Knowledge

Integer factorization

Source 📝

3741: 215: 693: 191:), even the fastest prime factorization algorithms on the fastest computers can take enough time to make the search impractical; that is, as the number of digits of the integer being factored increases, the number of operations required to perform the factorization on any computer increases drastically. 1945: 263:
by repeated application of this algorithm. The situation is more complicated with special-purpose factorization algorithms, whose benefits may not be realized as well or even at all with the factors produced during decomposition. For example, if
2211:
Kleinjung, Thorsten; Aoki, Kazumaro; Franke, Jens; Lenstra, Arjen K.; Thomé, Emmanuel; Bos, Joppe W.; Gaudry, Pierrick; Kruppa, Alexander; Montgomery, Peter L.; Osvik, Dag Arne; te Riele, Herman J. J.; Timofeev, Andrey; Zimmermann, Paul (2010).
537: 979:
A special-purpose factoring algorithm's running time depends on the properties of the number to be factored or on one of its unknown factors: size, special form, etc. The parameters which determine the running time vary among algorithms.
991:
algorithms, whose running time depends on the size of smallest prime factor. Given an integer of unknown form, these methods are usually applied before general-purpose methods to remove small factors. For example, naive
1305: 3612: 2759:
Chapter 5: Exponential Factoring Algorithms, pp. 191–226. Chapter 6: Subexponential Factoring Algorithms, pp. 227–284. Section 7.4: Elliptic curve method, pp. 301–313.
1818: 125:. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient. A prime factorization algorithm typically involves 382:. While these are easily recognized as composite and prime respectively, Fermat's method will take much longer to factor the composite number because the starting value of 2909: 82:
is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example
688:{\displaystyle \exp \left(\left(\left({\tfrac {8}{3}}\right)^{\frac {2}{3}}+o(1)\right)\left(\log n\right)^{\frac {1}{3}}\left(\log \log n\right)^{\frac {2}{3}}\right).} 3616: 2193: 805: 785: 3124: 434:) utilizing approximately 900 core-years of computing power. The researchers estimated that a 1024-bit RSA modulus would take about 500 times as long. 430:
In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240-digit (795-bit) number (
2902: 2390:
Vandersypen, Lieven M. K.; et al. (2001). "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance".
3157: 2063: 831:, meaning that both "yes" and "no" answers can be verified in polynomial time. An answer of "yes" can be certified by exhibiting a factorization 2062:
To obtain an algorithm for factoring any positive integer, it is necessary to add a few steps to this algorithm such as trial division, and the
4102: 2107: 441:, an 829-bit number with 250 decimal digits, in February 2020. The total computation time was roughly 2700 core-years of computing using Intel 36: 1166: 445:
6130 at 2.1 GHz. Like all recent factorization records, this factorization was completed with a highly optimized implementation of the
1094:
algorithm, has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor
179:
Not all numbers of a given length are equally hard to factor. The hardest instances of these problems (for currently known techniques) are
4097: 2993: 2957: 2895: 2689: 898:
guarantees that there is only one possible string of increasing primes that will be accepted, which shows that the problem is in both
4092: 3684: 3481: 3117: 1342:
The Schnorr–Seysen–Lenstra probabilistic algorithm has been rigorously proven by Lenstra and Pomerance to have expected running time
194:
Many cryptographic protocols are based on the difficulty of factoring large composite integers or a related problem—for example, the
494:. Neither the existence nor non-existence of such algorithms has been proved, but it is generally suspected that they do not exist. 442: 2988: 1020: 958:
that can test primality very quickly in practice if one is willing to accept a vanishingly small possibility of error. The ease of
2221:
Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings
3349: 1132: 2830: 2801: 2568: 2551: 2496: 2367: 2309: 2264: 2172: 3291: 3110: 1046: 3220: 3397: 20: 3730: 2918: 2780: 2752: 2197: 895: 233: 141: 187:
long, randomly chosen, and about the same size (but not too close, for example, to avoid efficient factorization by
3927: 3344: 3306: 3281: 3195: 1360: 1111: 1051: 1024: 188: 3486: 3377: 3296: 3286: 3225: 3188: 2767: 1106: 1056: 3740: 3314: 3162: 3065: 3035: 1331: 427:
whose factors are of similar size. For this reason, these are the integers used in cryptographic applications.
3045: 3677: 3567: 2952: 2340:
Buhler, J. P.; Lenstra, H. W. Jr.; Pomerance, Carl (1993). "Factoring integers with the number field sieve".
1940:{\displaystyle \left(\prod _{x\in X_{}}x^{r(x)}\right).\left(\prod _{q\in P_{\Delta }}f_{q}^{t(q)}\right)=1.} 1035: 412: 2454: 3562: 3529: 3491: 3392: 3443: 3081: 2096: 1416:
is an odd positive integer greater than a certain constant. In this factoring algorithm the discriminant
153: 91: 3881: 3917: 3608: 3598: 3557: 3333: 3327: 3301: 3172: 3019: 2983: 2962: 1127: 1061: 1010: 739: 516: 446: 512: 259:
Given a general algorithm for integer factorization, any integer can be factored into its constituent
3902: 3593: 3534: 3060: 1505: 1066: 2978: 2866: 3670: 3496: 3369: 3215: 3167: 2117: 256:. If composite, however, the polynomial time tests give no insight into how to obtain the factors. 4046: 183:, the product of two prime numbers. When they are both large, for instance more than two thousand 4056: 3922: 3846: 3511: 3086: 2823: 2075: 1627: 169: 3402: 2543: 2536: 1591:
The relation that will be used is a relation between the product of powers that is equal to the
58:
of integers. Every positive integer greater than 1 is either the product of two or more integer
4107: 3907: 3866: 3622: 3572: 3552: 2787: 1157:
In number theory, there are many integer factoring algorithms that heuristically have expected
909:
The problem is suspected to be outside all three of the complexity classes P, NP-complete, and
19:"Prime decomposition" redirects here. For the prime decomposition theorem for 3-manifolds, see 2865:, Neeraj Kayal, Nitin Saxena, "PRIMES is in P." Annals of Mathematics 160(2): 781–793 (2004). 2511: 2291: 2246: 140:
is known. However, it has not been proven that such an algorithm does not exist. The presumed
3836: 3632: 3248: 3177: 2947: 2937: 2652: 1319: 1099: 55: 4010: 3912: 3627: 3519: 3501: 3476: 3438: 3182: 3055: 2718: 2637: 2592: 2506: 2411: 2319: 2274: 955: 738:-bit number inputs. In 2001, Shor's algorithm was implemented for the first time, by using 423:-bit numbers, the most difficult to factor in practice using existing algorithms are those 8: 4071: 4066: 3861: 3856: 3841: 3780: 3637: 3603: 3524: 3428: 3387: 3382: 3359: 3263: 2814: 2152: 2101: 1592: 1145: 1005: 713: 3049: 3039: 2872: 2852:
Richard P. Brent, "Recent Progress and Prospects for Integer Factorisation Algorithms",
2415: 3995: 3990: 3951: 3871: 3851: 3468: 3415: 3412: 3253: 3202: 3152: 2612:"A probabilistic factorization algorithm with quadratic forms of negative discriminant" 2435: 2401: 2323: 1330:
proposed by Schnorr, Seysen, and Lenstra, which they proved only assuming the unproved
951: 885: 790: 770: 253: 149: 3662: 3209: 2709: 2671: 2628: 2611: 932:
a prime number?") appears to be much easier than the problem of specifying factors of
4031: 3971: 3588: 3544: 3258: 3235: 2887: 2826: 2797: 2776: 2748: 2584: 2547: 2492: 2480: 2427: 2363: 2327: 2305: 2260: 2168: 2130: 1352: 1086: 705: 2849:– SIQS and NFS – has helped complete some of the largest public factorizations known 2038:
is found. In order to prevent useless ambiguous forms from generating, build up the
1980:
of order dividing 2 to obtain a coprime factorization of the largest odd divisor of
1351:
by replacing the GRH assumption with the use of multipliers. The algorithm uses the
4061: 4036: 3956: 3942: 3876: 3760: 3720: 3433: 3014: 2862: 2736: 2704: 2667: 2623: 2580: 2439: 2419: 2392: 2355: 2347: 2297: 2252: 2242: 2224: 2160: 2122: 1473: 750: 746: 173: 161: 133: 63: 51: 2596: 2164: 515:. As of 2022, the algorithm with best theoretical asymptotic running time is the 4041: 3966: 3960: 3897: 3795: 3785: 3715: 3423: 3322: 2714: 2633: 2588: 2502: 2315: 2270: 2228: 2223:. Lecture Notes in Computer Science. Vol. 6223. Springer. pp. 333–350. 1323: 1158: 1117: 1014: 963: 914: 899: 824: 462: 438: 249: 199: 4051: 4005: 3831: 3815: 3805: 3775: 3453: 3354: 3339: 3243: 3144: 3091: 3009: 2819: 2740: 2527: 2476: 2468: 2039: 1356: 1311: 1122: 1000: 993: 959: 910: 479: 289: 245: 165: 126: 102: 33:
Can integer factorization be solved in polynomial time on a classical computer?
