Knowledge

Quadratic sieve

Source 📝

3857: 3508: 1022:. We do this in a vector format; for example, the prime-power factorization of 504 is 2357, it is therefore represented by the exponent vector (3,2,0,1). Multiplying two integers then corresponds to adding their exponent vectors. A number is a square when its exponent vector is even in every coordinate. For example, the vectors (3,2,0,1) + (1,0,0,1) = (4,2,0,2), so (504)(14) is a square. Searching for a square requires knowledge only of the 3852:{\displaystyle {\begin{aligned}X&\equiv {\sqrt {15347}}-124&\equiv 8-124&\equiv 3{\pmod {17}}\\&&\equiv 9-124&\equiv 4{\pmod {17}}\\X&\equiv {\sqrt {15347}}-124&\equiv 11-124&\equiv 2{\pmod {23}}\\&&\equiv 12-124&\equiv 3{\pmod {23}}\\X&\equiv {\sqrt {15347}}-124&\equiv 8-124&\equiv 0{\pmod {29}}\\&&\equiv 21-124&\equiv 13{\pmod {29}}\\\end{aligned}}} 3005: 4483: 5370:, then this cofactor must be prime. In effect, it can be added to the factor base, by sorting the list of relations into order by cofactor. If y(a) = 7*11*23*137 and y(b) = 3*5*7*137, then y(a)y(b) = 3*5*11*23 * 7 * 137. This works by reducing the threshold of entries in the sieving array above which a full factorization is performed. 5627:, a factorizer written entirely in C containing implementation of self-initialising Quadratic Sieve. The project is inspired by a William Hart's FLINT factorizer. The source released in 2022 by Michel Leonard does not rely on external library, it is capable of factoring 240-bit numbers in a minute and 300-bit numbers in 2 hours. 2794: 4676: 2447: 5567:
computer algebra package includes an implementation of the self-initialising multiple polynomial quadratic sieve implementing the large prime variant. It was adapted by Thomas Papanikolaou and Xavier Roblot from a sieve written for the LiDIA project. The self-initialisation scheme is based on an idea
5378:
Reducing the threshold even further, and using an effective process for factoring y(x) values into products of even relatively large primes - ECM is superb for this - can find relations with most of their factors in the factor base, but with two or even three larger primes. Cycle finding then allows
42:
under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties. It was invented by
4278: 1569: 1651:
Another way to increase the chance of smoothness is by simply increasing the size of the factor base. However, it is necessary to find at least one smooth relation more than the number of primes in the factor base, to ensure the existence of a linear dependency.
3000:{\displaystyle {\begin{aligned}V&={\begin{bmatrix}Y(0)&Y(1)&Y(2)&Y(3)&Y(4)&Y(5)&\cdots &Y(99)\end{bmatrix}}\\&={\begin{bmatrix}29&278&529&782&1037&1294&\cdots &34382\end{bmatrix}}\end{aligned}}} 3399: 4527: 4061: 643: 2176: 89:
to many processors, but the data processing phase requires large amounts of memory, and is difficult to parallelize efficiently over many nodes or if the processing nodes do not each have enough memory to store the whole matrix. The
5480:
was completed using QS. It was a 129-digit number, the product of two large primes, one of 64 digits and the other of 65 digits. The factor base for this factorization contained 524339 primes. The data collection phase took 5000
3151: 1915: 463: 901: 2008: 2786: 5680:
Carl Pomerance, Analysis and Comparison of Some Integer Factoring Algorithms, in Computational Methods in Number Theory, Part I, H.W. Lenstra, Jr. and R. Tijdeman, eds., Math. Centre Tract 154, Amsterdam, 1982, pp
1623: 998: 303: 3316: 4861: 4738: 5067: 4478:{\displaystyle {\begin{aligned}29&=2^{0}\cdot 17^{0}\cdot 23^{0}\cdot 29^{1}\\782&=2^{1}\cdot 17^{1}\cdot 23^{1}\cdot 29^{0}\\22678&=2^{1}\cdot 17^{1}\cdot 23^{1}\cdot 29^{1}\\\end{aligned}}} 4923: 2078: 1813: 1748: 3496: 165: 3258: 1481: 4283: 3513: 2799: 2181: 1026:
of the numbers in the vectors, so it is sufficient to compute these vectors mod 2: (1,0,0,1) + (1,0,0,1) = (0,0,0,0). So given a set of (0,1)-vectors, we need to find a subset which adds to the
798: 694: 2601:) values that work, so the factorization process at the end doesn't have to be entirely reliable; often the processes misbehave on say 5% of inputs, requiring a small amount of extra sieving. 4789: 5581:, an implementation of the multiple polynomial quadratic sieve with support for single and double large primes, written by Jason Papadopoulos. Source code and a Windows binary are available. 1115:). They are harder to find, but using only smooth numbers keeps the vectors and matrices smaller and more tractable. The quadratic sieve searches for smooth numbers using a technique called 5553:, or can be downloaded in source form. SIMPQS is optimized for use on Athlon and Opteron machines, but will operate on most common 32- and 64-bit architectures. It is written entirely in C. 5541:
is a fast implementation of the self-initialising multiple polynomial quadratic sieve written by William Hart. It provides support for the large prime variant and uses Jason Papadopoulos'
1334: 5274: 3056: 1073: 6344: 4263: 3444: 3327: 4671:{\displaystyle S\cdot {\begin{bmatrix}0&0&0&1\\1&1&1&0\\1&1&1&1\end{bmatrix}}\equiv {\begin{bmatrix}0&0&0&0\end{bmatrix}}{\pmod {2}}} 2582:) has been lost, but it has only small factors, and there are many good algorithms for factoring a number known to have only small factors, such as trial division by small primes, 3902: 5137: 3989: 733: 534: 5332: 5512:
The current QS factorization record is the 140-digit (463-bit) RSA-140, which was factored by Patrick Konsor in June 2020 using approximately 6,000 core hours over 6 days.
2168: 5349:, the factor base and a collection of polynomials, and it will have no need to communicate with the central processor until it has finished sieving with its polynomials. 4519: 5179: 495: 2442:{\displaystyle {\begin{aligned}f(x)&=x^{2}-n\\f(x+kp)&=(x+kp)^{2}-n\\&=x^{2}+2xkp+(kp)^{2}-n\\&=f(x)+2xkp+(kp)^{2}\equiv f(x){\pmod {p}}\end{aligned}}} 542: 4149: 4122: 4095: 3929: 2685: 5387:
To illustrate typical parameter choices for a realistic example on a real implementation including the multiple polynomial and large prime optimizations, the tool
3191: 6348: 5199: 5088: 921: 5856: 5602:
instructions for AMD or Intel processors. It uses Jason Papadopoulos' block Lanczos code. Source code and binaries for Windows and Linux are available.
3064: 1824: 381: 806: 4988: 5889: 1926: 2690: 171:, but when it does find one, more often than not, the congruence is nontrivial and the factorization is complete. This is roughly the basis of 5501:(massively parallel) supercomputer. This was the largest published factorization by a general-purpose algorithm, until NFS was used to factor 5482: 1575: 929: 2609:
This example will demonstrate standard quadratic sieve without logarithm optimizations or prime powers. Let the number to be factored
6404: 6213: 5849: 192: 3263: 5799: 4800: 4691: 5575:
computer algebra package. It is based on an implementation of Arjen Lenstra from 1995, used in his "factoring by email" program.
4872: 6081: 2014: 1754: 1689: 5788: 1564:{\displaystyle y(x)=\left(\left\lceil {\sqrt {n}}\right\rceil +x\right)^{2}-n{\hbox{ (where }}x{\hbox{ is a small integer)}}} 3449: 3321:
Thus, starting at X=1 and incrementing by 2, each entry will be divisible by 2. Dividing each of those entries by 2 yields
6023: 5842: 5656: 5591:
was factored in less than 15 minutes on four cores of a 2.5 GHz Xeon 6248 CPU. All of the critical subroutines make use of
5458: 2104: 1079:
of order 2, that is we can divide by all non-zero numbers (there is only one, namely 1) when calculating modulo 2. It is a
108: 3196: 5952: 2103:, although this increases the running time for the data collection phase. Another method that has some acceptance is the 744: 6129: 651: 4749: 5758: 1015: 6076: 6038: 6013: 5927: 1270: 329: 172: 1679:
s are products of the same prime(s) outside the factor base. For example, if the factor base is {2, 3, 5, 7} and
6218: 6109: 6028: 6018: 5957: 5920: 4266: 3983:, etc., for each prime in the basis finds the smooth numbers which are products of unique primes (first powers). 3394:{\displaystyle V={\begin{bmatrix}29&139&529&391&1037&647&\cdots &17191\end{bmatrix}}} 1014:
So the problem has now been reduced to: given a set of integers, find a subset whose product is a square. By the
179: 5634:
package by Joseph Wood, provides an efficient implementation of the multiple polynomial quadratic sieve for the
5621:, an open source Java project containing basic implementation of QS. Released at February 4, 2016 by Ilya Gazman 5587:, written by Ben Buhrow, is probably the fastest available implementation of the quadratic sieve. For example, 5204: 4928:
Testing the result yields GCD(3070860 - 22678, 15347) = 103, a nontrivial factor of 15347, the other being 149.
3017: 1043: 6046: 5894: 5550: 2788:
and begin the sieving process for each prime in the basis, choosing to sieve the first 0 ≀ X < 100 of Y(X):
2087:. Sometimes, forming a cycle from two partial relations leads directly to a congruence of squares, but rarely. 4219: 3411: 1199:
Use linear algebra to find a subset of these vectors which add to the zero vector. Multiply the corresponding
6299: 5780: 5572: 6294: 6261: 6223: 6124: 5534: 4056:{\displaystyle V={\begin{bmatrix}1&139&23&1&61&647&\cdots &17191\end{bmatrix}}} 2485: 3865: 1099:
factors, and so very long vectors and a very large matrix. The trick is to look specifically for numbers
6175: 5093: 2484:. This is finding a square root modulo a prime, for which there exist efficient algorithms, such as the 699: 500: 6340: 6330: 6289: 6065: 6059: 6033: 5904: 5454: 97:
The naive approach to finding a congruence of squares is to pick a random number, square it, divide by
35: 2083:
producing a full relation. Such a full relation (obtained by combining partial relations) is called a
6325: 6266: 375:, then finding a subset of these whose product is a square. This will yield a congruence of squares. 91: 5283: 6228: 6101: 5947: 5899: 5635: 1080: 2125: 6243: 5542: 5342: 4682: 4491: 1143: 1008: 638:{\displaystyle 32\cdot 200\equiv 41^{2}\cdot 43^{2}=(41\cdot 43)^{2}\equiv 114^{2}{\pmod {1649}}} 6134: 5142: 468: 6354: 6304: 6284: 5768: 5545:
implementation for the linear algebra stage. SIMPQS is accessible as the qsieve command in the
5494: 4931:
This demonstration should also serve to show that the quadratic sieve is only appropriate when
3502:> 2, there will be 2 resulting linear equations due to there being 2 modular square roots. 6364: 6005: 5980: 5909: 2497: 736: 60: 31: 5432:
Smooth values found: 25952 by sieving directly, 24462 by combining numbers with large primes
4127: 6359: 6251: 6233: 6208: 6170: 5914: 5615:
contains probably the fastest quadratic sieve written in Java (the successor of PSIQS 4.0).
