Knowledge

Quantum efficiency

Source 📝

340:, where the QE value is fairly constant across the entire spectrum of wavelengths measured. However, the QE for most solar cells is reduced because of the effects of recombination, where charge carriers are not able to move into an external circuit. The same mechanisms that affect the collection probability also affect the QE. For example, modifying the front surface can affect carriers generated near the surface. Highly doped front surface layers can also cause 'free carrier absorption' which reduces QE in the longer wavelengths. And because high-energy (blue) light is absorbed very close to the surface, considerable recombination at the front surface will affect the "blue" portion of the QE. Similarly, lower energy (green) light is absorbed in the bulk of a solar cell, and a low diffusion length will affect the collection probability from the solar cell bulk, reducing the QE in the green portion of the spectrum. Generally, solar cells on the market today do not produce much electricity from 27: 122: 277: 539: 366:
Conventional measurement of the EQE will give the efficiency of the overall device. However it is often useful to have a map of the EQE over large area of the device. This mapping provides an efficient way to visualize the homogeneity and/or the defects in the sample. It was realized by researchers
194: 332:
of light and the collection of charges. Once a photon has been absorbed and has generated an electron-hole pair, these charges must be separated and collected at the junction. A "good" material avoids charge recombination. Charge recombination causes a drop in the external quantum efficiency.
190:
The IQE is always larger than the EQE in the visible spectrum. A low IQE indicates that the active layer of the solar cell is unable to make good use of the photons, most likely due to poor carrier collection efficiency. To measure the IQE, one first measures the EQE of the solar device, then
357:
Quantum efficiency (QE) is the fraction of photon flux that contributes to the photocurrent in a photodetector or a pixel. Quantum efficiency is one of the most important parameters used to evaluate the quality of a detector and is often called the spectral response to reflect its wavelength
324: 145:, one can evaluate the amount of current that the cell will produce when exposed to sunlight. The ratio between this energy-production value and the highest possible energy-production value for the cell (i.e., if the QE were 100% over the whole spectrum) gives the cell's overall 417: 348:
light (<400 nm and >1100 nm wavelengths, respectively); these wavelengths of light are either filtered out or are absorbed by the cell, thus heating the cell. That heat is wasted energy, and could damage the cell.
281: 398:). Responsivity is ordinarily specified for monochromatic light (i.e. light of a single wavelength). Both the quantum efficiency and the responsivity are functions of the photons' wavelength (indicated by the subscript λ). 821: 757: 272:{\displaystyle {\text{EQE}}={\frac {\text{electrons/sec}}{\text{photons/sec}}}={\frac {{\text{(current)}}/{\text{(charge of one electron)}}}{({\text{total power of photons}})/({\text{energy of one photon}})}}} 641: 358:
dependence. It is defined as the number of signal electrons created per incident photon. In some cases it can exceed 100% (i.e. when more than one electron is created per incident photon).
1076:
Delamarre; et al. (2013). Freundlich, Alexandre; Guillemoles, Jean-Francois (eds.). "Evaluation of micrometer scale lateral fluctuations of transport properties in CIGS solar cells".
879: 852: 695: 534:{\displaystyle QE_{\lambda }={\frac {R_{\lambda }}{\lambda }}\times {\frac {hc}{e}}\approx {\frac {R_{\lambda }}{\lambda }}{\times }(1240\;\mathrm {W\cdot {nm}/A} )} 668: 367:
from the Institute of Researcher and Development on Photovoltaic Energy (IRDEP) who calculated the EQE mapping from electroluminescence measurements taken with a
182:
is the ratio of the number of charge carriers collected by the solar cell to the number of photons of a given energy that shine on the solar cell from outside
137:
value indicates the amount of current that the cell will produce when irradiated by photons of a particular wavelength. If the cell's quantum efficiency is
764: 700: 125:
A graph showing variation of internal quantum efficiency, external quantum efficiency, and reflectance with wavelength of a crystalline silicon solar cell.