3102: 2256: 938:. The composite/prime problem can be solved in polynomial time (in the number 4086: 4000: 3800: 3790: 3770: 3448: 3133: 2472: 2301: 2287: 2112: 1440: 241: 2034:
then stop, otherwise find another ambiguous form until the factorization of
214: 25: 4015: 3932: 3810: 3755: 3725: 3458: 2762: 2431: 260: 237: 145: 67: 2857: 2846: 2653:"Fast and rigorous factorization under the generalized Riemann hypothesis" 2346:. Lecture Notes in Mathematics. Vol. 1554. Springer. pp. 50–94. 1604:. These relations will be used to construct a so-called ambiguous form of 198:. An algorithm that efficiently factors an arbitrary integer would render 2942: 2484: 2406: 966:
algorithm, as it is necessary to find large prime numbers to start with.
195: 157: 118: 43: 2791: 2455:"Computational Complexity Blog: Complexity Class of the Week: Factoring" 872:. An answer of "no" can be certified by exhibiting the factorization of 2881: 2531: 2491:, Princeton, New Jersey: Princeton University Press, pp. 575–604, 2351: 2213: 1622:
of order dividing 2. By calculating the corresponding factorization of
1315: 1095: 709: 424: 203: 2248:
The Proof is in the Pudding: The Changing Nature of Mathematical Proof
2194:"[Cado-nfs-discuss] 795-bit factoring and discrete logarithms" 1300:{\displaystyle L_{n}\left=e^{(1+o(1)){\sqrt {(\log n)(\log \log n)}}}} 698:
For current computers, GNFS is the best published algorithm for large
3765: 3136: 2359: 2341: 1456:
can be restricted to a small set to guarantee the smoothness result.
983:
An important subclass of special-purpose factoring algorithms is the
458: 180: 137: 2423: 90:; the result is always unique up to the order of the factors by the 2735: 1630:, this ambiguous form provides the complete prime factorization of 712:
discovered an algorithm in 1994 that solves it in polynomial time.
3710: 2078:
as it makes random choices. Its expected running time is at most
431: 101:
using mental or pen-and-paper arithmetic, the simplest method is
59: 2569:"Refined analysis and improvements on some factoring algorithms" 1435:
is some positive multiplier. The algorithm expects that for one
298:
divisions to find the next factor. As a contrasting example, if
86:. Continuing this process until every factor is prime is called 3981: 2526: 1098:. Most general-purpose factoring algorithms are based on the 828: 84:
60 = 3 · 20 = 3 · (5 · 4)
749:
such as P, NP, and co-NP, the problem has to be stated as a
2210: 2133:– a way of writing a number as a sum of positive integers. 1550:
a sequence of relations between the set of generators and
2783:. Section 4.5.4: Factoring into Primes, pp. 379–417. 903: 184: 292:
will quickly produce the factors 3 and 19 but will take
144:
of this problem is important for the algorithms used in
3692: 3653:
indicate that algorithm is for numbers of special forms
2104:
for generating random numbers with their factorizations
1077:
A general-purpose factoring algorithm, also known as a
105:: checking if the number is divisible by prime numbers 2917: 2786: 2339: 2296:, Cambridge: Cambridge University Press, p. 230, 2155:, in van Tilborg, Henk C. A.; Jajodia, Sushil (eds.), 1186: 563: 132:
When the numbers are sufficiently large, no efficient
2522: 2520: 1821: 1169: 793: 773: 540: 2683: 2681: 1665:
is the negative discriminant of some quadratic form.
