Knowledge

Power outage

Source đź“ť

407:
have a greater effect on the surrounding components due to individual components carrying a larger load. This results in the larger load from the failing component having to be redistributed in larger quantities across the system, making it more likely for additional components not directly affected by the disturbance to fail, igniting costly and dangerous cascading failures. These initial disturbances causing blackouts are all the more unexpected and unavoidable due to actions of the power suppliers to prevent obvious disturbances (cutting back trees, separating lines in windy areas, replacing aging components etc.). The complexity of most power grids often makes the initial cause of a blackout extremely hard to identify.
350: 51: 1613: 174: 2192: 182: 540: 252: 286:
resilience of the network over time, which is only corrected after a major failure occurs. In a 2003 publication, Carreras and co-authors claimed that reducing the likelihood of small outages only increases the likelihood of larger ones. In that case, the short-term economic benefit of keeping the individual customer happy increases the likelihood of large-scale blackouts.
297:", the process of restoring electricity after a system-wide power loss. The hearing's purpose was for Congress to learn about what the backup plans are in the electric utility industry in the case that the electric grid is damaged. Threats to the electrical grid include cyberattacks, solar storms, and severe weather, among others. For example, the " 388:
Conversely, a system past the critical point will experience too many blackouts leading to system-wide upgrades moving it back below the critical point. The term critical point of the system is used here in the sense of statistical physics and nonlinear dynamics, representing the point where a system undergoes a
164:
for backup and also a socket for connecting a generator during extended periods of outage. During a power outage, there is a disruption in the supply of electricity, resulting in a loss of power to homes, businesses, and other facilities. Power outages can occur for various reasons, including severe
340:
utilities will establish localized 'power islands' which are then progressively coupled together. To maintain supply frequencies within tolerable limits during this process, demand must be reconnected at the same pace that generation is restored, requiring close coordination between power stations,
450:
proposed a mathematical model for the behavior of electrical distribution systems. This model has become known as the OPA model, a reference to the names of the authors' institutions. OPA is a cascading failure model. Other cascading failure models include Manchester, Hidden failure, CASCADE, and
406:
relationship is seen in both historical data and model systems. The practice of operating these systems much closer to their maximum capacity leads to magnified effects of random, unavoidable disturbances due to aging, weather, human interaction etc. While near the critical point, these failures
309:
Computer systems and other electronic devices containing logic circuitry are susceptible to data loss or hardware damage that can be caused by the sudden loss of power. These can include data networking equipment, video projectors, alarm systems as well as computers. To protect computer systems
285:
Modern power systems are designed to be resistant to this sort of cascading failure, but it may be unavoidable (see below). Moreover, since there is no short-term economic benefit to preventing rare large-scale failures, researchers have expressed concern that there is a tendency to erode the
387:
While blackout frequency has been shown to be reduced by operating it further from its critical point, it generally is not economically feasible, causing providers to increase the average load over time or upgrade less often resulting in the grid moving itself closer to its critical point.
314:
or 'UPS' can provide a constant flow of electricity if a primary power supply becomes unavailable for a short period of time. To protect against surges (events where voltages increase for a few seconds), which can damage hardware when power is restored, a special device called a
486:
In addition to the finding of each mitigation strategy having a cost-benefit relationship with regards to frequency of small and large blackouts, the total number of blackout events was not significantly reduced by any of the above-mentioned mitigation measures.
