition). These continuous transitions from an ordered to a disordered phase are described by an order parameter, which is zero in the disordered and nonzero in the ordered phase.
522:
Although absolute zero is not physically realizable, characteristics of the transition can be detected in the system's low-temperature behavior near the critical point. At nonzero temperatures, classical fluctuations with an energy scale of
290: 166:
Although the thermodynamic average of the order parameter is zero in the disordered state, its fluctuations can be nonzero and become long-ranged in the vicinity of the critical point, where their typical length scale
365: 496:= 0: by tuning a non-temperature parameter like pressure, chemical composition or magnetic field, one could suppress e.g. some transition temperature like the Curie or NĂ©el temperature to 0 K. 426: 499:
As a system in equilibrium at zero temperature is always in its lowest-energy state (or an equally weighted superposition if the lowest-energy is degenerate), a QPT cannot be explained by
539:
is the characteristic frequency of the quantum oscillation and is inversely proportional to the correlation time. Quantum fluctuations dominate the system's behavior in the region where
114:(CPT) (also called thermal phase transitions). A CPT describes a cusp in the thermodynamic properties of a system. It signals a reorganization of the particles; A typical example is the 184: 148: 118:
transition of water describing the transition between liquid and solid. The classical phase transitions are driven by a competition between the
298: 47:). Contrary to classical phase transitions, quantum phase transitions can only be accessed by varying a physical parameter—such as 564: 68: 735: 694: 675: 508: 555:
Experimentally, the 'quantum critical' phase, which is still governed by quantum fluctuations, is the most interesting one.
163:
For the aforementioned ferromagnetic transition, the order parameter would represent the total magnetization of the system.
376: 807: 841: 484:
Diagram of temperature (T) and pressure (p) showing the quantum critical point (QCP) and quantum phase transitions.
826: 519:(QCP), where quantum fluctuations driving the transition diverge and become scale invariant in space and time. 846: 632:
Jaeger, Gregg (1 May 1998). "The Ehrenfest Classification of Phase Transitions: Introduction and Evolution".
597:
Jaeger, Gregg (1 May 1998). "The Ehrenfest Classification of Phase Transitions: Introduction and Evolution".
60: 512: 83: 836: 773: 461: 285:{\displaystyle \xi \propto |\epsilon |^{-\nu }\,\,=\left({\frac {|T-T_{c}|}{T_{c}}}\right)^{-\nu }} 781: 831: 468:
does not play any role even if the actual phases require a quantum mechanical description (e.g.
59:
of a many-body system due to its quantum fluctuations. Such a quantum phase transition can be a
800: 576: 516: 743:
de Souza, Mariano (2020). "Unveiling the Physics of the Mutual Interactions in Paramagnets".
723: 504: 500: 8: 727: 713: 649: 614: 443: 133: 102:
of Fermi liquid changes abruptly, since it takes only one of a discrete set of values.
99: 793: 690: 671: 653: 618: 469: 465: 448: 95: 72: 748: 731: 641: 606: 460:. Critical behavior of nonzero temperature phase transitions is fully described by 159: 111: 32: 128: 87: 777: 752: 570: 48: 40: 36: 820: 91: 79: 52: 44: 765: 75: 56: 645: 610: 110:
To understand quantum phase transitions, it is useful to contrast them to
718: 704:
Vojta, Thomas (2000). "Quantum phase transitions in electronic systems".
480: 151: 64: 155: 360:{\displaystyle \tau _{c}\propto \xi ^{z}\propto |\epsilon |^{-\nu z},} 736:
10.1002/1521-3889(200006)9:6<403::AID-ANDP403>3.0.CO;2-R
431:
is defined as the relative deviation from the critical temperature
115: 123: 20: 16:
Transition between different phases of matter at zero temperature
119: 171:(correlation length) and typical fluctuation decay time scale 55:
temperature. The transition describes an abrupt change in the
63:. Quantum phase transitions can also be represented by the 67:
fermion condensation quantum phase transition, see e.g.