497:
There are published algorithms that are faster than
164:
have been brought to bear on the problem, including
27: 1403: 742:techniques on molecules that provide seven qubits. 461:has been published that can factor all integers in 2535: 2517: 2467: 2030:If the ambiguous form provides a factorization of 1939: 1299: 799: 779: 687: 2796:. Providence, RI: American Mathematical Society. 2678: 4084: 2687: 1452:. Lenstra and Pomerance show that the choice of 320:, Fermat's factorization method will begin with 3132: 2882:Dario Alpern's Integer factorization calculator 2690:"A Rigorous Time Bound for Factoring Integers" 2108:Canonical representation of a positive integer 519:(GNFS), first published in 1993, running on a 3678: 3118: 2903: 2688:Lenstra, H. W.; Pomerance, Carl (July 1992). 2475:(2008), "IV.20 Computational Complexity", in 2452: 2159:, Boston, MA: Springer US, pp. 611–618, 66:, or it is not, in which case it is called a 62:greater than 1, in which case it is called a 2697:Journal of the American Mathematical Society 2644: 2560: 2542:. Key College Publishing/Springer. pp.  1785:Collect a sequence of relations between set 1400:in which those integers are relative prime. 1318:. Some examples of those algorithms are the 437:The largest such semiprime yet factored was 248:whether the integer is prime can be done in 37:(more unsolved problems in computer science) 2603: 2389: 1139: 926:a composite number?" (or equivalently: "Is 884:; one can verify their primality using the 406: 3685: 3671: 3125: 3111: 2910: 2896: 2745:Prime Numbers: A Computational Perspective 2286: 2708: 2627: 2405: 2343:The development of the number field sieve 2157:Encyclopedia of Cryptography and Security 1152: 2884:– A web app for factoring large integers 2214:"Factorization of a 768-Bit RSA Modulus" 2069: 1337: 1021:Algebraic-group factorization algorithms 213: 16:Decomposition of a number into a product 2775:, Third Edition. Addison-Wesley, 1997. 2650: 2566: 2538:A Course in Computational Number Theory 2150: 1634:. This algorithm has these main steps: 969: 4085: 2811: 2609: 2489:The Princeton Companion to Mathematics 2241: 920:In contrast, the decision problem "Is 913:. It is therefore a candidate for the 878:into distinct primes, all larger than 236:, every positive integer has a unique 209: 4103:Unsolved problems in computer science 3666: 3106: 2891: 2204: 1047:Lenstra elliptic curve factorization 127:testing whether each factor is prime 28:Unsolved problem in computer science 3693:Divisibility-based sets of integers 2251:, New York: Springer, p. 203, 1133:Shanks's square forms factorization 888:, and then multiply them to obtain 13: 4098:Computational hardness assumptions 2919:Computational hardness assumptions 1895: 1384:is the set of triples of integers 1072: 1013:, which has two common flavors to 974: 704:(more than about 400 bits). For a 452: 21:Prime decomposition of 3-manifolds 14: 4119: 3731:Fundamental theorem of arithmetic 3334:Special number field sieve (SNFS) 3328:General number field sieve (GNFS) 2840: 2710:10.1090/S0894-0347-1992-1137100-0 2629:10.1090/S0025-5718-1987-0878705-X 954:. In addition, there are several 896:fundamental theorem of arithmetic 234:fundamental theorem of arithmetic 4093:Integer factorization algorithms 3739: 2958:Decisional composite residuosity 1404:Schnorr–Seysen–Lenstra algorithm 1326:. Another such algorithm is the 1112:Continued fraction factorization 1017:: one by Floyd and one by Brent. 902:and co-UP. It is known to be in 2768:The Art of Computer Programming 2461: 2446: 2383: 2333: 2280: 2235: 2186: 2144: 1921: 1915: 1861: 1855: 1641:be the number to be factored. 1332:generalized Riemann hypothesis 1290: 1272: 1269: 1257: 1252: 1249: 1243: 1231: 1215: 1209: 601: 595: 74:is a composite number because 1: 2812:Warren, Henry S. Jr. (2013). 2729: 2672:10.1016/S1385-7258(88)80022-2 2165:10.1007/978-1-4419-5906-5_455 2074:The algorithm as stated is a 1412:that will be factored, where 1052:Fermat's factorization method 906:because of Shor's algorithm. 465:, that is, that can factor a 449:run on hundreds of machines. 413:Integer factorization records 318:13729 × 1372933 = 18848997157 304:is the product of the primes 189:Fermat's factorization method 129:each time a factor is found. 97:To factorize a small integer 3292:Lenstra elliptic curve (ECM) 2994:Computational Diffie–Hellman 2854:Computing and Combinatorics" 2585:10.1016/0196-6774(82)90012-8 2453:Lance Fortnow (2002-09-13). 2229:10.1007/978-3-642-14623-7_18 1951:Construct an ambiguous form 1328:class group relations method 1107:Dixon's factorization method 1057:Euler's factorization method 7: 3082:Exponential time hypothesis 2097:Aurifeuillean factorization 2090: 1650:be a negative integer with 1504:. By constructing a set of 1420:is chosen as a multiple of 996:is a Category 1 algorithm. 813:have a factor smaller than 240:. (By convention, 1 is the 92:prime factorization theorem 10: 4126: 3599:Exponentiation by squaring 3282:Continued fraction (CFRAC) 2616:Mathematics of Computation 2567:Schnorr, Claus P. (1982). 