384:. These systems exhibit unavoidable disturbances of all sizes, up to the size of the entire system. This phenomenon has been attributed to steadily increasing demand/load, the economics of running a power company, and the limits of modern engineering. 392:; in this case the transition from a steady reliable grid with few cascading failures to a very sporadic unreliable grid with common cascading failures. Near the critical point the relationship between blackout frequency and size follows a 478:
Combination of increasing critical number and max load of lines – Shown to have no significant effect on either size of blackout. The resulting minor reduction in the frequency of blackouts is projected to not be worth the cost of the
327:
Restoring power after a wide-area outage can be difficult, as power stations need to be brought back online. Normally, this is done with the help of power from the rest of the grid. In the total absence of grid power, a so-called
463:
The effects of trying to mitigate cascading failures near the critical point in an economically feasible fashion are often shown to not be beneficial and often even detrimental. Four mitigation methods have been tested using the
455:– Crucitti–Latora–Marchiori (CLM) model, showing that both models exhibit similar phase transitions in the average network damage (load shed/demand in OPA, path damage in CLM), with respect to transmission capacity. 208:
in an electrical power supply. The term brownout comes from the dimming experienced by incandescent lighting when the voltage sags. Brownouts can cause poor performance of equipment or even incorrect operation.
222:
occur when demand for electricity exceeds supply, and allow some customers to receive power at the required voltage at the expense of other customers who get no power at all. They are a common occurrence in
215:
tripping are particularly difficult to recover from quickly. Outages may last from a few minutes to a few weeks depending on the nature of the blackout and the configuration of the electrical network.
211:
A blackout is the total loss of power to a wider area and of long duration. It is the most severe form of power outage that can occur. Blackouts which result from or result in
790: 290: 263:, the power generation and the electrical load (demand) must be very close to equal every second to avoid overloading of network components, which can severely damage them. 301:" was caused when overgrown trees touched high-voltage power lines. Around 55 million people in the U.S. and Canada lost power, and restoring it cost around $ 6 billion. 231:
of 2000–2001, when government deregulation destabilized the wholesale electricity market. Blackouts are also used as a public safety measure, such as to prevent a
472:
Increase critical number of failures causing cascading blackouts – Shown to decrease the frequency of smaller blackouts but increase that of larger blackouts.
410:
Leaders are dismissive of system theories that conclude that blackouts are inevitable, but do agree that the basic operation of the grid must be changed. The
1276: 686: 1238:
Nedic, Dusko P.; Dobson, Ian; Kirschen, Daniel S.; Carreras, Benjamin A.; Lynch, Vickie E. (2006). "Criticality in a cascading failure blackout model".
906: 816: 1464: 274:
Under certain conditions, a network component shutting down can cause current fluctuations in neighboring segments of the network leading to a
255:
Tree limbs creating a short circuit in power lines during a storm. This typically results in a power outage in the area supplied by these lines
1197:
Dobson, I.; Carreras, B. A.; Lynch, V. E.; Newman, D. E. (2001). "An initial model for complex dynamics in electric power system blackouts".
924: 482:
Increase the excess power available to the grid – Shown to decrease the frequency of smaller blackouts but increase that of larger blackouts.
2137: 1350:
Cupac, V.; Lizier, J.T.; Prokopenko, M. (2013). "Comparing dynamics of cascading failures between network-centric and power flow models".
1180: 761: 336:
the power grid into operation. The means of doing so will depend greatly on local circumstances and operational policies, but typically
475:
Increase individual power line max load – Shown to increase the frequency of smaller blackouts and decrease that of larger blackouts.
821:. 35th Annual Hawaii International Conference on System Sciences (HICSS'02), January 7–10, 2002. Big Island, Hawaii. Archived from 227:, and may be scheduled in advance or occur without warning. They have also occurred in developed countries, for example in the 845: 1214: 1036: 739: 122: 136:
Power failures are particularly critical at sites where the environment and public safety are at risk. Institutions such as
2195: 1612: 165:
weather conditions (such as storms, hurricanes, or snowstorms), equipment failure, grid overload, or planned maintenance.
2034: 2142: 1457: 1106: 627: 571: 367: 1762: 411: 932:. Proceedings of Hawaii International Conference on System Sciences, January 4–7, 2000, Maui, Hawaii. Archived from 2221: 1925: 1850: 1721: 1333: 602: 236: 189:
Power outages are categorized into three different phenomena, relating to the duration and effect of the outage:
55: 278:
of a larger section of the network. This may range from a building, to a block, to an entire city, to an entire
691: 681: 447: 240: 101:
There are many causes of power failures in an electricity network. Examples of these causes include faults at
2097: 2029: 2019: 1895: 1795: 1450: 439: 228: 35: 967:"Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization" 349: 1950: 1910: 1487: 637: 501:
In 2015, one of the solutions proposed to reduce the impact of power outage was introduced by M. S. Saleh.