4100: 4073: 3907: 2663: 1352:
or 1). If the factor is trivial, try again with a different linear dependency or different
1088: 1023: 82: 5465:
has exactly two prime factors of equal size), but in practice, QS is faster since it uses
8: 6369: 6335: 6256: 6160: 6119: 6114: 6091: 5995: 5808: 5457:(NFS), QS was the asymptotically fastest known general-purpose factoring algorithm. Now, 3170: 1004: 85:
and solves it to obtain a congruence of squares. The data collection phase can be easily
5719:"Useless Accomplishment: RSA-140 Factorization with Quadratic Sieve - mersenneforum.org" 5337:
This approach, called Multiple Polynomial Quadratic Sieve (MPQS), is ideally suited for
2574:) which splits over the factor base. The information about exactly which primes divide 1132: 6200: 6147: 6144: 5985: 5934: 5884: 5718: 5703: 5338: 5184: 5073: 1360:
The remainder of this article explains details and extensions of this basic algorithm.
1038: 906: 86: 77:
phase, where it collects information that may lead to a congruence of squares; and the
63: 48: 5941: 5624: 6320: 6276: 5990: 5967: 5784: 5754: 5631: 5612: 2654: 1084: 6165: 5742: 5695: 5466: 182:. The general running time required for the quadratic sieve (to factor an integer 6155: 5828: 5538: 5470: 5435:
Final matrix size: 50294 × 50414, reduced by filtering to 35750 × 35862
3146:{\displaystyle Y(X)\equiv (X+\lceil {\sqrt {N}}\rceil )^{2}-N\equiv 0{\pmod {p}}} 1910:{\displaystyle {(21\cdot 29)^{2}\equiv 2^{1}\cdot 7^{1}\cdot 11^{2}{\pmod {91}}}} 5618: 4265:, the remainder of the algorithm follows equivalently to any other variation of 2551:
in order to recognise numbers divisible by small powers of a factor-base prime.
6185: 6086: 6071: 5975: 5876: 5746: 5691: 5661: 4936: 2547:. It is also necessary to solve the quadratic equation modulo small powers of 2100: 1150:, will control both the length of the vectors and the number of vectors needed. 1034: 458:{\displaystyle 41^{2}\equiv 32,42^{2}\equiv 115,43^{2}\equiv 200{\pmod {1649}}} 44: 5834: 5642:. For example, a 300-bit semiprime (91 digits) was factored in 1 hour and the 6398: 6180: 5865: 5560:
by Dario Alpern, that uses the quadratic sieve if certain conditions are met.
5485:, done in distributed fashion over the Internet. The data collected totaled 2 1112: 896:{\displaystyle 114^{2}-80^{2}=(114+80)\cdot (114-80)=194\cdot 34=k\cdot 1649} 363:
are hard to find. The quadratic sieve consists of computing the remainder of
102: 94:
can be used in the case of a few systems each capable of holding the matrix.
5608:, a simple Java implementation of the quadratic sieve for didactic purposes. 5379:
combining a set of relations sharing several primes into a single relation.
6190: 5646:
was factored in under 10 hours on a MacBook Air with an Apple M2 processor.
5605: 2003:{\displaystyle (58\cdot 21\cdot 29)^{2}\equiv 2^{1}\cdot 7^{1}{\pmod {91}}} 1459:. The quadratic sieve speeds up the process of finding relations by taking 1405: 1116: 1096: 1076: 5578: 5521: 5388: 2781:{\displaystyle Y(X)=(X+\lceil {\sqrt {N}}\rceil )^{2}-N=(X+124)^{2}-15347} 2657:
modulo each of these primes). These primes will be the basis for sieving.
5638:. It is written in C++ and is capable of comfortably factoring 100-digit 4971:, this growth can be reset by switching polynomials. As usual, we choose 4940: 2587: 1027: 1019: 5773: 5526: 1127:
To summarize, the basic quadratic sieve algorithm has these main steps:
69:(the integer to be factorized), which often leads to a factorization of 5557: 5506: 4952: 2120: 309: 34:
algorithm and, in practice, the second-fastest method known (after the
4935:
is large. For a number as small as 15347, this algorithm is overkill.
5868: 5639: 5392: 378:
For example, consider attempting to factor the number 1649. We have:
23: 167:. This approach finds a congruence of squares only rarely for large 5546: 5490: 5486: 4272:
Writing the exponents of the product of a subset of the equations
1920:
and multiply both sides by (11) modulo 91. 11 modulo 91 is 58, so:
1475:) will be smaller, and thus have a greater chance of being smooth. 5584: 1618:{\displaystyle y(x)\approx 2x\left\lceil {\sqrt {n}}\right\rceil } 5749:(2001). "Section 6.1: The quadratic sieve factorization method". 5643: 5596: 5588: 5564: 5502: 5477: 5402:
Sieve interval (per polynomial): 393216 (12 blocks of size 32768)
4743:
Thus the product of all three equations yields a square (mod N).
2645:
is small, only four primes are necessary. The first four primes
993:{\displaystyle 1649=\gcd(194,1649)\cdot \gcd(34,1649)=97\cdot 17} 39: 5531: 5441:
Total time (on a 1.6 GHz UltraSPARC III): 35 min 39 seconds
5498: 5366:, the remaining part of the number (the cofactor) is less than 2583: 1451:) that splits over the factor base, together with the value of 1348:. This produces a factor, although it may be a trivial factor ( 1018:, any positive integer can be written uniquely as a product of 298:{\displaystyle e^{(1+o(1)){\sqrt {\ln n\ln \ln n}}}=L_{n}\left} 5461:
has the same asymptotic running time as QS (in the case where
4967:) starts to become large, resulting in poor density of smooth 3311:{\displaystyle X\equiv {\sqrt {15347}}-124\equiv 1{\pmod {2}}} 5801:
Factoring Integers with the Self-Initializing Quadratic Sieve
4856:{\displaystyle 124^{2}\cdot 127^{2}\cdot 195^{2}=3070860^{2}} 4733:{\displaystyle S={\begin{bmatrix}1&1&1\end{bmatrix}}} 5062:{\displaystyle y(x)=(Ax+B)^{2}-n\qquad A,B\in \mathbb {Z} .} 1119:, discussed later, from which the algorithm takes its name. 5599: 5592: 4918:{\displaystyle 22678^{2}\equiv 3070860^{2}{\pmod {15347}}} 1668:) is not smooth, it may be possible to merge two of these 81:
phase, where it puts all the data it has collected into a
2503:
The sieve starts by setting every entry in a large array
2073:{\displaystyle 14^{2}\equiv 2^{1}\cdot 7^{1}{\pmod {91}}} 1808:{\displaystyle {29^{2}\equiv 2^{1}\cdot 11{\pmod {91}}}} 1743:{\displaystyle {21^{2}\equiv 7^{1}\cdot 11{\pmod {91}}}} 6385:
indicate that algorithm is for numbers of special forms
2590:, and ECM, which are usually used in some combination. 1368:
The quadratic sieve attempts to find pairs of integers
1363: 1083:
that with more vectors than each vector has entries, a
4943:
could have found a factor with much less computation.
4706: 4623: 4542: 4004: 3491:{\displaystyle X\equiv {\sqrt {15347}}-124{\pmod {p}}} 3342: 2944: 2817: 2095:
There are several ways to check for smoothness of the
1555: 1545: 5571:
A variant of the quadratic sieve is available in the
5286: 5280:
is a square or a smooth number, then only the factor
5207: 5187: 5145: 5096: 5076: 4991: 4875: 4803: 4752: 4694: 4530: 4494: 4281: 4222: 4130: 4103: 4076: 4070:
that equals 1 corresponds to a smooth number. Since
3992: 3910: 3868: 3511: 3452: 3414: 3330: 3266: 3199: 3173: 3067: 3020: 2797: 2693: 2666: 2613:= 15347, therefore the ceiling of the square root of 2179: 2128: 2017: 1929: 1827: 1757: 1692: 1578: 1484: 1273: 1046: 932: 909: 809: 747: 702: 654: 545: 503: 471: 384: 195: 160:{\displaystyle 80^{2}\equiv 441=21^{2}{\pmod {5959}}} 111: 5807:(M.A. thesis). University of Georgia. Archived from 5382: 3253:{\displaystyle (X+124)^{2}-15347\equiv 0{\pmod {2}}} 2558:
containing a value above a threshold of roughly log(