2151:Lenstra, Arjen K. (2011), 1728:be a random prime form of 1561:are produced. The size of 1128:General number field sieve 1062:Special number field sieve 823:It is known to be in both 767:For every natural numbers 517:general number field sieve 447:general number field sieve 410: 50:is the decomposition of a 18: 4024: 3980: 3941: 3928:Superior highly composite 3890: 3824: 3748: 3737: 3698: 3646: 3581: 3543: 3510: 3467: 3411: 3368: 3272: 3234: 3143: 3092:Planted clique conjecture 3074: 3061:Ring learning with errors 3028: 3002: 2989:Decisional Diffie–Hellman 2971: 2925: 2660:Indagationes Mathematicae 2651:Lenstra, Arjen K (1988). 2257:10.1007/978-0-387-48744-1 1613:, which is an element of 1067:Difference of two squares 962:is a crucial part of the 333:which immediately yields 150:RSA public-key encryption 3825:Constrained divisor sums 2773:Seminumerical Algorithms 2302:10.1017/CBO9780511804090 2293:Computational complexity 2137: 2118:Multiplicative partition 1140:Other notable algorithms 956:probabilistic algorithms 407:Current state of the art 3512:Greatest common divisor 3087:Unique games conjecture 3036:Shortest vector problem 3010:External Diffie–Hellman 2875:MathWorld Headline News 2867:August 2005 version PDF 2856:, 2000, pp. 3–22. 2824:Pearson Education, Inc. 2610:Seysen, Martin (1987). 2219:. In Rabin, Tal (ed.). 2076:probabilistic algorithm 1148:, for quantum computers 1011:Pollard's rho algorithm 762:(Integer factorization) 745:In order to talk about 399:is a factor of 10 from 288:are very large primes, 218:Prime decomposition of 206:cryptography insecure. 170:algebraic number theory 117:, and so on, up to the 3623:Modular exponentiation 3066:Short integer solution 3046:Closest vector problem 2788:Samuel S. Wagstaff Jr. 2599:on September 24, 2017. 2290:; Barak, Boaz (2009), 1941: 1769:Find a generating set 1468:the set of all primes 1301: 1153:Heuristic running time 801: 781: 689: 360:and hence the factors 252:, for example, by the 229: 136:integer factorization 76:15 = 3 · 5 3706:Integer factorization 3350:Shanks's square forms 3274:Integer factorization 3249:Sieve of Eratosthenes 2953:Quadratic residuosity 2933:Integer factorization 2573:Journal of Algorithms 2070:Expected running time 1942: 1338:Rigorous running time 1320:elliptic curve method 1302: 1100:congruence of squares 1015:identify group cycles 802: 782: 690: 217: 154:RSA digital signature 48:integer factorization 3628:Montgomery reduction 3502:Function field sieve 3477:Baby-step giant-step 3323:Quadratic sieve (QS) 3056:Learning with errors 2793:The Joy of Factoring 2510:. See in particular 1819: 1661:is a multiplier and 1167: 970:Factoring algorithms 791: 771: 538: 3918:Colossally abundant 3749:Factorization forms 3638:Trachtenberg system 3604:Integer square root 3545:Modular square root 3264:Wheel factorization 3216:Quadratic Frobenius 3196:Lucas–Lehmer–Riesel 2873:“RSA-640 Factored” 2871:Eric W. Weisstein, 2416:2001Natur.414..883V 2153:"Integer Factoring" 1967:that is an element 1925: 1439:there exist enough 1355:of positive binary 1006:Wheel factorization 765: —  238:prime factorization 210:Prime decomposition 88:prime factorization 3903:Primitive abundant 3891:With many divisors 3530:Extended Euclidean 3469:Discrete logarithm 3398:Schönhage–Strassen 3254:Sieve of Pritchard 2979:Discrete logarithm 2963:Higher residuosity 2877:, November 8, 2005 2481:Barrow-Green, June 2352:10.1007/BFb0091539 1937: 1902: 1901: 1846: 1579:for some constant 1565:can be bounded by 1297: 1195: 1023:, among which are 952:AKS primality test 917:complexity class. 886:AKS primality test 797: 777: 759: 747:complexity classes 685: 572: 488:for some constant 254:AKS primality test 230: 4080: 4079: 3660: 3659: 3259:Sieve of Sundaram 3100: 3099: 3075:Non-cryptographic 2832:978-0-321-84268-8 2803:978-1-4704-1048-3 2553:978-1-930190-10-8 2498:978-0-691-11880-2 2400:(6866): 883–887. 2369:978-3-540-57013-4 2311:978-0-521-42426-4 2266:978-0-387-48908-7 2243:Krantz, Steven G. 2174:978-1-4419-5905-8 2131:Integer partition 1879: 1827: 1408:Given an integer 1293: 1194: 960:primality testing 800:{\displaystyle k} 780:{\displaystyle n} 757: 674: 637: 586: 571: 505:for all positive 499:O((1 +  174:quantum computing 4115: 4057:Harmonic divisor 3943:Aliquot sequence 3923:Highly composite 3847:Multiply perfect 3743: 3721:Divisor function 3687: 3680: 3673: 3664: 3663: 3609:Integer relation 3582:Other algorithms 3487:Pollard kangaroo 3378:Ancient Egyptian 3236:Prime-generating 3221:Solovay–Strassen 3134:Number-theoretic 3127: 3120: 3113: 3104: 3103: 3015:Sub-group hiding 2926:Number theoretic 2912: 2905: 2898: 2889: 2888: 2863:Manindra Agrawal 2836: 2815:Hacker's Delight 2807: 2758: 2737:Richard Crandall 2723: 2722: 2712: 2694: 2685: 2676: 2675: 2657: 2648: 2642: 2641: 2631: 2622:(178): 757–780. 2607: 2601: 2600: 2595:. Archived from 2564: 2558: 2557: 2541: 2524: 2515: 2509: 2465: 2459: 2458: 2450: 2444: 2443: 2409: 2407:quant-ph/0112176 2387: 2381: 2380: 2378: 2376: 2337: 2331: 2330: 2284: 2278: 2277: 2239: 2233: 2232: 2218: 2208: 2202: 2201: 2196:. Archived from 2190: 2184: 2183: 2182: 2181: 2148: 2125: 2102:Bach's algorithm 2086: 2056: 2049: 2037: 2033: 2026: 2006: 1990: 1983: 1979: 1966: 1946: 1944: 1943: 1938: 1930: 1926: 1924: 1910: 1900: 1899: 1898: 1870: 1866: 1865: 1864: 1845: 1844: 1843: 1812: 1788: 1781: 1772: 1765: 1763: 1760: 1759: 1757: 1756: 1751: 1748: 1741: 1736: 1727: 1713: 1703: 1671: 1664: 1660: 1656: 1649: 1640: 1633: 1626:and by taking a 1625: 1621: 1612: 1603: 1587: 1578: 1576: 1564: 1560: 1549: 1540: 1536: 1527: 1517:and prime forms 1516: 1503: 1501: 1498: 1497: 1495: 1494: 1489: 1486: 1479: 