311: 2177: 2172: 1890: 1865: 1855: 1831: 1826: 1532: 1134:"Critical points and transitions in an electric power transmission model for cascading failure blackouts" 822: 651: 423: 337: 106: 1023:. 2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE). pp. 195–200. 875: 2092: 1810: 1780: 1557: 701: 696: 427: 381: 298: 2147: 1636: 1597: 656: 17: 1252: 2122: 1930: 1870: 1527: 607: 152:, which will automatically start up when electrical power is lost. Other critical systems, such as 114: 933: 847:
Dynamics, Criticality and Self-organization in a Model for Blackouts in Power Transmission Systems
791:"Senate Hearing Examines Electric Industry's Ability to Restore Power after System-wide Blackouts" 2061: 2051: 2041: 676: 612: 443: 419: 333: 876:"Suppressing cascades in a self-organized-critical model with non-contiguous spread of failures" 2216: 1982: 1845: 1628: 1517: 1247: 201: 149: 1133: 2117: 1885: 1880: 1860: 772: 586: 566: 373: 161: 110: 1711: 1473: 1396: 1301: 1148: 978: 890: 853:. Hawaii International Conference on Systems Sciences, January 2002, Hawaii. Archived from 666: 239:), or to prevent wildfires around poorly maintained transmission lines (such as during the 224: 724:
What happens during a blackout – Consequences of a prolonged and wide-ranging power outage
8: 2082: 1915: 1815: 1790: 1743: 1552: 1542: 1507: 722:
Petermann, Thomas; Bradke, Harald; LĂĽllmann, Arne; Poetzsch, Maik; Riehm, Ulrich (2011).
671: 592: 271:
are used to automatically detect overloads and to disconnect circuits at risk of damage.
193:
A transient fault is a loss of power typically caused by a fault on a power line, e.g. a
1400: 1305: 1152: 982: 894: 451:
Branching. The OPA model was quantitatively compared with a complex networks model of a
50: 30:
This article is about accidental power failures. For intentionally engineered ones, see
1956: 1567: 1420: 1386: 1325: 1291: 1220: 1081: 1042: 661: 260: 2107: 1987: 1592: 1412: 1317: 1210: 1172: 1164: 1032: 996: 735: 491: 452: 399: 275: 268: 153: 126: 1085: 1046: 2056: 1997: 1701: 1696: 1673: 1582: 1522: 1424: 1404: 1359: 1329: 1309: 1257: 1224: 1202: 1156: 1073: 1024: 986: 898: 854: 727: 622: 617: 389: 264: 235:
from catching fire (for example, power was cut to several towns in response to the
219: 141: 91: 31: 1408: 1061: 1020:
Impact of clustering microgrids on their stability and resilience during blackouts
1017:
Saleh, M. S.; Althaibani, A.; Esa, Y.; Mhandi, Y.; Mohamed, A. A. (October 2015).
926:
Initial Evidence for Self-Organized Criticality in Electric Power System Blackouts
2087: 2046: 2024: 1905: 1875: 1840: 1800: 1602: 1363: 1261: 1199:
Proceedings of the 34th Annual Hawaii International Conference on System Sciences
597: 422:
to coordinate the grid. Others advocate greater use of electronically controlled
316: 279: 130: 1028: 902: 2112: 2102: 1900: 1512: 1313: 1077: 965:
Dobson, Ian; Carreras, Benjamin A.; Lynch, Vickie E.; Newman, David E. (2007).
818:
Examining Criticality of Blackouts in Power System Models with Cascading Events
1377:
Motter, Adilson E. (2004). "Cascade Control and Defense in Complex Networks".