2488:. (This is where the quadratic sieve gets its name: 1252:), one by taking the square root in the integers of 1091:. However, simply squaring many random numbers mod 793:{\displaystyle 114^{2}\equiv 80^{2}{\pmod {1649}}.} 5772: 5509:factored since then have been factored using NFS. 5326: 5268: 5193: 5173: 5131: 5082: 5061: 4917: 4855: 4783: 4732: 4670: 4513: 4477: 4257: 4143: 4116: 4089: 4055: 3923: 3896: 3851: 3490: 3438: 3393: 3310: 3252: 3185: 3145: 3050: 2999: 2780: 2679: 2653:are 2, 17, 23, and 29 (in other words, 15347 is a 2441: 2162: 2072: 2002: 1909: 1807: 1742: 1617: 1563: 1328: 1067: 992: 915: 895: 792: 727: 689:{\displaystyle 41\cdot 43\equiv 114{\pmod {1649}}} 688: 637: 528: 489: 457: 297: 159: 5741: 2090: 1432:factorizes completely over the factor base. Such 1196:and generate exponent vectors mod 2 for each one. 6396: 5816:Describes many practical implementation details. 5707:. Vol. 43, no. 12. pp. 1473–1485. 5362:If, after dividing by all the factors less than 4784:{\displaystyle 29\cdot 782\cdot 22678=22678^{2}} 3010:The next step is to perform the sieve. For each 960: 939: 5864: 1655: 101:and hope the least non-negative remainder is a 5473:operations used by the elliptic curve method. 5850: 5489:. The data processing phase took 45 hours on 5201:. The polynomial y(x) can then be written as 1329:{\displaystyle (a+b)(a-b)\equiv 0{\pmod {n}}} 5753:(1st ed.). Springer. pp. 227–244. 3433: 3415: 3102: 3092: 3045: 3021: 2728: 2718: 5345:involved in the factorization can be given 4681:A solution to the equation is given by the 5857: 5843: 5751:Prime Numbers: A Computational Perspective 5269:{\displaystyle y(x)=A\cdot (Ax^{2}+2Bx+C)} 3051:{\displaystyle \lbrace 2,17,23,29\rbrace } 2621:is small, the basic polynomial is enough: 1416:such that the least absolute remainder of 1392:) satisfying a much weaker condition than 1095:produces a very large number of different 1068:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 5829:"The Quadratic Sieve Factoring Algorithm" 5690: 5549:computer algebra package, is part of the 5415: 5052: 2604: 2496:, and the sieving process works like the 1061: 1048: 178:The quadratic sieve is a modification of 73:. The algorithm works in two phases: the 5767: 5405:Smoothness bound: 1300967 (50294 primes) 4258:{\displaystyle Y\equiv Z^{2}{\pmod {N}}} 3439:{\displaystyle \lbrace 17,23,29\rbrace } 2511:, solve the quadratic equation mod  1244:from which we get two square roots of ( 5821: 5797: 5476:On April 2, 1994, the factorization of 5422:Large prime bound: 128795733 (26 bits) 4946: 2523:, and then add an approximation to log( 1111:has only small prime factors (they are 6397: 5395:, producing the following parameters: 2649:for which 15347 has a square root mod 2464:generates a whole sequence of numbers 316:is the base of the natural logarithm. 5838: 2107:(ECM). In practice, a process called 332:entails a search for a single number 5657:Lenstra elliptic curve factorization 5568:from the thesis of Thomas Sosnowski. 5459:Lenstra elliptic curve factorization 5448: 5373: 4207: 3897:{\displaystyle X\equiv a{\pmod {p}}} 1364:How QS optimizes finding congruences 1144:denoting the number of prime numbers 5121: 4907: 4660: 4503: 4247: 3886: 3837: 3793: 3726: 3682: 3615: 3571: 3480: 3404:Similarly for the remaining primes 3300: 3242: 3135: 2554:At the end of the factor base, any 2427: 2062: 1992: 1898: 1796: 1731: 1683:= 91, there are partial relations: 1318: 779: 678: 627: 447: 149: 59:The algorithm attempts to set up a 13: 5515: 5357: 5334:has to be checked for smoothness. 5132:{\displaystyle B^{2}=n{\pmod {A}}} 4216:have been found with the property 2636: 1267:We now have the desired identity: 1232:We are now left with the equality 1087:always exists. It can be found by 728:{\displaystyle 32\cdot 200=80^{2}} 529:{\displaystyle 32\cdot 200=80^{2}} 14: 6416: 6066:Special number field sieve (SNFS) 6060:General number field sieve (GNFS) 5438:Nontrivial dependencies found: 15 5425: 5408:Number of factors for polynomial 5383:Parameters from realistic example 3156:to find the entries in the array 2480:), all of which are divisible by 1440:with respect to the factor base. 1206:together and give the result mod 1016:fundamental theorem of arithmetic 6405:Integer factorization algorithms 5505:, completed April 10, 1996. All 4151:equal one, this corresponds to: 3947:th value beyond that. Dividing 3498:is solved. Note that for every 2566:) will correspond to a value of 1636:. However, it also implies that 1443:The factorization of a value of 1340:with the difference (or sum) of 1122: 5798:Contini, Scott Patrick (1997). 5399:Trial factoring cutoff: 27 bits 5352: 5114: 5038: 4900: 4653: 4496: 4240: 3879: 3830: 3786: 3719: 3675: 3608: 3564: 3473: 3293: 3235: 3128: 2420: 2055: 1985: 1891: 1789: 1724: 1672:to form a full one, if the two 1311: 772: 671: 620: 440: 319: 142: 38:). It is still the fastest for 16:Integer factorization algorithm 5711: 5684: 5674: 5551:Fast Library for Number Theory 5327:{\displaystyle (Ax^{2}+2Bx+C)} 5321: 5287: 5263: 5229: 5217: 5211: 5125: 5115: 5023: 5007: 5001: 4995: 4911: 4901: 4664: 4654: 4507: 4497: 4251: 4241: 3890: 3880: 3841: 3831: 3797: 3787: 3730: 3720: 3686: 3676: 3619: 3609: 3575: 3565: 3484: 3474: 3304: 3294: 3246: 3236: 3213: 3200: 3139: 3129: 3106: 3083: 3077: 3071: 2918: 2912: 2899: 2893: 2885: 2879: 2871: 2865: 2857: 2851: 2843: 2837: 2829: 2823: 2763: 2750: 2732: 2709: 2703: 2697: 2486:Shanks–Tonelli algorithm 2431: 2421: 2416: 2410: 2395: 2385: 2364: 2358: 2330: 2320: 2267: 2251: 2241: 2226: 2193: 2187: 2138: 2132: 2091:Checking smoothness by sieving 2066: 2056: 1996: 1986: 1949: 1930: 1902: 1892: 1842: 1829: 1800: 1790: 1735: 1725: 1588: 1582: 1494: 1488: 1322: 1312: 1301: 1289: 1286: 1274: 975: 963: 954: 942: 866: 854: 848: 836: 783: 773: 682: 672: 631: 621: 597: 584: 451: 441: 222: 219: 213: 201: 153: 143: 1: 5781:American Mathematical Society 5667: 2492:is a quadratic polynomial in 497:is a square, but the product 351:, such that the remainder of 173:Fermat's factorization method 47:in 1981 as an improvement to 6024:Lenstra elliptic curve (ECM) 4951:In practice, many different 4267:Dixon's factorization method 2163:{\displaystyle f(x)=x^{2}-n} 1656:Partial relations and cycles 1463:close to the square root of 180:Dixon's factorization method 54: 7: 5650: 5453:Until the discovery of the 4514:{\displaystyle {\pmod {2}}} 2660:Now we construct our sieve 2527:) to every entry for which 2507:of bytes to zero. For each 10: 6421: 6331:Exponentiation by squaring 6014:Continued fraction (CFRAC) 5469:operations instead of the 5174:{\displaystyle B^{2}-n=AC} 2099:s. The most obvious is by 1660:Even if for some relation 1214:; similarly, multiply the 536:is a square. We also had 490:{\displaystyle 32,115,200} 36:general number field sieve 6378: 6313: 6275: 6242: 6199: 6143: 6100: 6004: 5966: 5875: 5444:Maximum memory used: 8 MB 1818:Multiply these together: 1644:times the square root of 1557: is a small integer) 1081:theorem of linear algebra 324:To factorize the integer 92:block Wiedemann algorithm 4983:, but now with the form 4979:) to be a square modulo 4866:So the algorithm found 1221:together which yields a 1157:) + 1 numbers 1153:Use sieving to locate π( 6244:Greatest common divisor 5769:Wagstaff, Samuel S. Jr. 3160:which are divisible by 1412:, and attempts to find 1404:). It selects a set of 1075:can be regarded as the 1009:greatest common divisor 696:. The observation that 465:. None of the integers 359:is a square. But these 186:) is conjectured to be 6355:Modular exponentiation 5696:"A Tale of Two Sieves" 5636:R programming language 5495:Telcordia Technologies 5328: 5270: 