531:
compete with the quantum fluctuations of energy scale
492:
phase transitions means talking about transitions at
379: 301: 187: 136: 573: â€“ Quantum states of matter at zero temperature 150:) and is of first order. A phase transition from a 421:{\displaystyle \epsilon ={\frac {T-T_{c}}{T_{c}}}} 420: 359: 284: 142: 818: 82:into a Fermi volume. Such a transition can be a 515:characteristic of a QPT. The QPT occurs at the 801: 158:is continuous and is of second order. (See 808: 794: 717: 670:. Cambridge University Press. (2nd ed.). 218: 217: 742: 567: â€“ Type of quantum phase transition 479: 105: 687:Understanding Quantum Phase Transitions 665: 69:strongly correlated quantum spin liquid 819: 631: 596: 475: 703: 634:Archive for History of Exact Sciences 599:Archive for History of Exact Sciences 760: 684: 565:Superconductor–insulator transition 13: 579: â€“ Feature of a phase diagram 509:Heisenberg's uncertainty principle 14: 858: 78:, this transition transforms the 764: 625: 590: 338: 329: 252: 231: 204: 195: 1: 583: 61:second-order phase transition 780:. You can help Knowledge by 178:(correlation time) diverge: 84:first-order phase transition 7: 558: 458:dynamical critical exponent 112:classical phase transitions 10: 863: 759: 753:10.1038/s41598-020-64632-x 685:Carr, Lincoln D. (2010). 668:Quantum Phase Transitions 842:Condensed matter physics 774:condensed matter physics 462:classical thermodynamics 127:(a discontinuity of the 25:quantum phase transition 666:Sachdev, Subir (2011). 827:Condensed matter stubs 776:-related article is a 577:Quantum critical point 517:quantum critical point 485: 422: 361: 286: 144: 847:Statistical mechanics 646:10.1007/s004070050021 611:10.1007/s004070050021 483: 423: 362: 287: 145: 106:Classical description 511:, drive the loss of 505:quantum fluctuations 501:thermal fluctuations 377: 299: 185: 134: 122:of a system and the 98:. As a result, the 86:, for it transforms 728:2000AnP...512..403V 476:Quantum description 745:Scientific Reports 706:Annalen der Physik 486: 444:correlation length 418: 357: 282: 140: 100:topological charge 35:between different 837:Phase transitions 789: 788: 696:978-1-4398-0251-9 677:978-0-521-51468-2 470:superconductivity 466:quantum mechanics 449:critical exponent 416: 267: 143:{\displaystyle U} 96:three dimensional 73:three dimensional 854: 810: 803: 796: 768: 761: 756: 747:. Vol. 10. 739: 721: 719:cond-mat/9910514 700: 681: 658: 657: 629: 623: 622: 594: 427: 425: 424: 419: 417: 415: 414: 405: 404: 403: 387: 366: 364: 363: 358: 353: 352: 341: 332: 324: 323: 311: 310: 291: 289: 288: 283: 281: 280: 272: 268: 266: 265: 256: 255: 250: 249: 234: 228: 216: 215: 207: 198: 160:phase transition 149: 147: 146: 141: 45:zero temperature 41:phases of matter 33:phase transition 862: 861: 857: 856: 855: 853: 852: 851: 817: 816: 815: 814: 697: 678: 662: 661: 630: 626: 595: 591: 586: 561: 548: 528: 507:, arising from 478: 436: 410: 406: 399: 395: 388: 386: 378: 375: 374: 342: 337: 336: 328: 319: 315: 306: 302: 300: 297: 296: 273: 261: 257: 251: 245: 241: 230: 229: 227: 223: 222: 208: 203: 202: 194: 186: 183: 182: 176: 135: 132: 131: 129:internal energy 108: 88:two dimensional 51:or pressure—at 17: 12: 11: 5: 860: 850: 849: 844: 839: 834: 832:Quantum phases 829: 813: 812: 805: 798: 790: 787: 786: 769: 758: 757: 740: 712:(6): 403–440. 