583: 319:{\displaystyle {\text{IQE}}={\frac {\text{electrons/sec}}{\text{absorbed photons/sec}}}={\frac {\text{EQE}}{\text{1-Reflection-Transmission}}}} 1064: 921: 98: 329: 113:. A photographic film typically has a QE of much less than 10%, while CCDs can have a QE of well over 90% at some wavelengths. 109:
at each photon energy level. For typical semiconductor photodetectors, QE drops to zero for photons whose energy is below the
1171: 761:
Assuming each photon absorbed in the depletion layer produces a viable electron-hole pair, and all other photons do not,
134: 992: 172:
is the ratio of the number of charge carriers collected by the solar cell to the number of photons of a given energy
153:(MEG), quantum efficiencies of greater than 100% may be achieved since the incident photons have more than twice the 31: 1160:"7 - Advanced silicon radiation detectors in the vacuum ultraviolet and the extreme ultraviolet spectral range" 85:
hitting the device's photoreactive surface. As a ratio, QE is dimensionless, but it is closely related to the
1226: 1221: 895: 1211: 1166:, Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, pp. 151–170, 150: 1159: 954: 73:
This article deals with the term as a measurement of a device's electrical sensitivity to light. In a
67: 1008:
Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C. (2014-08-13).
959: 857: 1216: 830: 35: 982: 673: 1231: 900: 146: 74: 1158:
Gottwald, Alexander; Scholze, Frank (2018-01-01), Nihtianov, Stoyan; Luque, Antonio (eds.),
1085: 1021: 933: 646: 8: 890: 1089: 1025: 937: 105:, QE is often measured over a range of different wavelengths to characterize a device's 26: 1140: 1101: 1167: 1105: 1047: 988: 570: 1144: 191:
measures its transmission and reflection, and combines these data to infer the IQE.
1132: 1119:
A. Delamarre; et al. (2014). "Quantitative luminescence mapping of Cu(In,Ga)Se
1093: 1037: 1029: 949: 941: 391: 63: 30:
A graph showing variation of quantum efficiency with wavelength of a CCD chip from
1009: 554: 395: 337: 562: 78: 1205: 1051: 368: 20: 1080:. Physics, Simulation, and Photonic Engineering of Photovoltaic Devices II. 379: 157:
energy and can create two or more electron-hole pairs per incident photon.
86: 341: 573:. Note that the unit W/A (watts per ampere) is equivalent to V (volts). 1097: 130: 106: 102: 1042: 1033: 945: 165:
Two types of quantum efficiency of a solar cell are often considered:
1136: 816:{\displaystyle {\frac {N_{e}}{t}}=\Phi _{\xi }{\frac {\lambda }{hc}}} 752:{\displaystyle {\frac {N_{\nu }}{t}}=\Phi _{o}{\frac {\lambda }{hc}}} 546: 77:(CCD) or other photodetector, it is the ratio between the number of 345: 154: 142: 138: 110: 121: 1010:"Near-infrared free carrier absorption in heavily doped silicon" 383: 90: 82: 328:
The external quantum efficiency therefore depends on both the
1065:
Silicon nanoparticle film can increase solar cell performance
636:{\displaystyle QE_{\lambda }=\eta ={\frac {N_{e}}{N_{\nu }}}} 881:= optical power absorbed in depletion layer, also in watts. 387: 94: 1007: 382:
is a similar measurement, but it has different units:
860: 833: 767: 703: 676: 649: 586: 420: 284: 197: 394:comes out of the device per unit of incident light 987:. Berlin Heidelberg: Springer. pp. 601, 603. 873: 846: 815: 751: 689: 662: 635: 533: 318: 271: 1203: 1157: 81:collected at either terminal and the number of 1118: 922:"2.5% efficient organic plastic solar cells" 1191:A. Rogalski, K. Adamiec and J. Rutkowski, 955:11370/108e619e-c6c2-4cf9-859e-6f937ac027f2 503: 1075: 1041: 953: 336:The ideal quantum efficiency graph has a 974: 374: 120: 25: 1164:Smart Sensors and MEMs (Second Edition) 919: 827:is the measurement time (in seconds), 1204: 980: 352: 174:shining on the solar cell from outside 52:incident photon to converted electron 1193:Narrow-Gap Semiconductor Photodiodes 854:= incident optical power in watts, 116: 13: 862: 835: 789: 725: 524: 515: 512: 505: 97:. Since the energy of a photon is 16:Property of photosensitive devices 14: 1243: 180:Internal quantum efficiency (IQE) 170:External quantum efficiency (EQE) 149:value. Note that in the event of 32:Wide Field and Planetary Camera 2 670:= number of electrons produced, 576: 70:of a magnetic tunnel junction. 1185: 1151: 1112: 1069: 1058: 1001: 913: 697:= number of photons absorbed. 528: 497: 401:To convert from responsivity ( 361: 263: 255: 247: 239: 143:solar electromagnetic spectrum 1: 984:Handbook of Lasers and Optics 906: 874:{\displaystyle \Phi _{\xi }} 147:energy conversion efficiency 34:, formerly installed on the 7: 884: 151:multiple exciton generation 10: 1248: 1014:Journal of Applied Physics 18: 1125:Progress in Photovoltaics 847:{\displaystyle \Phi _{o}} 312:1-Reflection-Transmission 186:are absorbed by the cell. 66:, or it may refer to the 1123:thin-film solar cells". 690:{\displaystyle N_{\nu }} 234:(charge of one electron) 160: 89:, which is expressed in 19:Not to be confused with 926:Applied Physics Letters 981:Träger, Frank (2012). 920:Shaheen, Sean (2001). 875: 848: 817: 753: 691: 664: 637: 535: 390:(A/W); (i.e. how much 320: 273: 244:total power of photons 126: 99:inversely proportional 39: 36:Hubble Space Telescope 901:Solar-cell efficiency 876: 849: 818: 754: 692: 665: 663:{\displaystyle N_{e}} 638: 545:is the wavelength in 536: 414:(on a scale 0 to 1): 380:Spectral responsivity 375:Spectral responsivity 321: 274: 124: 75:charge-coupled device 64:photosensitive device 29: 858: 831: 765: 701: 674: 647: 584: 418: 299:absorbed photons/sec 282: 260:energy of one photon 195: 1227:Quantum electronics 1222:Physical quantities 1090:2013SPIE.8620E..09D 1026:2014JAP...116f3106B 938:2001ApPhL..78..841S 891:Counting efficiency 353:QE of image sensors 176:(incident photons). 1212:Engineering ratios 1195:, SPIE Press, 2000 1098:10.1117/12.2004323 871: 844: 813: 749: 687: 660: 633: 531: 316: 269: 135:quantum efficiency 127: 44:quantum efficiency 40: 1173:978-0-08-102055-5 1131:(10): 1305–1312. 