5195: 5175: 5133: 5084: 5063: 4919: 4857: 4785: 4734: 4672: 4515: 4479: 4259: 4145: 4144:{\displaystyle V_{71}} 4118: 4091: 4057: 3925: 3898: 3853: 3492: 3440: 3395: 3312: 3254: 3187: 3147: 3052: 3001: 2782: 2681: 2605:Example of basic sieve 2443: 2164: 2111:is typically used. If 2074: 2004: 1911: 1809: 1744: 1619: 1565: 1436:values are said to be 1330: 1069: 994: 923:. We can then factor 917: 897: 794: 729: 690: 639: 530: 491: 459: 299: 161: 6082:Shanks's square forms 6006:Integer factorization 5981:Sieve of Eratosthenes 5723:www.mersenneforum.org 5391:was run on a 267-bit 5329: 5271: 5196: 5176: 5134: 5085: 5064: 4920: 4858: 4786: 4735: 4673: 4516: 4480: 4260: 4212:Since smooth numbers 4146: 4119: 4117:{\displaystyle V_{3}} 4092: 4090:{\displaystyle V_{0}} 4058: 3926: 3924:{\displaystyle V_{x}} 3899: 3854: 3493: 3441: 3396: 3313: 3255: 3188: 3148: 3053: 3002: 2783: 2682: 2680:{\displaystyle V_{X}} 2498:Sieve of Eratosthenes 2444: 2165: 2105:elliptic curve method 2075: 2005: 1912: 1810: 1745: 1620: 1566: 1336:. Compute the GCD of 1331: 1070: 995: 918: 898: 795: 737:congruence of squares 730: 691: 640: 531: 492: 460: 300: 162: 61:congruence of squares 32:integer factorization 6360:Montgomery reduction 6234:Function field sieve 6209:Baby-step giant-step 6055:Quadratic sieve (QS) 5822:Other external links 5783:. pp. 195–202. 5775:The Joy of Factoring 5416:Multiple polynomials 5284: 5205: 5185: 5143: 5094: 5090:is chosen such that 5074: 4989: 4947:Multiple polynomials 4873: 4801: 4750: 4692: 4528: 4492: 4279: 4220: 4128: 4101: 4074: 3990: 3908: 3866: 3509: 3450: 3412: 3328: 3264: 3260:to get the solution 3197: 3171: 3065: 3018: 2795: 2691: 2664: 2177: 2126: 2015: 1927: 1825: 1755: 1690: 1640:grows linearly with 1632:is on the order of 2 1576: 1482: 1467:. This ensures that 1271: 1260:, and the other the 1089:Gaussian elimination 1044: 930: 907: 807: 745: 700: 652: 543: 501: 469: 382: 193: 109: 6370:Trachtenberg system 6336:Integer square root 6277:Modular square root 5996:Wheel factorization 5948:Quadratic Frobenius 5928:Lucas–Lehmer–Riesel 3931:being divisible by 3186:{\displaystyle p=2} 3058:solve the equation 3014:in our factor base 1388:) is a function of 1264:computed in step 4. 1005:Euclidean algorithm 6262:Extended Euclidean 6201:Discrete logarithm 6130:Schönhage–Strassen 5986:Sieve of Pritchard 5779:. Providence, RI: 5704:Notices of the AMS 5537:2020-05-06 at the 5455:number field sieve 5324: 5266: 5191: 5171: 5129: 5080: 5059: 4915: 4853: 4781: 4730: 4724: 4668: 4646: 4609: 4511: 4475: 4473: 4255: 4141: 4114: 4087: 4053: 4047: 3921: 3894: 3849: 3847: 3488: 3436: 3391: 3385: 3308: 3250: 3183: 3143: 3048: 2997: 2995: 2987: 2923: 2778: 2677: 2439: 2437: 2160: 2070: 2000: 1907: 1805: 1740: 1628:This implies that 1615: 1561: 1559: 1549: 1547: (where  1326: 1065: 1037:problem since the 990: 913: 893: 790: 725: 686: 635: 526: 487: 455: 295: 157: 6392: 6391: 5991:Sieve of Sundaram 5831:by Eric Landquist 5790:978-1-4704-1048-3 5743:Crandall, Richard 5694:(December 1996). 5625:C Quadratic Sieve 5613:java-math-library 5522:PPMPQS and PPSIQS 5449:Factoring records 5412:coefficients: 10 5374:More large primes 5194:{\displaystyle C} 5083:{\displaystyle B} 4208:Matrix processing 4205: 4204: 4201:2 ‱ 17 ‱ 23 ‱ 29 4190:2 ‱ 17 ‱ 23 ‱ 29 4179:2 ‱ 17 ‱ 23 ‱ 29 3753: 3642: 3531: 3464: 3278: 3100: 2726: 2655:quadratic residue 2515:to get two roots 1670:partial relations 1609: 1558: 1548: 1515: 1085:linear dependency 1007:to calculate the 916:{\displaystyle k} 903:for some integer 251: 51:'s linear sieve. 6412: 6341:Integer relation 6314:Other algorithms 6219:Pollard kangaroo 6110:Ancient Egyptian 5968:Prime-generating 5953:Solovay–Strassen 5866:Number-theoretic 5859: 5852: 5845: 5836: 5835: 5827:Reference paper 5815: 5813: 5806: 5794: 5778: 5764: 5733: 5732: 5730: 5729: 5715: 5709: 5708: 5700: 5688: 5682: 5678: 5558:factoring applet 5467:single-precision 5333: 5331: 5330: 5325: 5302: 5301: 5275: 5273: 5272: 5267: 5244: 5243: 5200: 5198: 5197: 5192: 5180: 5178: 5177: 5172: 5155: 5154: 5138: 5136: 5135: 5130: 5128: 5106: 5105: 5089: 5087: 5086: 5081: 5068: 5066: 5065: 5060: 5055: 5031: 5030: 4924: 4922: 4921: 4916: 4914: 4898: 4897: 4885: 4884: 4862: 4860: 4859: 4854: 4852: 4851: 4839: 4838: 4826: 4825: 4813: 4812: 4790: 4788: 4787: 4782: 4780: 4779: 4739: 4737: 4736: 4731: 4729: 4728: 4677: 4675: 4674: 4669: 4667: 4651: 4650: 4614: 4613: 4520: 4518: 4517: 4512: 4510: 4484: 4482: 4481: 4476: 4474: 4470: 4469: 4457: 4456: 4444: 4443: 4431: 4430: 4407: 4406: 4394: 4393: 4381: 4380: 4368: 4367: 4344: 4343: 4331: 4330: 4318: 4317: 4305: 4304: 4264: 4262: 4261: 4256: 4254: 4238: 4237: 4154: 4153: 4150: 4148: 4147: 4142: 4140: 4139: 4123: 4121: 4120: 4115: 4113: 4112: 4096: 4094: 4093: 4088: 4086: 4085: 4062: 4060: 4059: 4054: 4052: 4051: 3930: 3928: 3927: 3922: 3920: 3919: 3903: 3901: 3900: 3895: 3893: 3858: 3856: 3855: 3850: 3848: 3844: 3805: 3804: 3800: 3754: 3749: 3733: 3694: 3693: 3689: 3643: 3638: 3622: 3583: 3582: 3578: 3532: 3527: 3497: 3495: 3494: 3489: 3487: 3465: 3460: 3445: 3443: 3442: 3437: 3400: 3398: 3397: 3392: 3390: 3389: 3317: 3315: 3314: 3309: 3307: 3279: 3274: 3259: 3257: 3256: 3251: 3249: 3221: 3220: 3192: 3190: 3189: 3184: 3152: 3150: 3149: 3144: 3142: 3114: 3113: 3101: 3096: 3057: 3055: 3054: 3049: 3006: 3004: 3003: 2998: 2996: 2992: 2991: 2932: 2928: 2927: 2787: 2785: 2784: 2779: 2771: 2770: 2740: 2739: 2727: 2722: 2686: 2684: 2683: 2678: 2676: 2675: 2633:+ 124) − 15347. 2448: 2446: 2445: 2440: 2438: 2434: 2403: 2402: 2348: 2338: 2337: 2301: 2300: 2285: 2275: 2274: 2212: 2211: 2169: 2167: 2166: 2161: 2153: 2152: 2079: 2077: 2076: 2071: 2069: 2053: 2052: 2040: 2039: 2027: 2026: 2009: 2007: 2006: 2001: 1999: 1983: 1982: 1970: 1969: 1957: 1956: 1916: 1914: 1913: 1908: 1906: 1905: 1889: 1888: 1876: 1875: 1863: 1862: 1850: 1849: 1814: 1812: 1811: 1806: 1804: 1803: 1781: 1780: 1768: 1767: 1749: 1747: 1746: 1741: 1739: 1738: 1716: 1715: 1703: 1702: 1678: 1624: 1622: 1621: 1616: 1614: 1610: 1605: 1570: 1568: 1567: 1562: 1560: 1556: 1550: 1546: 1537: 1536: 1531: 1527: 1520: 1516: 1511: 1455:, is known as a 1335: 1333: 1332: 1327: 1325: 1225:-smooth square 1133:smoothness bound 1074: 1072: 1071: 1066: 1064: 1056: 1051: 999: 997: 996: 991: 922: 920: 919: 914: 902: 900: 899: 894: 832: 831: 819: 818: 799: 797: 796: 791: 786: 770: 769: 757: 756: 734: 732: 731: 726: 724: 723: 695: 693: 692: 687: 685: 644: 642: 641: 636: 634: 618: 617: 605: 604: 580: 579: 567: 566: 535: 533: 532: 527: 525: 524: 496: 494: 493: 488: 464: 462: 461: 456: 454: 432: 431: 413: 412: 394: 393: 350: 304: 302: 301: 296: 294: 290: 280: 267: 266: 254: 253: 252: 226: 166: 164: 163: 158: 156: 140: 139: 121: 120: 6420: 6419: 6415: 6414: 6413: 6411: 6410: 6409: 6395: 6394: 6393: 6388: 6374: 6309: 6271: 6238: 6195: 6139: 6096: 6000: 5962: 5935:Proth's theorem 5877:Primality tests 5871: 5863: 5824: 5819: 5811: 5804: 5791: 5761: 5747:Pomerance, Carl 5737: 5736: 5727: 5725: 5717: 5716: 5712: 5698: 5692:Pomerance, Carl 5689: 5685: 5679: 5675: 5670: 5653: 5632:RcppBigIntAlgos 5539:Wayback Machine 5518: 5516:Implementations 5471:multi-precision 5451: 5385: 5376: 5360: 5358:One large prime 5355: 5339:parallelization 5297: 5293: 5285: 5282: 5281: 5239: 5235: 5206: 5203: 5202: 5186: 5183: 5182: 5150: 5146: 5144: 5141: 5140: 5113: 5101: 5097: 5095: 5092: 5091: 5075: 5072: 5071: 5051: 5026: 5022: 4990: 4987: 4986: 4949: 4899: 4893: 4889: 4880: 4876: 4874: 4871: 4870: 4847: 4843: 