1474:Kronecker symbol 1471: 1467: 1455: 1451: 1438: 1434: 1430: 1423: 1419: 1415: 1411: 1399: 1383: 1374: 1365: 1350: 1306: 1304: 1303: 1298: 1296: 1295: 1294: 1256: 1222: 1218: 1196: 1187: 1179: 1178: 1146:Shor's algorithm 1042: 1031: 949: 943: 937: 931: 925: 893: 883: 877: 871: 861: 859: 857: 856: 851: 848: 818: 812: 806: 804: 803: 798: 786: 784: 783: 778: 766: 763: 758:Decision problem 751:decision problem 737: 731: 723: 714:Shor's algorithm 706:quantum computer 703: 694: 692: 691: 686: 681: 677: 676: 675: 667: 665: 661: 639: 638: 630: 628: 624: 608: 604: 588: 587: 579: 577: 573: 564: 530: 524: 510: 504: 493: 487: 476: 470: 422: 402: 398: 392: 390: 389: 381: 370: 359: 357: 356: 350: 349: 332: 330: 329: 319: 315: 311: 307: 303: 297: 287: 277: 228: 224: 162:computer science 156:. Many areas of 124: 116: 112: 108: 100: 85: 81: 77: 73: 64:composite number 52:positive integer 29: 4125: 4124: 4118: 4117: 4116: 4114: 4113: 4112: 4083: 4082: 4081: 4076: 4020: 3976: 3937: 3908:Highly abundant 3886: 3867:Unitary perfect 3820: 3744: 3735: 3716:Unitary divisor 3694: 3691: 3661: 3656: 3642: 3577: 3539: 3506: 3463: 3407: 3364: 3268: 3230: 3203:Proth's theorem 3145:Primality tests 3139: 3131: 3101: 3096: 3070: 3024: 3020:Decision linear 2998: 2972:Group theoretic 2967: 2921: 2916: 2843: 2833: 2804: 2755: 2732: 2727: 2726: 2692: 2686: 2679: 2655: 2649: 2645: 2608: 2604: 2565: 2561: 2554: 2525: 2518: 2499: 2477:Gowers, Timothy 2469:Goldreich, Oded 2466: 2462: 2451: 2447: 2424:10.1038/414883a 2388: 2384: 2374: 2372: 2370: 2338: 2334: 2312: 2285: 2281: 2267: 2240: 2236: 2216: 2209: 2205: 2192: 2191: 2187: 2179: 2177: 2175: 2149: 2145: 2140: 2126:-adic valuation 2123: 2093: 2084: 2079: 2072: 2064:Jacobi sum test 2060: 2051: 2047: 2043: 2035: 2031: 2008: 1992: 1985: 1981: 1978: 1968: 1952: 1911: 1906: 1894: 1890: 1883: 1878: 1874: 1851: 1847: 1842: 1838: 1831: 1826: 1822: 1820: 1817: 1816: 1810: 1799: 1790: 1786: 1780: 1774: 1770: 1761: 1752: 1749: 1746: 1745: 1743: 1742: 1739: 1738: 1735: 1729: 1726: 1718: 1705: 1702: 1693: 1686: 1679: 1673: 1669: 1662: 1658: 1651: 1647: 1638: 1631: 1623: 1620: 1614: 1611: 1605: 1602: 1596: 1593:neutral element 1586: 1580: 1574: 1572: 1566: 1562: 1559: 1551: 1548: 1542: 1538: 1535: 1529: 1526: 1518: 1515: 1509: 1499: 1490: 1487: 1484: 1483: 1481: 1480: 1477: 1476: 1469: 1466: 1460: 1453: 1450: 1444: 1436: 1432: 1425: 1421: 1417: 1413: 1409: 1406: 1385: 1382: 1376: 1373: 1367: 1363: 1357:quadratic forms 1348: 1343: 1340: 1324:quadratic sieve 1255: 1230: 1226: 1185: 1184: 1180: 1174: 1170: 1168: 1165: 1164: 1155: 1142: 1118:Quadratic sieve 1083:Second Category 1075: 1073:General-purpose 1037: 1026: 977: 975:Special-purpose 972: 945: 939: 933: 927: 921: 915:NP-intermediate 889: 879: 873: 863: 852: 849: 844: 843: 841: 832: 821: 814: 808: 792: 789: 788: 772: 769: 768: 764: 761: 733: 725: 717: 699: 666: 645: 641: 640: 629: 614: 610: 609: 578: 562: 558: 557: 556: 552: 551: 547: 539: 536: 535: 526: 520: 513:sub-exponential 506: 498: 489: 478: 472: 466: 463:polynomial time 455: 453:Time complexity 418: 415: 409: 400: 394: 387: 385: 383: 372: 361: 354: 352: 341: 339: 334: 331:⌉ = 18848997159 325: 323: 321: 317: 313: 309: 305: 299: 293: 279: 265: 250:polynomial time 226: 219: 212: 166:elliptic curves 122: 114: 110: 106: 98: 83: 79: 75: 71: 70:. For example, 40: 39: 34: 31: 24: 17: 12: 11: 5: 4123: 4122: 4111: 4110: 4105: 4100: 4095: 4078: 4077: 4075: 4074: 4069: 4064: 4059: 4054: 4049: 4044: 4039: 4034: 4028: 4026: 4022: 4021: 4019: 4018: 4013: 4008: 4003: 3998: 3993: 3987: 3985: 3978: 3977: 3975: 3974: 3969: 3964: 3954: 3948: 3946: 3939: 3938: 3936: 3935: 3930: 3925: 3920: 3915: 3910: 3905: 3900: 3894: 3892: 3888: 3887: 3885: 3884: 3879: 3874: 3869: 3864: 3859: 3854: 3849: 3844: 3839: 3837:Almost perfect 3834: 3828: 3826: 3822: 3821: 3819: 3818: 3813: 3808: 3803: 3798: 3793: 3788: 3783: 3778: 3773: 3768: 3763: 3758: 3752: 3750: 3746: 3745: 3738: 3736: 3734: 3733: 3728: 3723: 3718: 3713: 3708: 3702: 3700: 3696: 3695: 3690: 3689: 3682: 3675: 3667: 3658: 3657: 3655: 3654: 3647: 3644: 3643: 3641: 3640: 3635: 3630: 3625: 3620: 3606: 3601: 3596: 3591: 3585: 3583: 3579: 3578: 3576: 3575: 3570: 3565: 3563:Tonelli–Shanks 3560: 3555: 3549: 3547: 3541: 3540: 3538: 3537: 3532: 3527: 3522: 3516: 3514: 3508: 3507: 3505: 3504: 3499: 3497:Index calculus 3494: 3492:Pohlig–Hellman 3489: 3484: 3479: 3473: 3471: 3465: 3464: 3462: 3461: 3456: 3451: 3446: 3444:Newton-Raphson 3441: 3436: 3431: 3426: 3420: 3418: 3409: 3408: 3406: 3405: 3400: 3395: 3390: 3385: 3380: 3374: 3372: 3370:Multiplication 3366: 3365: 3363: 3362: 3357: 3355:Trial division 3352: 3347: 3342: 3340:Rational sieve 3337: 3330: 3325: 3320: 3312: 3304: 3299: 3294: 3289: 3284: 3278: 3276: 3270: 3269: 3267: 3266: 3261: 3256: 3251: 3246: 3244:Sieve of Atkin 3240: 3238: 3232: 3231: 3229: 3228: 3223: 3218: 3213: 3206: 3199: 3192: 3185: 3180: 3175: 3170: 3168:Elliptic curve 3165: 3160: 3155: 3149: 3147: 3141: 3140: 3130: 3129: 3122: 3115: 3107: 3098: 3097: 3095: 3094: 3089: 3084: 3078: 3076: 3072: 3071: 3069: 3068: 3063: 3058: 3053: 3043: 3032: 3030: 3026: 3025: 3023: 3022: 3017: 3012: 3006: 3004: 3000: 2999: 2997: 2996: 2991: 2986: 2984:Diffie-Hellman 2981: 2975: 2973: 2969: 2968: 2966: 2965: 2960: 2955: 2950: 2945: 2940: 2935: 2929: 2927: 2923: 2922: 2915: 2914: 2907: 2900: 2892: 2886: 2885: 2879: 2869: 2860: 2850: 2842: 2841:External links 2839: 2838: 2837: 2831: 2820:Addison Wesley 2818:(2 ed.). 