1034:10.1063/1.4893176 946:10.1063/1.1345834 811: 783: 747: 719: 631: 571:elementary charge 490: 470: 452: 314: 313: 310: 301: 300: 297: 288: 267: 261: 245: 235: 225: 214: 213: 210: 201: 117:QE of solar cells 1239: 1196: 1189: 1183: 1182: 1181: 1180: 1155: 1149: 1148: 1137:10.1002/pip.2555 1116: 1110: 1109: 1073: 1067: 1062: 1056: 1055: 1045: 1005: 999: 998: 978: 972: 971: 969: 967: 958:. Archived from 957: 917: 880: 878: 877: 872: 870: 869: 853: 851: 850: 845: 843: 842: 822: 820: 819: 814: 812: 810: 799: 797: 796: 784: 779: 778: 769: 758: 756: 755: 750: 748: 746: 735: 733: 732: 720: 715: 714: 705: 696: 694: 693: 688: 686: 685: 669: 667: 666: 661: 659: 658: 642: 640: 639: 634: 632: 630: 629: 620: 619: 610: 599: 598: 544: 540: 538: 537: 532: 527: 523: 518: 496: 491: 486: 485: 476: 471: 466: 458: 453: 448: 447: 438: 433: 432: 409: 325: 323: 322: 317: 315: 311: 308: 307: 302: 298: 295: 294: 289: 286: 278: 276: 275: 270: 268: 266: 262: 259: 254: 246: 243: 237: 236: 233: 231: 226: 223: 220: 215: 211: 208: 207: 202: 199: 1247: 1246: 1242: 1241: 1240: 1238: 1237: 1236: 1202: 1201: 1200: 1199: 1190: 1186: 1178: 1176: 1174: 1156: 1152: 1122: 1117: 1113: 1074: 1070: 1063: 1059: 1006: 1002: 995: 979: 975: 965: 963: 918: 914: 909: 887: 865: 861: 859: 856: 855: 838: 834: 832: 829: 828: 803: 798: 792: 788: 774: 770: 768: 766: 763: 762: 739: 734: 728: 724: 710: 706: 704: 702: 699: 698: 681: 677: 675: 672: 671: 654: 650: 648: 645: 644: 625: 621: 615: 611: 609: 594: 590: 585: 582: 581: 579: 565:in vacuum, and 555:Planck constant 542: 519: 511: 504: 492: 481: 477: 475: 459: 457: 443: 439: 437: 428: 424: 419: 416: 415: 413: 410:, in A/W) to QE 407: 402: 377: 364: 355: 306: 293: 285: 283: 280: 279: 258: 250: 242: 238: 232: 227: 222: 221: 219: 206: 198: 196: 193: 192: 163: 141:over the whole 119: 79:charge carriers 50:) may apply to 24: 17: 12: 11: 5: 1245: 1235: 1234: 1229: 1224: 1219: 1217:Photodetectors 1214: 1198: 1197: 1184: 1172: 1150: 1120: 1111: 1068: 1057: 1000: 993: 973: 911: 910: 908: 905: 904: 903: 898: 893: 886: 883: 868: 864: 841: 837: 809: 806: 802: 795: 791: 787: 782: 777: 773: 745: 742: 738: 731: 727: 723: 718: 713: 709: 684: 680: 657: 653: 628: 624: 618: 614: 608: 605: 602: 597: 593: 589: 578: 575: 563:speed of light 530: 526: 522: 517: 514: 510: 507: 502: 499: 495: 489: 484: 480: 474: 469: 465: 462: 456: 451: 446: 442: 436: 431: 427: 423: 411: 405: 376: 373: 363: 360: 354: 351: 305: 292: 265: 257: 253: 249: 241: 230: 218: 205: 188: 187: 177: 162: 159: 118: 115: 15: 9: 6: 4: 3: 2: 1244: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1209: 1207: 1194: 1188: 1175: 1169: 1165: 1161: 1154: 1146: 1142: 1138: 1134: 1130: 1126: 1115: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1072: 1066: 1061: 1053: 1049: 1044: 1039: 1035: 1031: 1027: 1023: 1020:(6): 063106. 