4834: 4830: 4821: 4817: 4808: 4804: 4802: 4799: 4798: 4775: 4771: 4751: 4748: 4747: 4723: 4722: 4717: 4712: 4702: 4701: 4693: 4690: 4689: 4683:left null space 4652: 4645: 4644: 4639: 4634: 4629: 4619: 4618: 4608: 4607: 4602: 4597: 4592: 4586: 4585: 4580: 4575: 4570: 4564: 4563: 4558: 4553: 4548: 4538: 4537: 4529: 4526: 4525: 4495: 4493: 4490: 4489: 4472: 4471: 4465: 4461: 4452: 4448: 4439: 4435: 4426: 4422: 4415: 4409: 4408: 4402: 4398: 4389: 4385: 4376: 4372: 4363: 4359: 4352: 4346: 4345: 4339: 4335: 4326: 4322: 4313: 4309: 4300: 4296: 4289: 4282: 4280: 4277: 4276: 4239: 4233: 4229: 4221: 4218: 4217: 4210: 4135: 4131: 4129: 4126: 4125: 4108: 4104: 4102: 4099: 4098: 4081: 4077: 4075: 4072: 4071: 4046: 4045: 4040: 4035: 4030: 4025: 4020: 4015: 4010: 4000: 3999: 3991: 3988: 3987: 3915: 3911: 3909: 3906: 3905: 3878: 3867: 3864: 3863: 3846: 3845: 3829: 3819: 3802: 3801: 3785: 3775: 3761: 3748: 3741: 3735: 3734: 3718: 3708: 3691: 3690: 3674: 3664: 3650: 3637: 3630: 3624: 3623: 3607: 3597: 3580: 3579: 3563: 3553: 3539: 3526: 3519: 3512: 3510: 3507: 3506: 3472: 3459: 3451: 3448: 3447: 3413: 3410: 3409: 3384: 3383: 3378: 3373: 3368: 3363: 3358: 3353: 3348: 3338: 3337: 3329: 3326: 3325: 3292: 3273: 3265: 3262: 3261: 3234: 3216: 3212: 3198: 3195: 3194: 3172: 3169: 3168: 3127: 3109: 3105: 3095: 3066: 3063: 3062: 3019: 3016: 3015: 2994: 2993: 2986: 2985: 2980: 2975: 2970: 2965: 2960: 2955: 2950: 2940: 2939: 2930: 2929: 2922: 2921: 2907: 2902: 2888: 2874: 2860: 2846: 2832: 2813: 2812: 2805: 2798: 2796: 2793: 2792: 2766: 2762: 2735: 2731: 2721: 2692: 2689: 2688: 2671: 2667: 2665: 2662: 2661: 2639: 2637:Data collection 2607: 2593:There are many 2436: 2435: 2419: 2398: 2394: 2346: 2345: 2333: 2329: 2296: 2292: 2283: 2282: 2270: 2266: 2244: 2220: 2219: 2207: 2203: 2196: 2180: 2178: 2175: 2174: 2148: 2144: 2127: 2124: 2123: 2093: 2054: 2048: 2044: 2035: 2031: 2022: 2018: 2016: 2013: 2012: 1984: 1978: 1974: 1965: 1961: 1952: 1948: 1928: 1925: 1924: 1890: 1884: 1880: 1871: 1867: 1858: 1854: 1845: 1841: 1828: 1826: 1823: 1822: 1788: 1776: 1772: 1763: 1759: 1758: 1756: 1753: 1752: 1723: 1711: 1707: 1698: 1694: 1693: 1691: 1688: 1687: 1676: 1658: 1604: 1600: 1577: 1574: 1573: 1554: 1544: 1532: 1510: 1506: 1505: 1501: 1500: 1483: 1480: 1479: 1366: 1310: 1272: 1269: 1268: 1219: 1204: 1194: 1176: 1169: 1162: 1138:. The number π( 1125: 1060: 1052: 1047: 1045: 1042: 1041: 931: 928: 927: 908: 905: 904: 827: 823: 814: 810: 808: 805: 804: 771: 765: 761: 752: 748: 746: 743: 742: 719: 715: 701: 698: 697: 670: 653: 650: 649: 619: 613: 609: 600: 596: 575: 571: 562: 558: 544: 541: 540: 520: 516: 502: 499: 498: 470: 467: 466: 439: 427: 423: 408: 404: 389: 385: 383: 380: 379: 337: 330:Fermat's method 322: 312:. The constant 276: 272: 268: 262: 258: 225: 200: 196: 194: 191: 190: 141: 135: 131: 116: 112: 110: 107: 106: 105:. For example, 79:data processing 75:data collection 57: 21:quadratic sieve 17: 12: 11: 5: 6418: 6408: 6407: 6390: 6389: 6387: 6386: 6379: 6376: 6375: 6373: 6372: 6367: 6362: 6357: 6352: 6338: 6333: 6328: 6323: 6317: 6315: 6311: 6310: 6308: 6307: 6302: 6297: 6295:Tonelli–Shanks 6292: 6287: 6281: 6279: 6273: 6272: 6270: 6269: 6264: 6259: 6254: 6248: 6246: 6240: 6239: 6237: 6236: 6231: 6229:Index calculus 6226: 6224:Pohlig–Hellman 6221: 6216: 6211: 6205: 6203: 6197: 6196: 6194: 6193: 6188: 6183: 6178: 6176:Newton-Raphson 6173: 6168: 6163: 6158: 6152: 6150: 6141: 6140: 6138: 6137: 6132: 6127: 6122: 6117: 6112: 6106: 6104: 6102:Multiplication 6098: 6097: 6095: 6094: 6089: 6087:Trial division 6084: 6079: 6074: 6072:Rational sieve 6069: 6062: 6057: 6052: 6044: 6036: 6031: 6026: 6021: 6016: 6010: 6008: 6002: 6001: 5999: 5998: 5993: 5988: 5983: 5978: 5976:Sieve of Atkin 5972: 5970: 5964: 5963: 5961: 5960: 5955: 5950: 5945: 5938: 5931: 5924: 5917: 5912: 5907: 5902: 5900:Elliptic curve 5897: 5892: 5887: 5881: 5879: 5873: 5872: 5862: 5861: 5854: 5847: 5839: 5833: 5832: 5823: 5820: 5818: 5817: 5814:on 2015-04-05. 5795: 5789: 5765: 5759: 5738: 5735: 5734: 5710: 5683: 5672: 5671: 5669: 5666: 5665: 5664: 5662:primality test 5659: 5652: 5649: 5648: 5647: 5628: 5622: 5616: 5609: 5603: 5582: 5576: 5569: 5561: 5554: 5529: 5524: 5517: 5514: 5450: 5447: 5446: 5445: 5442: 5439: 5436: 5433: 5430: 5420: 5406: 5403: 5400: 5384: 5381: 5375: 5372: 5359: 5356: 5354: 5351: 5323: 5320: 5317: 5314: 5311: 5308: 5305: 5300: 5296: 5292: 5289: 5265: 5262: 5259: 5256: 5253: 5250: 5247: 5242: 5238: 5234: 5231: 5228: 5225: 5222: 5219: 5216: 5213: 5210: 5190: 5170: 5167: 5164: 5161: 5158: 5153: 5149: 5127: 5124: 5120: 5117: 5112: 5109: 5104: 5100: 5079: 5058: 5054: 5050: 5047: 5044: 5041: 5037: 5034: 5029: 5025: 5021: 5018: 5015: 5012: 5009: 5006: 5003: 5000: 4997: 4994: 4948: 4945: 4937:Trial division 4926: 4925: 4913: 4910: 4906: 4903: 4896: 4892: 4888: 4883: 4879: 4864: 4863: 4850: 4846: 4842: 4837: 4833: 4829: 4824: 4820: 4816: 4811: 4807: 4792: 4791: 4778: 4774: 4770: 4767: 4764: 4761: 4758: 4755: 4741: 4740: 4727: 4721: 4718: 4716: 4713: 4711: 4708: 4707: 4705: 4700: 4697: 4679: 4678: 4666: 4663: 4659: 4656: 4649: 4643: 4640: 4638: 4635: 4633: 4630: 4628: 4625: 4624: 4622: 4617: 4612: 4606: 4603: 4601: 4598: 4596: 4593: 4591: 4588: 4587: 4584: 4581: 4579: 4576: 4574: 4571: 4569: 4566: 4565: 4562: 4559: 4557: 4554: 4552: 4549: 4547: 4544: 4543: 4541: 4536: 4533: 4509: 4506: 4502: 4499: 4486: 4485: 4468: 4464: 4460: 4455: 4451: 4447: 4442: 4438: 4434: 4429: 4425: 4421: 4418: 4416: 4414: 4411: 4410: 4405: 4401: 4397: 4392: 4388: 4384: 4379: 4375: 4371: 4366: 4362: 4358: 4355: 4353: 4351: 4348: 4347: 4342: 4338: 4334: 4329: 4325: 4321: 4316: 4312: 4308: 4303: 4299: 4295: 4292: 4290: 4288: 4285: 4284: 4253: 4250: 4246: 4243: 4236: 4232: 4228: 4225: 4209: 4206: 4203: 4202: 4199: 4196: 4192: 4191: 4188: 4185: 4181: 4180: 4177: 4174: 4170: 4169: 4166: 4161: 4138: 4134: 4111: 4107: 4084: 4080: 4064: 4063: 4050: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4016: 4014: 4011: 4009: 4006: 4005: 4003: 3998: 3995: 3918: 3914: 3892: 3889: 3885: 3882: 3877: 3874: 3871: 3862:Each equation 3860: 3859: 3843: 3840: 3836: 3833: 3828: 3825: 3822: 3820: 3818: 3815: 3812: 3809: 3806: 3803: 3799: 3796: 3792: 3789: 3784: 3781: 3778: 3776: 3774: 3771: 3768: 3765: 3762: 3760: 3757: 3752: 3747: 3744: 3742: 3740: 3737: 3736: 3732: 3729: 3725: 3722: 3717: 3714: 3711: 3709: 3707: 3704: 3701: 3698: 3695: 3692: 3688: 3685: 3681: 3678: 3673: 3670: 3667: 3665: 3663: 3660: 3657: 3654: 3651: 3649: 3646: 3641: 3636: 3633: 3631: 3629: 3626: 3625: 3621: 3618: 3614: 3611: 3606: 3603: 3600: 3598: 3596: 3593: 3590: 3587: 3584: 3581: 3577: 3574: 3570: 3567: 3562: 3559: 3556: 3554: 3552: 3549: 3546: 3543: 3540: 3538: 3535: 3530: 3525: 3522: 3520: 3518: 3515: 3514: 3486: 3483: 3479: 3476: 3471: 3468: 3463: 3458: 3455: 3435: 3432: 3429: 3426: 3423: 3420: 3417: 3402: 3401: 3388: 3382: 3379: 3377: 3374: 3372: 3369: 3367: 3364: 3362: 3359: 3357: 3354: 3352: 3349: 3347: 3344: 3343: 3341: 3336: 3333: 3306: 3303: 3299: 3296: 3291: 3288: 3285: 3282: 3277: 3272: 3269: 3248: 3245: 3241: 3238: 3233: 3230: 3227: 3224: 3219: 3215: 3211: 3208: 3205: 3202: 3182: 3179: 3176: 3154: 3153: 3141: 3138: 3134: 3131: 3126: 3123: 3120: 3117: 3112: 3108: 3104: 3099: 3094: 3091: 3088: 3085: 3082: 3079: 3076: 3073: 3070: 3047: 3044: 3041: 3038: 3035: 3032: 3029: 3026: 3023: 3008: 3007: 2990: 2984: 2981: 2979: 2976: 2974: 2971: 2969: 2966: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2945: 2943: 2938: 2935: 2933: 2931: 2926: 2920: 