2809: 2802: 2784: 2760: 2753: 2741:Carl Pomerance 2731: 2728: 2725: 2724: 2703:(3): 483–516. 2677: 2666:(4): 443–454. 2643: 2602: 2579:(2): 101–127. 2559: 2552: 2528:David Bressoud 2516: 2497: 2473:Wigderson, Avi 2460: 2445: 2382: 2368: 2332: 2310: 2288:Arora, Sanjeev 2279: 2265: 2234: 2203: 2200:on 2019-12-02. 2185: 2173: 2142: 2141: 2139: 2136: 2135: 2134: 2128: 2120: 2115: 2110: 2105: 2099: 2092: 2089: 2082: 2071: 2068: 2059: 2058: 2045: 2028: 1976: 1949: 1948: 1947: 1936: 1933: 1929: 1923: 1920: 1917: 1914: 1909: 1905: 1897: 1893: 1889: 1886: 1882: 1877: 1873: 1869: 1863: 1860: 1857: 1854: 1850: 1841: 1837: 1834: 1830: 1825: 1808: 1795: 1783: 1778: 1767: 1733: 1722: 1715: 1698: 1691: 1684: 1677: 1666: 1643: 1618: 1609: 1600: 1584: 1570: 1555: 1546: 1533: 1522: 1513: 1464: 1448: 1405: 1402: 1380: 1371: 1346: 1339: 1336: 1308: 1307: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1259: 1254: 1251: 1248: 1245: 1242: 1239: 1236: 1233: 1229: 1225: 1221: 1217: 1214: 1211: 1208: 1205: 1202: 1199: 1193: 1190: 1183: 1177: 1173: 1154: 1151: 1150: 1149: 1141: 1138: 1137: 1136: 1130: 1125: 1123:Rational sieve 1120: 1115: 1109: 1074: 1071: 1070: 1069: 1064: 1059: 1054: 1049: 1018: 1008: 1003: 1001:Trial division 994:trial division 989:First Category 976: 973: 971: 968: 911:co-NP-complete 796: 776: 755: 696: 695: 684: 680: 673: 670: 664: 660: 657: 654: 651: 648: 644: 636: 633: 627: 623: 620: 617: 613: 607: 603: 600: 597: 594: 591: 585: 582: 576: 570: 567: 561: 555: 550: 546: 543: 454: 451: 408: 405: 290:trial division 211: 208: 103:trial division 35: 32: 26: 15: 9: 6: 4: 3: 2: 4121: 4120: 4109: 4108:Factorization 4106: 4104: 4101: 4099: 4096: 4094: 4091: 4090: 4088: 4073: 4070: 4068: 4065: 4063: 4060: 4058: 4055: 4053: 4050: 4048: 4045: 4043: 4040: 4038: 4035: 4033: 4030: 4029: 4027: 4023: 4017: 4014: 4012: 4011:Polydivisible 4009: 4007: 4004: 4002: 3999: 3997: 3994: 3992: 3989: 3988: 3986: 3983: 3979: 3973: 3970: 3968: 3965: 3962: 3958: 3955: 3953: 3950: 3949: 3947: 3944: 3940: 3934: 3931: 3929: 3926: 3924: 3921: 3919: 3916: 3914: 3913:Superabundant 3911: 3909: 3906: 3904: 3901: 3899: 3896: 3895: 3893: 3889: 3883: 3882:ErdƑs–Nicolas 3880: 3878: 3875: 3873: 3870: 3868: 3865: 3863: 3860: 3858: 3855: 3853: 3850: 3848: 3845: 3843: 3840: 3838: 3835: 3833: 3830: 3829: 3827: 3823: 3817: 3814: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3794: 3792: 3791:Perfect power 3789: 3787: 3784: 3782: 3779: 3777: 3774: 3772: 3769: 3767: 3764: 3762: 3759: 3757: 3754: 3753: 3751: 3747: 3742: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3709: 3707: 3704: 3703: 3701: 3697: 3688: 3683: 3681: 3676: 3674: 3669: 3668: 3665: 3652: 3649: 3648: 3645: 3639: 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3618: 3614: 3610: 3607: 3605: 3602: 3600: 3597: 3595: 3592: 3590: 3587: 3586: 3584: 3580: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3558:Pocklington's 3556: 3554: 3551: 3550: 3548: 3546: 3542: 3536: 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3517: 3515: 3513: 3509: 3503: 3500: 3498: 3495: 3493: 3490: 3488: 3485: 3483: 3480: 3478: 3475: 3474: 3472: 3470: 3466: 3460: 3457: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3435: 3432: 3430: 3427: 3425: 3422: 3421: 3419: 3417: 3414: 3410: 3404: 3401: 3399: 3396: 3394: 3391: 3389: 3386: 3384: 3381: 3379: 3376: 3375: 3373: 3371: 3367: 3361: 3358: 3356: 3353: 3351: 3348: 3346: 3343: 3341: 3338: 3336: 3335: 3331: 3329: 3326: 3324: 3321: 3319: 3317: 3313: 3311: 3309: 3305: 3303: 3302:Pollard's rho 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3279: 3277: 3275: 3271: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3241: 3239: 3237: 3233: 3227: 3224: 3222: 3219: 3217: 3214: 3212: 3211: 3207: 3205: 3204: 3200: 3198: 3197: 3193: 3191: 3190: 3186: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3150: 3148: 3146: 3142: 3138: 3135: 3128: 3123: 3121: 3116: 3114: 3109: 3108: 3105: 3093: 3090: 3088: 3085: 3083: 3080: 3079: 3077: 3073: 3067: 3064: 3062: 3059: 3057: 3054: 3051: 3047: 3044: 3041: 3037: 3034: 3033: 3031: 3027: 3021: 3018: 3016: 3013: 3011: 3008: 3007: 3005: 3001: 2995: 2992: 2990: 2987: 2985: 2982: 2980: 2977: 2976: 2974: 2970: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2944: 2941: 2939: 2936: 2934: 2931: 2930: 2928: 2924: 2920: 2913: 2908: 2906: 2901: 2899: 2894: 2893: 2890: 2883: 2880: 2878: 2876: 2870: 2868: 2864: 2861: 2859: 2855: 2851: 2848: 2845: 2844: 2834: 2828: 2825: 2821: 2817: 2816: 2810: 2805: 2799: 2795: 2794: 2789: 2785: 2782: 2781:0-201-89684-2 2778: 2774: 2770: 2769: 2764: 2761: 2756: 2754:0-387-94777-9 2750: 2746: 2742: 2738: 2734: 2733: 2720: 2716: 2711: 2706: 2702: 2698: 2691: 2684: 2682: 2673: 2669: 2665: 2661: 2654: 2647: 2639: 2635: 2630: 2625: 2621: 2617: 2613: 2606: 2598: 2594: 2590: 2586: 2582: 2578: 2574: 2570: 2563: 2555: 2549: 2545: 2540: 2539: 2533: 2529: 2523: 2521: 2513: 2508: 2504: 2500: 2494: 2490: 2486: 2482: 2478: 2474: 2470: 2464: 2456: 2449: 2441: 2437: 2433: 2429: 2425: 2421: 2417: 2413: 2408: 2403: 2399: 2395: 2394: 2386: 2371: 2365: 2361: 2357: 2353: 2349: 2345: 2344: 2336: 2329: 2325: 2321: 2317: 2313: 2307: 2303: 2299: 2295: 2294: 2289: 2283: 2276: 2272: 2268: 2262: 2258: 2254: 2250: 2249: 2244: 2238: 2230: 2226: 2222: 2215: 2207: 2199: 2195: 2189: 2176: 2170: 2166: 