701: 695: 682: 676: 660: 659: 624: 588: 587: 585: 582: 581: 580: 574: 571:Quantum phases 568: 560: 557: 546: 526: 488:Talking about 477: 474: 434: 429: 428: 413: 409: 402: 398: 394: 391: 385: 382: 368: 367: 356: 351: 348: 345: 340: 335: 331: 327: 322: 318: 314: 309: 305: 293: 292: 279: 276: 271: 264: 260: 254: 248: 244: 240: 237: 233: 226: 221: 214: 211: 206: 201: 197: 193: 190: 174: 139: 107: 104: 49:magnetic field 37:quantum phases 15: 9: 6: 4: 3: 2: 859: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 824: 822: 811: 806: 804: 799: 797: 792: 791: 785: 783: 779: 775: 770: 767: 763: 762: 754: 750: 746: 741: 737: 733: 729: 725: 720: 715: 711: 707: 702: 698: 692: 689:. CRC Press. 688: 683: 679: 673: 669: 664: 663: 655: 651: 647: 643: 639: 635: 628: 620: 616: 612: 608: 604: 600: 593: 589: 578: 575: 572: 569: 566: 563: 562: 556: 552: 550: 542: 538: 534: 530: 520: 518: 514: 510: 506: 502: 497: 495: 491: 482: 473: 471: 467: 463: 459: 455: 451: 450: 445: 441: 437: 411: 407: 400: 396: 392: 389: 383: 380: 373: 372: 371: 354: 349: 346: 343: 333: 325: 320: 316: 312: 307: 303: 295: 294: 277: 274: 269: 262: 258: 246: 242: 238: 235: 224: 219: 212: 209: 199: 191: 188: 181: 180: 179: 177: 170: 164: 161: 157: 153: 137: 130: 125: 121: 117: 113: 103: 101: 97: 93: 92:Fermi surface 89: 85: 81: 80:Fermi surface 77: 74: 71:. In case of 70: 66: 62: 58: 54: 53:absolute zero 50: 46: 42: 38: 34: 30: 26: 22: 782:expanding it 771: 744: 709: 705: 686: 667: 640:(1): 51–81. 637: 633: 627: 605:(1): 51–81. 602: 598: 592: 553: 544: 540: 536: 532: 524: 521: 498: 493: 489: 487: 457: 453: 447: 439: 432: 430: 369: 172: 168: 165: 109: 76:Fermi liquid 57:ground state 28: 24: 18: 503:. Instead, 152:ferromagnet 90:structure ( 65:topological 821:Categories 584:References 438:. We call 156:paramagnet 654:121525126 619:121525126 393:− 381:ϵ 347:ν 344:− 334:ϵ 326:∝ 317:ξ 313:∝ 304:τ 278:ν 275:− 239:− 213:ν 210:− 200:ϵ 192:∝ 189:ξ 559:See also 116:freezing 724:Bibcode 490:quantum 124:entropy 94:) into 31:) is a 21:physics 693:  674:  652:  617:  440:ν 370:where 120:energy 772:This 714:arXiv 650:S2CID 615:S2CID 543:> 535:Here 513:order 442:the ( 154:to a 778:stub 691:ISBN 672:ISBN 456:the 452:and 23:, a 749:doi 732:doi 642:doi 607:doi 533:ħω. 472:). 43:at 29:QPT 19:In 823:: 730:. 722:. 708:. 648:. 638:53 636:. 613:. 603:53 601:. 541:ħω 464:; 446:) 809:e 802:t 795:v 784:. 755:. 751:: 738:. 734:: 726:: 716:: 710:9 699:. 680:. 656:. 644:: 621:. 609:: 549:T 547:B 545:k 537:ω 529:T 527:B 525:k 494:T 454:z 435:c 433:T 412:c 408:T 401:c 397:T 390:T 384:= 355:, 350:z 339:| 330:| 321:z 308:c 270:) 263:c 259:T 253:| 247:c 243:T 236:T 232:| 225:( 220:= 205:| 196:| 175:c 173:Ď„ 169:Îľ 138:U 39:( 27:(

Index

physics
phase transition
quantum phases
phases of matter
zero temperature
magnetic field
absolute zero
ground state
second-order phase transition
topological
strongly correlated quantum spin liquid
three dimensional
Fermi liquid
Fermi surface
first-order phase transition
two dimensional
Fermi surface
three dimensional
topological charge
classical phase transitions
freezing
energy
entropy
internal energy
ferromagnet
paramagnet
phase transition
correlation length
critical exponent
classical thermodynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