2917: 2914: 2911: 2908: 2906: 2903: 2901: 2898: 2895: 2892: 2889: 2887: 2884: 2881: 2878: 2875: 2873: 2870: 2867: 2864: 2861: 2859: 2856: 2853: 2850: 2847: 2845: 2842: 2839: 2836: 2833: 2831: 2828: 2825: 2822: 2819: 2818: 2816: 2811: 2808: 2806: 2804: 2801: 2800: 2777: 2774: 2769: 2765: 2761: 2758: 2755: 2752: 2749: 2746: 2743: 2738: 2734: 2730: 2725: 2720: 2717: 2714: 2711: 2708: 2705: 2702: 2699: 2696: 2674: 2670: 2638: 2635: 2617:is 124. Since 2606: 2603: 2450: 2449: 2433: 2430: 2426: 2423: 2418: 2415: 2412: 2409: 2406: 2401: 2397: 2393: 2390: 2387: 2384: 2381: 2378: 2375: 2372: 2369: 2366: 2363: 2360: 2357: 2354: 2351: 2349: 2347: 2344: 2341: 2336: 2332: 2328: 2325: 2322: 2319: 2316: 2313: 2310: 2307: 2304: 2299: 2295: 2291: 2288: 2286: 2284: 2281: 2278: 2273: 2269: 2265: 2262: 2259: 2256: 2253: 2250: 2247: 2245: 2243: 2240: 2237: 2234: 2231: 2228: 2225: 2222: 2221: 2218: 2215: 2210: 2206: 2202: 2199: 2197: 2195: 2192: 2189: 2186: 2183: 2182: 2159: 2156: 2151: 2147: 2143: 2140: 2137: 2134: 2131: 2101:trial division 2092: 2089: 2081: 2080: 2068: 2065: 2061: 2058: 2051: 2047: 2043: 2038: 2034: 2030: 2025: 2021: 2010: 1998: 1995: 1991: 1988: 1981: 1977: 1973: 1968: 1964: 1960: 1955: 1951: 1947: 1944: 1941: 1938: 1935: 1932: 1918: 1917: 1904: 1901: 1897: 1894: 1887: 1883: 1879: 1874: 1870: 1866: 1861: 1857: 1853: 1848: 1844: 1840: 1837: 1834: 1831: 1816: 1815: 1802: 1799: 1795: 1792: 1787: 1784: 1779: 1775: 1771: 1766: 1762: 1750: 1737: 1734: 1730: 1727: 1722: 1719: 1714: 1710: 1706: 1701: 1697: 1657: 1654: 1626: 1625: 1613: 1608: 1603: 1599: 1596: 1593: 1590: 1587: 1584: 1581: 1571: 1553: 1543: 1540: 1535: 1530: 1526: 1523: 1519: 1514: 1509: 1504: 1499: 1496: 1493: 1490: 1487: 1365: 1362: 1358: 1357: 1324: 1321: 1317: 1314: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1265: 1230: 1217: 1202: 1197: 1192: 1187: 1174: 1167: 1160: 1151: 1124: 1121: 1113:smooth numbers 1063: 1059: 1055: 1050: 1035:linear algebra 1001: 1000: 989: 986: 983: 980: 977: 974: 971: 968: 965: 962: 959: 956: 953: 950: 947: 944: 941: 938: 935: 912: 892: 889: 886: 883: 880: 877: 874: 871: 868: 865: 862: 859: 856: 853: 850: 847: 844: 841: 838: 835: 830: 826: 822: 817: 813: 801: 800: 789: 785: 782: 778: 775: 768: 764: 760: 755: 751: 722: 718: 714: 711: 708: 705: 684: 681: 677: 674: 669: 666: 663: 660: 657: 646: 645: 633: 630: 626: 623: 616: 612: 608: 603: 599: 595: 592: 589: 586: 583: 578: 574: 570: 565: 561: 557: 554: 551: 548: 523: 519: 515: 512: 509: 506: 486: 483: 480: 477: 474: 453: 450: 446: 443: 438: 435: 430: 426: 422: 419: 416: 411: 407: 403: 400: 397: 392: 388: 321: 318: 306: 305: 293: 289: 286: 283: 279: 275: 271: 265: 261: 257: 250: 247: 244: 241: 238: 235: 232: 229: 224: 221: 218: 215: 212: 209: 206: 203: 199: 155: 152: 148: 145: 138: 134: 130: 127: 124: 119: 115: 103:perfect square 56: 53: 45:Carl Pomerance 15: 9: 6: 4: 3: 2: 6417: 6406: 6403: 6402: 6400: 6384: 6381: 6380: 6377: 6371: 6368: 6366: 6363: 6361: 6358: 6356: 6353: 6350: 6346: 6342: 6339: 6337: 6334: 6332: 6329: 6327: 6324: 6322: 6319: 6318: 6316: 6312: 6306: 6303: 6301: 6298: 6296: 6293: 6291: 6290:Pocklington's 6288: 6286: 6283: 6282: 6280: 6278: 6274: 6268: 6265: 6263: 6260: 6258: 6255: 6253: 6250: 6249: 6247: 6245: 6241: 6235: 6232: 6230: 6227: 6225: 6222: 6220: 6217: 6215: 6212: 6210: 6207: 6206: 6204: 6202: 6198: 6192: 6189: 6187: 6184: 6182: 6179: 6177: 6174: 6172: 6169: 6167: 6164: 6162: 6159: 6157: 6154: 6153: 6151: 6149: 6146: 6142: 6136: 6133: 6131: 6128: 6126: 6123: 6121: 6118: 6116: 6113: 6111: 6108: 6107: 6105: 6103: 6099: 6093: 6090: 6088: 6085: 6083: 6080: 6078: 6075: 6073: 6070: 6068: 6067: 6063: 6061: 6058: 6056: 6053: 6051: 6049: 6045: 6043: 6041: 6037: 6035: 6034:Pollard's rho 6032: 6030: 6027: 6025: 6022: 6020: 6017: 6015: 6012: 6011: 6009: 6007: 6003: 5997: 5994: 5992: 5989: 5987: 5984: 5982: 5979: 5977: 5974: 5973: 5971: 5969: 5965: 5959: 5956: 5954: 5951: 5949: 5946: 5944: 5943: 5939: 5937: 5936: 5932: 5930: 5929: 5925: 5923: 5922: 5918: 5916: 5913: 5911: 5908: 5906: 5903: 5901: 5898: 5896: 5893: 5891: 5888: 5886: 5883: 5882: 5880: 5878: 5874: 5870: 5867: 5860: 5855: 5853: 5848: 5846: 5841: 5840: 5837: 5830: 5826: 5825: 5810: 5803: 5802: 5796: 5792: 5786: 5782: 5777: 5776: 5770: 5766: 5762: 5760:0-387-94777-9 5756: 5752: 5748: 5744: 5740: 5739: 5724: 5720: 5714: 5706: 5705: 5697: 5693: 5687: 5677: 5673: 5663: 5660: 5658: 5655: 5654: 5645: 5641: 5637: 5633: 5629: 5626: 5623: 5620: 5617: 5614: 5610: 5607: 5604: 5601: 5598: 5594: 5590: 5586: 5583: 5580: 5577: 5574: 5570: 5566: 5562: 5559: 5555: 5552: 5548: 5544: 5543:block Lanczos 5540: 5536: 5533: 5530: 5528: 5525: 5523: 5520: 5519: 5513: 5510: 5508: 5504: 5500: 5496: 5492: 5488: 5484: 5479: 5474: 5472: 5468: 5464: 5460: 5456: 5443: 5440: 5437: 5434: 5431: 5429: 5427: 5421: 5419: 5417: 5411: 5407: 5404: 5401: 5398: 5397: 5396: 5394: 5390: 5380: 5371: 5369: 5365: 5350: 5348: 5344: 5341:, since each 5340: 5335: 5318: 5315: 5312: 5309: 5306: 5303: 5298: 5294: 5290: 5279: 5260: 5257: 5254: 5251: 5248: 5245: 5240: 5236: 5232: 5226: 5223: 5220: 5214: 5208: 5188: 5168: 5165: 5162: 5159: 5156: 5151: 5147: 5122: 5118: 5110: 5107: 5102: 5098: 5077: 5069: 5056: 5048: 5045: 5042: 5039: 5035: 5032: 5027: 5019: 5016: 5013: 5010: 5004: 4998: 4992: 4984: 4982: 4978: 4974: 4970: 4966: 4962: 4959:so that when 4958: 4955:are used for 4954: 4944: 4942: 4938: 4934: 4929: 4908: 4904: 4894: 4890: 4886: 4881: 4877: 4869: 4868: 4867: 4848: 4844: 4840: 4835: 4831: 4827: 4822: 4818: 4814: 4809: 4805: 4797: 4796: 4795: 4776: 4772: 4768: 4765: 4762: 4759: 4756: 4753: 4746: 4745: 4744: 4725: 4719: 4714: 4709: 4703: 4698: 4695: 4688: 4687: 4686: 4684: 4661: 4657: 4647: 4641: 4636: 4631: 4626: 4620: 4615: 4610: 4604: 4599: 4594: 4589: 4582: 4577: 4572: 4567: 4560: 4555: 4550: 4545: 4539: 4534: 4531: 4524: 4523: 4522: 4504: 4500: 4466: 4462: 4458: 4453: 4449: 4445: 4440: 4436: 4432: 4427: 4423: 4419: 4417: 4412: 4403: 4399: 4395: 4390: 4386: 4382: 4377: 4373: 4369: 4364: 4360: 4356: 4354: 4349: 4340: 4336: 4332: 4327: 4323: 4319: 4314: 4310: 4306: 4301: 4297: 4293: 4291: 4286: 4275: 4274: 4273: 4270: 4268: 4248: 4244: 4234: 4230: 4226: 4223: 4215: 4200: 4197: 4194: 4193: 4189: 4186: 4183: 4182: 4178: 4175: 4172: 4171: 4167: 4165: 4162: 4159: 4156: 4155: 4152: 4136: 4132: 4109: 4105: 4082: 4078: 4069: 4066:Any entry of 4048: 4042: 4037: 4032: 4027: 4022: 4017: 4012: 4007: 4001: 3996: 3993: 3986: 3985: 3984: 3982: 3978: 3974: 3970: 3966: 3962: 3958: 3954: 3950: 3946: 3942: 3938: 3934: 3916: 3912: 3887: 3883: 3875: 3872: 3869: 3838: 3834: 3826: 3823: 3821: 3816: 3813: 3810: 3807: 3794: 3790: 3782: 3779: 3777: 3772: 3769: 3766: 3763: 3758: 3755: 3750: 3745: 3743: 3738: 3727: 3723: 3715: 3712: 3710: 3705: 3702: 3699: 3696: 3683: 3679: 3671: 3668: 3666: 3661: 3658: 3655: 3652: 3647: 3644: 3639: 3634: 3632: 3627: 3616: 3612: 3604: 3601: 3599: 3594: 3591: 3588: 3585: 3572: 3568: 3560: 3557: 3555: 3550: 3547: 3544: 3541: 3536: 3533: 3528: 3523: 3521: 3516: 3505: 3504: 3503: 3501: 3481: 3477: 3469: 3466: 3461: 3456: 3453: 3430: 3427: 3424: 3421: 3418: 3407: 3386: 3380: 3375: 3370: 3365: 3360: 3355: 3350: 3345: 3339: 3334: 3331: 3324: 3323: 3322: 3319: 3301: 3297: 3289: 3286: 3283: 3280: 3275: 3270: 3267: 3243: 3239: 3231: 3228: 3225: 3222: 3217: 3209: 3206: 3203: 3180: 3177: 3174: 3165: 3163: 3159: 3136: 3132: 3124: 3121: 3118: 3115: 3110: 3097: 3089: 3086: 3080: 3074: 3068: 3061: 3060: 3059: 3042: 3039: 3036: 3033: 3030: 3027: 3024: 3013: 