2162: 2158: 2154: 2147: 2143: 2132: 2129: 2127: 2121: 2119: 2116: 2114: 2113:Factorization 2111: 2109: 2106: 2103: 2100: 2098: 2095: 2094: 2088: 2085: 2077: 2067: 2065: 2054: 2041: 2029: 2024: 2020: 2016: 2012: 2004: 2000: 1996: 1989: 1975: 1971: 1964: 1960: 1956: 1950: 1934: 1931: 1927: 1918: 1912: 1907: 1903: 1891: 1887: 1884: 1880: 1875: 1871: 1867: 1858: 1852: 1848: 1839: 1835: 1832: 1828: 1823: 1815: 1814: 1807: 1803: 1798: 1794: 1784: 1777: 1768: 1755: 1732: 1725: 1721: 1716: 1712: 1708: 1701: 1697: 1690: 1683: 1676: 1672:first primes 1667: 1655: 1645: 1644: 1642: 1635: 1629: 1617: 1608: 1599: 1594: 1589: 1583: 1569: 1558: 1554: 1545: 1532: 1525: 1521: 1512: 1507: 1493: 1475: 1463: 1457: 1447: 1442: 1429: 1401: 1397: 1393: 1389: 1379: 1370: 1362: 1358: 1354: 1349: 1335: 1333: 1329: 1325: 1321: 1317: 1313: 1287: 1284: 1281: 1278: 1275: 1266: 1263: 1260: 1246: 1240: 1237: 1234: 1227: 1223: 1219: 1212: 1206: 1203: 1200: 1197: 1191: 1188: 1181: 1175: 1171: 1163: 1162: 1161: 1160: 1147: 1144: 1143: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1113: 1110: 1108: 1105: 1104: 1103: 1101: 1097: 1093: 1090: 1089: 1084: 1080: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1044: 1040: 1033: 1029: 1022: 1019: 1016: 1012: 1009: 1007: 1004: 1002: 999: 998: 997: 995: 990: 986: 981: 967: 965: 961: 957: 953: 948: 944:of digits of 942: 936: 930: 924: 918: 916: 912: 907: 905: 901: 897: 892: 887: 882: 876: 870: 866: 855: 847: 839: 835: 830: 826: 820: 817: 811: 794: 774: 754: 752: 748: 743: 741: 736: 729: 721: 715: 711: 707: 702: 682: 678: 671: 668: 662: 658: 655: 652: 649: 646: 642: 634: 631: 625: 621: 618: 615: 611: 605: 598: 592: 589: 583: 580: 574: 568: 565: 559: 553: 548: 544: 541: 534: 533: 532: 529: 523: 518: 514: 509: 502: 495: 492: 485: 481: 475: 469: 464: 460: 450: 448: 444: 440: 435: 433: 428: 426: 421: 414: 404: 397: 380:= 18848997161 379: 375: 369:= 18848997157 368: 364: 348: 344: 337: 328: 302: 296: 291: 286: 282: 276: 272: 268: 262: 261:prime factors 257: 255: 251: 247: 243: 242:empty product 239: 235: 222: 216: 207: 205: 201: 197: 192: 190: 186: 182: 177: 175: 171: 167: 163: 159: 155: 151: 147: 143: 139: 135: 130: 128: 120: 104: 95: 93: 89: 69: 65: 61: 57: 53: 49: 45: 38: 22: 4072:Superperfect 4067:Refactorable 3862:Superperfect 3857:Hyperperfect 3842:Quasiperfect 3726:Prime factor 3705: 3650: 3332: 3315: 3307: 3273: 3226:Miller–Rabin 3208: 3201: 3194: 3189:Lucas–Lehmer 3187: 2932: 2874: 2853: 2813: 2792: 2772: 2771:, Volume 2: 2766: 2763:Donald Knuth 2747:. Springer. 2744: 2700: 2696: 2663: 2659: 2646: 2619: 2615: 2605: 2597:the original 2576: 2572: 2562: 2537: 2488: 2485:Leader, Imre 2463: 2448: 2397: 2391: 2385: 2373:. Retrieved 2342: 2335: 2292: 2282: 2247: 2237: 2220: 2206: 2198:the original 2188: 2178:, retrieved 2156: 2146: 2080: 2073: 2061: 2052: 2022: 2018: 2014: 2010: 2002: 1998: 1994: 1987: 1973: 1969: 1962: 1958: 1954: 1813:satisfying: 1805: 1801: 1796: 1792: 1775: 1753: 1730: 1723: 1719: 1710: 1706: 1699: 1695: 1688: 1681: 1674: 1653: 1636: 1615: 1606: 1597: 1590: 1581: 1567: 1556: 1552: 1543: 1530: 1523: 1519: 1510: 1491: 1461: 1458: 1445: 1427: 1407: 1395: 1391: 1387: 1377: 1368: 1361:discriminant 1344: 1341: 1327: 1309: 1159:running time 1156: 1091: 1087: 1082: 1078: 1076: 1038: 1027: 988: 984: 982: 978: 946: 940: 934: 928: 922: 919: 908: 890: 880: 874: 868: 864: 853: 845: 837: 833: 822: 815: 809: 756: 744: 734: 727: 719: 700: 697: 527: 525:-bit number 521: 507: 500: 496: 490: 483: 473: 471:-bit number 467: 456: 436: 429: 419: 416: 395: 377: 373: 366: 362: 346: 342: 335: 326: 300: 294: 284: 280: 274: 270: 266: 258: 231: 220: 193: 178: 146:cryptography 131: 96: 87: 68:prime number 47: 41: 3996:Extravagant 3991:Equidigital 3952:Untouchable 3872:Semiperfect 3852:Hemiperfect 3781:Square-free 3482:Pollard rho 3439:Goldschmidt 3173:Pocklington 3163:Baillie–PSW 2943:RSA problem 2512:p. 583 1704:, for some 1366:denoted by 1353:class group 1096:RSA numbers 950:) with the 819:besides 1? 716:takes only 708:, however, 511:, that is, 388:18848997157 314:18848997161 196:RSA problem 158:mathematics 134:non-quantum 119:square root 44:mathematics 4087:Categories 4032:Arithmetic 4025:Other sets 3984:-dependent 3594:Cornacchia 3589:Chakravala 3137:algorithms 2948:Strong RSA 2938:Phi-hiding 2730:References 2532:Stan Wagon 2180:2022-06-22 1694:= 5, ..., 1573:(log| 1506:generators 1459:Denote by 1316:L-notation 1079:Category 2 1036:Williams' 1025:Pollard's 985:Category 1 710:Peter Shor 425:semiprimes 417:Among the 411:See also: 391:⌉ = 137292 204:public-key 181:semiprimes 142:difficulty 4062:Descartes 4037:Deficient 3972:Betrothed 3877:Practical 3766:Semiprime 3761:Composite 3568:Berlekamp 3525:Euclidean 3413:Euclidean 3393:Toom–Cook 3388:Karatsuba 2360:1887/2149 2328:215746906 1984:in which 1896:Δ 1888:∈ 1881:∏ 1836:∈ 1829:∏ 1668:Take the 1443:forms in 1285:⁡ 1279:⁡ 1264:⁡ 1088:Kraitchik 1043:algorithm 1032:algorithm 732:space on 724:time and 656:⁡ 650:⁡ 619:⁡ 545:⁡ 531:in time: 459:algorithm 443:Xeon Gold 138:algorithm 4047:Solitary 4042:Friendly 3967:Sociable 3957:Amicable 3945:-related 3898:Abundant 3796:Achilles 3786:Powerful 3699:Overview 3535:Lehmer's 3429:Chunking 3416:division 3345:Fermat's 3029:Lattices 3003:Pairings 2858:download 2790:(2013). 2743:(2001). 2534:(2000). 2487:(eds.), 2432:11780055 2375:12 March 2245:(2011), 2091:See also 1800: : 1657:, where 1431:, where 1322:and the 1312:little-o 1135:(SQUFOF) 1102:method. 