1019: 1015: 1011: 1004: 996: 994:9783642194092 990: 986: 985: 977: 962:on 2012-07-07 961: 956: 951: 947: 943: 939: 935: 931: 927: 923: 916: 912: 902: 899: 897: 896:DQE (imaging) 894: 892: 889: 888: 882: 866: 839: 826: 807: 804: 800: 793: 785: 780: 775: 771: 759: 743: 740: 736: 729: 721: 716: 711: 707: 682: 678: 655: 651: 626: 622: 616: 612: 606: 603: 600: 595: 591: 587: 577:Determination 574: 572: 568: 564: 560: 556: 552: 548: 520: 508: 500: 493: 487: 482: 478: 472: 467: 463: 460: 454: 449: 444: 440: 434: 429: 425: 421: 408: 399: 397: 393: 389: 385: 381: 372: 370: 369:hyperspectral 359: 350: 347: 343: 339: 334: 331: 326: 303: 296:electrons/sec 290: 251: 228: 216: 209:electrons/sec 203: 185: 181: 178: 175: 171: 168: 167: 166: 158: 156: 152: 148: 144: 140: 136: 132: 123: 114: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 71: 69: 65: 61: 57: 53: 49: 45: 37: 33: 28: 22: 21:Quantum yield 1232:Spectroscopy 1192: 1187: 1177:, retrieved 1163: 1153: 1128: 1124: 1114: 1081: 1077: 1071: 1060: 1017: 1013: 1003: 983: 976: 964:. Retrieved 960:the original 929: 925: 915: 824: 760: 580: 566: 558: 550: 403: 400: 378: 365: 356: 338:square shape 335: 327: 189: 183: 179: 173: 169: 164: 128: 87:responsivity 72: 59: 55: 51: 47: 43: 41: 362:EQE mapping 342:ultraviolet 212:photons/sec 1206:Categories 1179:2020-08-19 1084:: 862009. 1078:Proc. SPIE 1043:1885/16116 932:(6): 841. 907:References 330:absorption 139:integrated 131:solar cell 107:efficiency 103:wavelength 68:TMR effect 1106:120825849 1052:0021-8979 867:ξ 863:Φ 836:Φ 801:λ 794:ξ 790:Φ 737:λ 726:Φ 712:ν 683:ν 627:ν 604:η 596:λ 509:⋅ 494:× 488:λ 483:λ 473:≈ 455:× 450:λ 445:λ 430:λ 224:(current) 42:The term 1145:98472503 885:See also 371:imager. 346:infrared 155:band gap 111:band gap 1086:Bibcode 1022:Bibcode 934:Bibcode 569:is the 561:is the 553:is the 392:current 384:amperes 101:to its 83:photons 1170:  1143:  1104:  1050:  991:  966:20 May 823:where 643:where 541:where 1141:S2CID 1102:S2CID 396:power 161:Types 62:of a 60:ratio 1168:ISBN 1048:ISSN 989:ISBN 968:2012 501:1240 388:watt 386:per 344:and 95:watt 93:per 91:amps 56:IPCE 1133:doi 1094:doi 1082:100 1038:hdl 1030:doi 1018:116 950:hdl 942:doi 309:EQE 287:IQE 200:EQE 184:and 133:'s 1208:: 1162:, 1139:. 1129:23 1127:. 1100:. 1092:. 1046:. 1036:. 1028:. 1016:. 1012:. 948:. 940:. 930:78 928:. 924:. 557:, 549:, 547:nm 129:A 58:) 48:QE 1147:. 1135:: 1121:2 1108:. 1096:: 1088:: 1054:. 1040:: 1032:: 1024:: 997:. 970:. 952:: 944:: 936:: 840:o 825:t 808:c 805:h 786:= 781:t 776:e 772:N 744:c 741:h 730:o 722:= 717:t 708:N 679:N 656:e 652:N 623:N 617:e 613:N 607:= 601:= 592:E 588:Q 567:e 559:c 551:h 543:λ 529:) 525:A 521:/ 516:m 513:n 506:W 498:( 479:R 468:e 464:c 461:h 441:R 435:= 426:E 422:Q 412:λ 406:λ 404:R 304:= 291:= 264:) 256:( 252:/ 248:) 240:( 229:/ 217:= 204:= 54:( 46:( 38:. 23:.

Index

Quantum yield

Wide Field and Planetary Camera 2
Hubble Space Telescope
photosensitive device
TMR effect
charge-coupled device
charge carriers
photons
responsivity
amps
watt
inversely proportional
wavelength
efficiency
band gap

solar cell
quantum efficiency
integrated
solar electromagnetic spectrum
energy conversion efficiency
multiple exciton generation
band gap
absorption
square shape
ultraviolet
infrared
hyperspectral
Spectral responsivity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.