2988: 2982: 2977: 2972: 2967: 2962: 2957: 2952: 2947: 2941: 2936: 2934: 2924: 2915: 2909: 2904: 2896: 2890: 2882: 2876: 2868: 2862: 2854: 2848: 2840: 2834: 2826: 2820: 2814: 2809: 2807: 2802: 2791: 2790: 2789: 2775: 2772: 2767: 2759: 2756: 2753: 2747: 2744: 2741: 2736: 2723: 2715: 2712: 2706: 2700: 2694: 2672: 2668: 2658: 2656: 2652: 2648: 2644: 2634: 2632: 2628: 2624: 2620: 2616: 2612: 2602: 2600: 2596: 2591: 2589: 2585: 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2552: 2550: 2546: 2542: 2539:... that is, 2538: 2534: 2530: 2526: 2522: 2518: 2514: 2510: 2506: 2501: 2499: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2452:Thus solving 2428: 2424: 2413: 2407: 2404: 2399: 2391: 2388: 2382: 2379: 2376: 2373: 2370: 2367: 2361: 2355: 2352: 2350: 2342: 2339: 2334: 2326: 2323: 2317: 2314: 2311: 2308: 2305: 2302: 2297: 2293: 2289: 2287: 2279: 2276: 2271: 2263: 2260: 2257: 2254: 2248: 2246: 2238: 2235: 2232: 2229: 2223: 2216: 2213: 2208: 2204: 2200: 2198: 2190: 2184: 2173: 2172: 2171: 2157: 2154: 2149: 2145: 2141: 2135: 2129: 2122: 2118: 2114: 2110: 2106: 2102: 2098: 2088: 2086: 2063: 2059: 2049: 2045: 2041: 2036: 2032: 2028: 2023: 2019: 2011: 1993: 1989: 1979: 1975: 1971: 1966: 1962: 1958: 1953: 1945: 1942: 1939: 1936: 1933: 1923: 1922: 1921: 1899: 1895: 1885: 1881: 1877: 1872: 1868: 1864: 1859: 1855: 1851: 1846: 1838: 1835: 1832: 1821: 1820: 1819: 1797: 1793: 1785: 1782: 1777: 1773: 1769: 1764: 1760: 1751: 1732: 1728: 1720: 1717: 1712: 1708: 1704: 1699: 1695: 1686: 1685: 1684: 1682: 1675: 1671: 1667: 1663: 1653: 1649: 1647: 1643: 1639: 1635: 1631: 1611: 1606: 1601: 1597: 1594: 1591: 1585: 1579: 1572: 1551: 1541: 1538: 1533: 1528: 1524: 1521: 1517: 1512: 1507: 1502: 1497: 1491: 1485: 1478: 1477: 1476: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1446: 1441: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1361: 1355: 1351: 1347: 1343: 1339: 1319: 1315: 1307: 1304: 1298: 1295: 1292: 1283: 1280: 1277: 1266: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1228: 1224: 1220: 1213: 1209: 1205: 1198: 1195: 1188: 1185: 1181: 1177: 1170: 1163: 1156: 1152: 1149: 1145: 1141: 1137: 1134: 1130: 1129: 1128: 1123:The algorithm 1120: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1057: 1053: 1040: 1036: 1031: 1029: 1025: 1021: 1017: 1012: 1010: 1006: 987: 984: 981: 978: 972: 969: 966: 957: 951: 948: 945: 936: 933: 926: 925: 924: 910: 890: 887: 884: 881: 878: 875: 872: 869: 863: 860: 857: 851: 845: 842: 839: 833: 828: 824: 820: 815: 811: 787: 780: 776: 766: 762: 758: 753: 749: 741: 740: 739: 738: 735:thus gives a 720: 716: 712: 709: 706: 703: 679: 675: 667: 664: 661: 658: 655: 628: 624: 614: 610: 606: 601: 593: 590: 587: 581: 576: 572: 568: 563: 559: 555: 552: 549: 546: 539: 538: 537: 521: 517: 513: 510: 507: 504: 484: 481: 478: 475: 472: 448: 444: 436: 433: 428: 424: 420: 417: 414: 409: 405: 401: 398: 395: 390: 386: 376: 374: 370: 366: 362: 358: 354: 348: 344: 340: 335: 331: 327: 317: 315: 311: 291: 287: 284: 281: 277: 273: 269: 263: 259: 255: 248: 245: 242: 239: 236: 233: 230: 227: 216: 210: 207: 204: 197: 189: 188: 187: 185: 181: 176: 174: 170: 150: 146: 136: 132: 128: 125: 122: 117: 113: 104: 100: 95: 93: 88: 84: 80: 76: 72: 68: 65: 62: 52: 50: 46: 41: 37: 33: 29: 25: 22: 6382: 6064: 6054: 6047: 6039: 5958:Miller–Rabin 5940: 5933: 5926: 5921:Lucas–Lehmer 5919: 5809:the original 5800: 5774: 5750: 5726:. Retrieved 5722: 5713: 5702: 5686: 5676: 5511: 5475: 5462: 5452: 5426:Large primes 5423: 5413: 5409: 5386: 5377: 5367: 5363: 5361: 5353:Large primes 5346: 5336: 5277: 5070: 4985: 4980: 4976: 4972: 4968: 4964: 4960: 4956: 4950: 4932: 4930: 4927: 4865: 4793: 4742: 4680: 4487: 4271: 4213: 4211: 4163: 4157: 4067: 4065: 3980: 3976: 3972: 3968: 3964: 3960: 3956: 3952: 3948: 3944: 3940: 3936: 3932: 3861: 3499: 3446:the equation 3405: 3403: 3320: 3166: 3161: 3157: 3155: 3011: 3009: 2659: 2650: 2646: 2642: 2640: 2630: 2626: 2622: 2618: 2614: 2610: 2608: 2598: 2594: 2592: 2579: 2575: 2571: 2567: 2563: 2559: 2555: 2553: 2548: 2544: 2540: 2536: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2504: 2502: 2493: 2489: 2481: 2477: 2473: 2469: 2465: 2461: 2457: 2453: 2451: 2116: 2112: 2108: 2096: 2094: 2084: 2082: 1919: 1817: 1680: 1673: 1669: 1665: 1661: 1659: 1650: 1645: 1641: 1637: 1633: 1629: 1627: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1442: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1401: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1367: 1359: 1353: 1349: 1345: 1341: 1337: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1226: 1222: 1215: 1211: 1207: 1200: 1190: 1183: 1179: 1172: 1165: 1158: 1154: 1147: 1139: 1135: 1126: 1108: 1104: 1100: 1092: 1077:Galois field 1032: 1020:prime powers 1013: 1002: 802: 647: 377: 372: 371:for several 368: 364: 360: 356: 352: 346: 342: 338: 333: 325: 323: 320:The approach 313: 307: 183: 177: 168: 98: 96: 87:parallelized 78: 74: 70: 66: 58: 27: 20: 18: 6214:Pollard rho 6171:Goldschmidt 5905:Pocklington 5895:Baillie–PSW 5507:RSA numbers 4953:polynomials 4941:Pollard rho 4488:as a matrix 3904:results in 2588:Pollard rho 1410:factor base 1408:called the 1189:Factor the 1028:zero vector 355:divided by 6326:Cornacchia 6321:Chakravala 5869:algorithms 5728:2020-07-07 5668:References 5640:semiprimes 5483:MIPS-years 4685:, simply 2535:) = 0 mod 2468:for which 2121:polynomial 1164:such that 1146:less than 1103:such that 1033:This is a 1003:using the 310:L-notation 49:Schroeppel 6300:Berlekamp 6257:Euclidean 6145:Euclidean 6125:Toom–Cook 6120:Karatsuba 5393:semiprime 5343:processor 5227:⋅ 5181:for some 5157:− 5049:∈ 5033:− 4887:≡ 4828:⋅ 4815:⋅ 4763:⋅ 4757:⋅ 4616:≡ 4535:⋅ 4459:⋅ 4446:⋅ 4433:⋅ 4396:⋅ 4383:⋅ 4370:⋅ 4333:⋅ 4320:⋅ 4307:⋅ 4227:≡ 4038:⋯ 3943:and each 3873:≡ 3824:≡ 3814:− 3808:≡ 3780:≡ 3770:− 3764:≡ 3756:− 3746:≡ 3713:≡ 3703:− 3697:≡ 3669:≡ 3659:− 3653:≡ 3645:− 3635:≡ 3602:≡ 3592:− 3586:≡ 3558:≡ 3548:− 3542:≡ 3534:− 3524:≡ 3467:− 3457:≡ 3376:⋯ 3287:≡ 3281:− 3271:≡ 3229:≡ 3223:− 3122:≡ 3116:− 3103:⌉ 3093:⌈ 3081:≡ 2978:⋯ 2905:⋯ 2773:− 2742:− 2729:⌉ 2719:⌈ 2456:≡ 0 (mod 2405:≡ 2340:− 2277:− 2214:− 2155:− 2119:) is the 2042:⋅ 2029:≡ 1972:⋅ 1959:≡ 1943:⋅ 1937:⋅ 1878:⋅ 1865:⋅ 1852:≡ 1836:⋅ 1783:⋅ 1770:≡ 1718:⋅ 1705:≡ 1592:≈ 1539:− 1380:) (where 1305:≡ 1296:− 1210:the name 1131:Choose a 985:⋅ 958:⋅ 888:⋅ 876:⋅ 861:− 852:⋅ 821:− 759:≡ 707:⋅ 665:≡ 659:⋅ 607:≡ 591:⋅ 569:⋅ 556:≡ 550:⋅ 508:⋅ 434:≡ 415:≡ 396:≡ 246:⁡ 240:⁡ 231:⁡ 123:≡ 55:Basic aim 24:algorithm 6399:Category 6267:Lehmer's 6161:Chunking 6148:division 6077:Fermat's 5771:(2013). 5651:See also 5547:SageMath 5535:Archived 5493:'s (now 5491:Bellcore 4521:yields: 4168:factors 2170:we have 1612:⌉ 1602:⌈ 1518:⌉ 1508:⌈ 1457:relation 1186:-smooth. 1030:mod 2. 308:in the 40:integers 30:) is an 6383:Italics 6305:Kunerth 6285:Cipolla 6166:Fourier 6135:FĂŒrer's 6029:Euler's 6019:Dixon's 5942:PĂ©pin's 5681:89-139. 