477:in time 316:, where 269:= 171 × 152:and the 148:such as 4052:Sublime 4006:Harshad 3832:Perfect 3816:Unusual 3806:Regular 3776:Sphenic 3711:Divisor 3651:Italics 3573:Kunerth 3553:Cipolla 3434:Fourier 3403:FĂŒrer's 3297:Euler's 3287:Dixon's 3210:PĂ©pin's 2719:1137100 2638:0878705 2593:0657269 2507:2467561 2440:4400832 2412:Bibcode 2320:2500087 2275:2789493 2040:2-Sylow 1758:⁠ 1744:⁠ 1577:|) 1496:⁠ 1482:⁠ 1114:(CFRAC) 858:⁠ 842:⁠ 807:, does 439:RSA-250 432:RSA-240 401:1372933 386:√ 353:√ 340:√ 324:√ 310:1372933 246:Testing 232:By the 202:-based 60:factors 56:product 54:into a 4001:Frugal 3961:Triple 3801:Smooth 3771:Pronic 3633:Schoof 3520:Binary 3424:Binary 3360:Shor's 3178:Fermat 2847:msieve 2829:  2800:  2779:  2751:  2717:  2636:  2591:  2550:  2544:168–69 2505:  2495:  2438:  2430:  2393:Nature 2366:  2326:  2318:  2308:  2273:  2263:  2171:  2042:group 1986:Δ = −4 1441:smooth 1092:family 1045:, and 894:. The 760:  312:, and 278:where 172:, and 78:, but 4016:Smith 3933:Weird 3811:Rough 3756:Prime 3454:Short 3183:Lucas 2693:(PDF) 2656:(PDF) 2436:S2CID 2402:arXiv 2324:S2CID 2217:(PDF) 2138:Notes 2009:Δ = ( 1737:with 1687:= 3, 1680:= 2, 1652:Δ = − 1537:with 1472:with 1426:Δ = − 1085:, or 862:with 829:co-NP 306:13729 283:< 227:2 × 3 223:= 864 3982:Base 3449:Long 3383:Long 2827:ISBN 2798:ISBN 2777:ISBN 2749:ISBN 2739:and 2548:ISBN 2530:and 2493:ISBN 2428:PMID 2377:2021 2364:ISBN 2306:ISBN 2261:ISBN 2169:ISBN 1993:Δ = 1789:and 1717:Let 1646:Let 1637:Let 1314:and 827:and 787:and 393:for 371:and 185:bits 160:and 3613:LLL 3459:SRT 3318:+ 1 3310:− 1 3158:APR 3153:AKS 3050:gap 3040:gap 2705:doi 2668:doi 2624:doi 2581:doi 2420:doi 2398:414 2356:hdl 2348:doi 2298:doi 2253:doi 2225:doi 2161:doi 2055:(Δ) 2050:of 2048:(Δ) 2044:Sll 2021:+ 2 2013:− 2 2007:or 2001:− 4 1991:or 1773:of 1764:= 1 1628:gcd 1595:of 1541:in 1528:of 1508:of 1502:= 1 1359:of 1310:in 1282:log 1276:log 1261:log 1041:+ 1 1030:− 1 987:or 964:RSA 904:BQP 740:NMR 653:log 647:log 616:log 542:exp 457:No 358:= 2 244:.) 225:as 200:RSA 121:of 42:In 4089:: 3617:KZ 3615:; 2822:- 2765:. 2715:MR 2713:. 2699:. 2695:. 2680:^ 2664:50 2662:. 2658:. 2634:MR 2632:. 2620:48 2618:. 2614:. 2589:MR 2587:. 2575:. 2571:. 2546:. 2519:^ 2503:MR 2501:, 2483:; 2479:; 2471:; 2434:. 2426:. 2418:. 2410:. 2396:. 2362:. 2354:. 2322:, 2316:MR 2314:, 2304:, 2271:MR 2269:, 2259:, 2167:, 2087:. 2066:. 2017:)( 1988:ac 1972:∈ 1961:, 1957:, 1935:1. 1804:∈ 1709:∈ 1654:dn 1588:. 1428:dn 1424:, 1394:, 1390:, 1375:. 1334:. 1081:, 1034:, 900:UP 867:≀ 836:= 825:NP 753:. 726:O( 718:O( 503:)) 403:. 376:+ 365:− 351:= 345:− 338:= 308:, 273:× 176:. 168:, 113:, 109:, 94:. 72:15 46:, 3963:) 3959:( 3686:e 3679:t 3672:v 3619:) 3611:( 3316:p 3308:p 3126:e 3119:t 3112:v 3052:) 3048:( 3042:) 3038:( 2911:e 2904:t 2897:v 2835:. 2808:. 2806:. 2757:. 2721:. 2707:: 2701:5 2674:. 2670:: 2640:. 2626:: 2583:: 2577:3 2556:. 2514:. 2457:. 2442:. 2422:: 2414:: 2404:: 2379:. 2358:: 2350:: 2300:: 2255:: 2231:. 2227:: 2163:: 2124:p 2083:n 2081:L 2057:. 2053:G 2046:2 2036:n 2032:n 2027:. 2025:) 2023:a 2019:b 2015:a 2011:b 2005:) 2003:c 1999:a 1997:( 1995:a 1982:Δ 1977:Δ 1974:G 1970:f 1965:) 1963:c 1959:b 1955:a 1953:( 1932:= 1928:) 1922:) 1919:q 1916:( 1913:t 1908:q 1904:f 1892:P 1885:q 1876:( 1872:. 1868:) 1862:) 1859:x 1856:( 1853:r 1849:x 1840:X 1833:x 1824:( 1811:} 1809:Δ 1806:P 1802:q 1797:q 1793:f 1791:{ 1787:X 1782:. 1779:Δ 1776:G 1771:X 1766:. 1762:) 1754:q 1750:/ 1747:Δ 1740:( 1734:Δ 1731:G 1724:q 1720:f 1714:. 1711:N 1707:t 1700:t 1696:p 1692:3 1689:p 1685:2 1682:p 1678:1 1675:p 1670:t 1663:Δ 1659:d 1648:Δ 1639:n 1632:n 1624:Δ 1619:Δ 1616:G 1610:Δ 1607:G 1601:Δ 1598:G 1585:0 1582:c 1575:Δ 1571:0 1568:c 1563:q 1557:q 1553:f 1547:Δ 1544:P 1539:q 1534:Δ 1531:G 1524:q 1520:f 1514:Δ 1511:G 1500:) 1492:q 1488:/ 1485:Δ 1478:( 1470:q 1465:Δ 1462:P 1454:d 1449:Δ 1446:G 1437:d 1433:d 1422:n 1418:Δ 1414:n 1410:n 1398:) 1396:c 1392:b 1388:a 1386:( 1381:Δ 1378:G 1372:Δ 1369:G 1364:Δ 1347:n 1345:L 1291:) 1288:n 1273:( 1270:) 1267:n 1258:( 1253:) 1250:) 1247:1 1244:( 1241:o 1238:+ 1235:1 1232:( 1228:e 1224:= 1220:] 1216:) 1213:1 1210:( 1207:o 1204:+ 1201:1 1198:, 1192:2 1189:1 1182:[ 1176:n 1172:L 1039:p 1028:p 947:n 941:b 935:n 929:n 923:n 891:n 881:k 875:n 869:k 865:d 860:) 854:d 850:/ 846:n 840:( 838:d 834:n 816:k 810:n 795:k 775:n 735:b 730:) 728:b 722:) 720:b 701:n 683:. 679:) 672:3 669:2 663:) 659:n 643:( 635:3 632:1 626:) 622:n 612:( 606:) 602:) 599:1 596:( 593:o 590:+ 584:3 581:2 575:) 569:3 566:8 560:( 554:( 549:( 528:n 522:b 508:Δ 501:Δ 491:k 486:) 484:b 482:( 480:O 474:n 468:b 420:b 396:a 384:⌈ 378:b 374:a 367:b 363:a 355:4 347:n 343:a 336:b 327:n 322:⌈ 301:n 295:p 285:q 281:p 275:q 271:p 267:n 221:n 123:n 115:5 111:3 107:2 99:n 80:7 30:: 23:.

Index

Prime decomposition of 3-manifolds
(more unsolved problems in computer science)
mathematics
positive integer
product
factors
composite number
prime number
prime factorization theorem
trial division
square root
testing whether each factor is prime
non-quantum
algorithm
difficulty
cryptography
RSA public-key encryption
RSA digital signature
mathematics
computer science
elliptic curves
algebraic number theory
quantum computing
semiprimes
bits
Fermat's factorization method
RSA problem
RSA
public-key

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