5644:RSA-100 5619:Java QS 5597:AVX-512 5589:RSA-100 5565:PARI/GP 5503:RSA-130 5478:RSA-129 4891:3070860 4845:3070860 2109:sieving 1256:namely 1117:sieving 6365:Schoof 6252:Binary 6156:Binary 6092:Shor's 5910:Fermat 5787:  5757:  5579:msieve 5532:SIMPQS 5499:MasPar 5428:above) 5418:above) 5389:msieve 4198:22678 4124:, and 3193:solve 2641:Since 2584:SQUFOF 2460:) for 1438:smooth 1406:primes 1024:parity 803:Hence 648:since 83:matrix 64:modulo 6186:Short 5915:Lucas 5812:(PDF) 5805:(PDF) 5699:(PDF) 5606:Ariel 5573:MAGMA 5424:(see 5414:(see 5276:. If 5139:, so 4909:15347 4878:22678 4773:22678 4766:22678 4413:22678 4160:+ 124 4043:17191 3751:15347 3640:15347 3529:15347 3462:15347 3381:17191 3276:15347 3226:15347 2983:34382 2776:15347 2629:) = ( 2085:cycle 1677:' 1400:(mod 1182:) is 1097:prime 345:< 341:< 6181:Long 6115:Long 5785:ISBN 5755:ISBN 5630:The 5611:The 5600:SIMD 5593:AVX2 5585:YAFU 5563:The 5527:mpqs 4794:and 4195:195 4187:782 4184:127 4173:124 3366:1037 3167:For 2973:1294 2968:1037 2543:and 2519:and 2454:f(x) 1428:mod 1424:) = 1372:and 1344:and 1248:mod 1240:mod 1178:mod 1107:mod 1039:ring 973:1649 952:1649 934:1649 891:1649 781:1649 680:1649 629:1649 449:1649 151:5959 19:The 6345:LLL 6191:SRT 6050:+ 1 6042:− 1 5890:APR 5885:AKS 5595:or 5119:mod 4939:or 4905:mod 4832:195 4819:127 4806:124 4760:782 4658:mod 4501:mod 4350:782 4245:mod 4176:29 4033:647 4013:139 3955:at 3951:by 3935:at 3884:mod 3835:mod 3817:124 3791:mod 3773:124 3759:124 3724:mod 3706:124 3680:mod 3662:124 3648:124 3613:mod 3595:124 3569:mod 3551:124 3537:124 3478:mod 3470:124 3408:in 3371:647 3361:391 3356:529 3351:139 3298:mod 3284:124 3240:mod 3210:124 3133:mod 2963:782 2958:529 2953:278 2760:124 2687:of 2500:.) 2425:mod 2060:mod 1990:mod 1896:mod 1794:mod 1729:mod 1316:mod 1171:= ( 1142:), 961:gcd 946:194 940:gcd 873:194 858:114 840:114 812:114 777:mod 750:114 710:200 676:mod 668:114 625:mod 611:114 553:200 511:200 485:200 479:115 445:mod 437:200 418:115 147:mod 126:441 6401:: 6349:KZ 6347:; 5745:; 5721:. 5701:. 5556:a 5497:) 5487:GB 4754:29 4463:29 4450:23 4437:17 4400:29 4387:23 4374:17 4337:29 4324:23 4311:17 4287:29 4269:. 4137:71 4097:, 4028:61 4018:23 3979:+3 3975:, 3971:+2 3967:, 3959:, 3839:29 3827:13 3811:21 3795:29 3728:23 3700:12 3684:23 3656:11 3617:17 3573:17 3431:29 3425:23 3419:17 3346:29 3318:. 3164:. 3043:29 3037:23 3031:17 2948:29 2916:99 2586:, 2064:91 2020:14 1994:91 1946:29 1940:21 1934:58 1900:91 1882:11 1839:29 1833:21 1798:91 1786:11 1761:29 1733:91 1721:11 1696:21 1648:. 1396:≡ 1236:= 1011:. 988:17 982:97 967:34 879:34 864:80 846:80 825:80 763:80 717:80 704:32 662:43 656:41 594:43 588:41 573:43 560:41 547:32 518:80 505:32 473:32 425:43 406:42 399:32 387:41 349:−1 336:, 328:, 243:ln 237:ln 228:ln 175:. 133:21 114:80 28:QS 6351:) 6343:( 6048:p 6040:p 5858:e 5851:t 5844:v 5793:. 5763:. 5731:. 5463:n 5410:A 5368:A 5364:A 5347:n 5322:) 5319:C 5316:+ 5313:x 5310:B 5307:2 5304:+ 5299:2 5295:x 5291:A 5288:( 5278:A 5264:) 5261:C 5258:+ 5255:x 5252:B 5249:2 5246:+ 5241:2 5237:x 5233:A 5230:( 5224:A 5221:= 5218:) 5215:x 5212:( 5209:y 5189:C 5169:C 5166:A 5163:= 5160:n 5152:2 5148:B 5126:) 5123:A 5116:( 5111:n 5108:= 5103:2 5099:B 5078:B 5057:. 5053:Z 5046:B 5043:, 5040:A 5036:n 5028:2 5024:) 5020:B 5017:+ 5014:x 5011:A 5008:( 5005:= 5002:) 4999:x 4996:( 4993:y 4981:n 4977:x 4975:( 4973:y 4969:y 4965:x 4963:( 4961:y 4957:y 4933:n 4912:) 4902:( 4895:2 4882:2 4849:2 4841:= 4836:2 4823:2 4810:2 4777:2 4769:= 4726:] 4720:1 4715:1 4710:1 4704:[ 4699:= 4696:S 4665:) 4662:2 4655:( 4648:] 4642:0 4637:0 4632:0 4627:0 4621:[ 4611:] 4605:1 4600:1 4595:1 4590:1 4583:0 4578:1 4573:1 4568:1 4561:1 4556:0 4551:0 4546:0 4540:[ 4532:S 4508:) 4505:2 4498:( 4467:1 4454:1 4441:1 4428:1 4424:2 4420:= 4404:0 4391:1 4378:1 4365:1 4361:2 4357:= 4341:1 4328:0 4315:0 4302:0 4298:2 4294:= 4252:) 4249:N 4242:( 4235:2 4231:Z 4224:Y 4214:Y 4164:Y 4158:X 4133:V 4110:3 4106:V 4083:0 4079:V 4068:V 4049:] 4023:1 4008:1 4002:[ 3997:= 3994:V 3981:p 3977:a 3973:p 3969:a 3965:p 3963:+ 3961:a 3957:a 3953:p 3949:V 3945:p 3941:a 3939:= 3937:x 3933:p 3917:x 3913:V 3891:) 3888:p 3881:( 3876:a 3870:X 3842:) 3832:( 3798:) 3788:( 3783:0 3767:8 3739:X 3731:) 3721:( 3716:3 3687:) 3677:( 3672:2 3628:X 3620:) 3610:( 3605:4 3589:9 3576:) 3566:( 3561:3 3545:8 3517:X 3500:p 3485:) 3482:p 3475:( 3454:X 3434:} 3428:, 3422:, 3416:{ 3406:p 3387:] 3340:[ 3335:= 3332:V 3305:) 3302:2 3295:( 3290:1 3268:X 3247:) 3244:2 3237:( 3232:0 3218:2 3214:) 3207:+ 3204:X 3201:( 3181:2 3178:= 3175:p 3162:p 3158:V 3140:) 3137:p 3130:( 3125:0 3119:N 3111:2 3107:) 3098:N 3090:+ 3087:X 3084:( 3078:) 3075:X 3072:( 3069:Y 3046:} 3040:, 3034:, 3028:, 3025:2 3022:{ 3012:p 2989:] 2942:[ 2937:= 2925:] 2919:) 2913:( 2910:Y 2900:) 2897:5 2894:( 2891:Y 2886:) 2883:4 2880:( 2877:Y 2872:) 2869:3 2866:( 2863:Y 2858:) 2855:2 2852:( 2849:Y 2844:) 2841:1 2838:( 2835:Y 2830:) 2827:0 2824:( 2821:Y 2815:[ 2810:= 2803:V 2768:2 2764:) 2757:+ 2754:X 2751:( 2748:= 2745:N 2737:2 2733:) 2724:N 2716:+ 2713:X 2710:( 2707:= 2704:) 2701:X 2698:( 2695:Y 2673:X 2669:V 2651:p 2647:p 2643:N 2631:x 2627:x 2625:( 2623:y 2619:N 2615:N 2611:N 2599:x 2597:( 2595:y 2580:x 2578:( 2576:y 2572:x 2570:( 2568:y 2564:n 2562:− 2560:x 2556:A 2549:p 2545:A 2541:A 2537:p 2533:x 2531:( 2529:y 2525:p 2521:ÎČ 2517:α 2513:p 2509:p 2505:A 2494:x 2490:y 2482:p 2478:x 2476:( 2474:f 2472:= 2470:y 2466:y 2462:x 2458:p 2432:) 2429:p 2422:( 2417:) 2414:x 2411:( 2408:f 2400:2 2396:) 2392:p 2389:k 2386:( 2383:+ 2380:p 2377:k 2374:x 2371:2 2368:+ 2365:) 2362:x 2359:( 2356:f 2353:= 2343:n 2335:2 2331:) 2327:p 2324:k 2321:( 2318:+ 2315:p 2312:k 2309:x 2306:2 2303:+ 2298:2 2294:x 2290:= 2280:n 2272:2 2268:) 2264:p 2261:k 2258:+ 2255:x 2252:( 2249:= 2242:) 2239:p 2236:k 2233:+ 2230:x 2227:( 2224:f 2217:n 2209:2 2205:x 2201:= 2194:) 2191:x 2188:( 2185:f 2158:n 2150:2 2146:x 2142:= 2139:) 2136:x 2133:( 2130:f 2117:x 2115:( 2113:f 2097:y 2067:) 2057:( 2050:1 2046:7 2037:1 2033:2 2024:2 1997:) 1987:( 1980:1 1976:7 1967:1 1963:2 1954:2 1950:) 1931:( 1903:) 1893:( 1886:2 1873:1 1869:7 1860:1 1856:2 1847:2 1843:) 1830:( 1801:) 1791:( 1778:1 1774:2 1765:2 1736:) 1726:( 1713:1 1709:7 1700:2 1681:n 1674:y 1666:x 1664:( 1662:y 1646:n 1642:x 1638:y 1634:x 1630:y 1607:n 1598:x 1595:2 1589:) 1586:x 1583:( 1580:y 1552:x 1542:n 1534:2 1529:) 1525:x 1522:+ 1513:n 1503:( 1498:= 1495:) 1492:x 1489:( 1486:y 1473:x 1471:( 1469:y 1465:n 1461:x 1453:x 1449:x 1447:( 1445:y 1434:y 1430:n 1426:x 1422:x 1420:( 1418:y 1414:x 1402:n 1398:y 1394:x 1390:x 1386:x 1384:( 1382:y 1378:x 1376:( 1374:y 1370:x 1356:. 1354:a 1350:n 1346:b 1342:a 1338:n 1323:) 1320:n 1313:( 1308:0 1302:) 1299:b 1293:a 1290:( 1287:) 1284:b 1281:+ 1278:a 1275:( 1262:a 1258:b 1254:b 1250:n 1246:a 1242:n 1238:b 1234:a 1229:. 1227:b 1223:B 1218:i 1216:b 1212:a 1208:n 1203:i 1201:a 1193:i 1191:b 1184:B 1180:n 1175:i 1173:a 1168:i 1166:b 1161:i 1159:a 1155:B 1148:B 1140:B 1136:B 1109:n 1105:a 1101:a 1093:n 1062:Z 1058:2 1054:/ 1049:Z 979:= 976:) 970:, 964:( 955:) 949:, 943:( 937:= 911:k 885:k 882:= 870:= 867:) 855:( 849:) 843:+ 837:( 834:= 829:2 816:2 788:. 784:) 774:( 767:2 754:2 721:2 713:= 683:) 673:( 632:) 622:( 615:2 602:2 598:) 585:( 582:= 577:2 564:2 522:2 514:= 482:, 476:, 452:) 442:( 429:2 421:, 410:2 402:, 391:2 373:a 369:n 367:/ 365:a 361:a 357:n 353:a 347:n 343:a 339:n 334:a 326:n 314:e 292:] 288:1 285:, 282:2 278:/ 274:1 270:[ 264:n 260:L 256:= 249:n 234:n 223:) 220:) 217:1 214:( 211:o 208:+ 205:1 202:( 198:e 184:n 169:n 154:) 144:( 137:2 129:= 118:2 99:n 71:n 67:n 26:(

Index

algorithm
integer factorization
general number field sieve
integers
Carl Pomerance
Schroeppel
congruence of squares
modulo
matrix
parallelized
block Wiedemann algorithm
perfect square
Fermat's factorization method
Dixon's factorization method
L-notation
Fermat's method
congruence of squares
Euclidean algorithm
greatest common divisor
fundamental theorem of arithmetic
prime powers
parity
zero vector
linear algebra
ring
Galois field
theorem of linear algebra
linear dependency
Gaussian elimination
prime

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