1206: 1109:. Board of Regents of the University of Wisconsin System. 2014. Archived from 426:(HVDC) firebreaks to prevent disturbances from cascading across AC lines in a 2210: 2132: 1920: 1805: 1785: 1716: 1706: 1663: 1547: 1502: 1168: 1018: 560: 554: 545: 212: 194: 118: 102: 1110: 731: 2152: 2127: 1961: 1775: 1577: 1416: 1321: 1176: 1000: 157: 1977: 1945: 1738: 1726: 1646: 1572: 1562: 1492: 1391: 1296: 576: 329: 294: 197:
or flashover. Power is automatically restored once the fault is cleared.
1940: 1935: 1748: 1731: 1587: 1442: 632: 415: 377: 1160: 991: 966: 173: 1656: 1651: 1537: 1497: 403: 393: 344: 181: 42: 1770: 726:. Berlin: Office of Technology Assessment at the German Bundestag. 232: 137: 95: 1691: 1681: 1132:
Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E. (2002).
923:
Carreras, B. A.; Newman, D. E.; Dobson, I.; Poole, A. B. (2000).
760:
Carreras, B. A.; Lynch, V. E.; Newman, D. E.; Dobson, I. (2003).
539: 304: 251: 1686: 721: 581: 509:
Utilities are measured on three specific performance measures:
145: 1240:
International Journal of Electrical Power & Energy Systems
762:"Blackout Mitigation Assessment in Power Transmission Systems" 525: 519: 513: 354: 1352:
International Journal of Electrical Power and Energy Systems
1641: 1237: 402:
becomes much more common close to this critical point. The
322: 246: 205: 41:"Power cut" redirects here. For the 2012 Punjabi film, see 815:
Dobson, I.; Chen, J.; Thorp, J.; Carreras, B.; Newman, D.
1196: 1131: 964: 922: 844:
Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E.
759: 54:
Vehicle lights provided the only illumination during the
1141:
Chaos: An Interdisciplinary Journal of Nonlinear Science
1016: 971:
Chaos: An Interdisciplinary Journal of Nonlinear Science
442:(ORNL), Power System Engineering Research Center of the 1274: 769:
36th Hawaii International Conference on System Sciences
458: 1349: 843: 960: 958: 956: 954: 535: 1277:"TModel for cascading failures in complex networks" 916: 814: 345:Blackout inevitability and electric sustainability 951: 418:features such as power control devices employing 156:, are also required to have emergency power. The 2208: 1275:Crucitti, P.; Latora, V.; Marchiori, M. (2004). 687:February 13–17, 2021 North American winter storm 291:Senate Committee on Energy and Natural Resources 490:A complex network-based model to control large 148:will usually have backup power sources such as 873: 305:Protecting computer systems from power outages 160:of a telephone exchange usually has arrays of 1458: 526:Customer Average Interruption Frequency Index 504: 361: 341:transmission and distribution organizations. 319:that absorbs the excess voltage can be used. 520:Customer Average Interruption Duration Index 1107:"Power Systems Engineering Research Center" 293:held a hearing in October 2018 to examine " 1465: 1451: 1370: 514:System Average Interruption Duration Index 1390: 1295: 1251: 990: 788: 755: 753: 751: 353:Comparison of duration of power outages ( 1472: 869: 867: 348: 323:Restoring power after a wide-area outage 250: 247:Protecting the power system from outages 180: 172: 49: 1190: 1059: 837: 808: 14: 2209: 1376: 1012: 1010: 748: 1446: 864: 874:Hoffmann, H.; Payton, D. W. (2014). 789:Kovaleski, Dave (October 15, 2018). 459:Mitigation of power outage frequency 1186:from the original on March 5, 2016. 1125: 1007: 912:from the original on March 4, 2016. 372:It has been argued on the basis of 24: 2143:Renewable energy commercialization 628:Self-organized criticality control 572:Critical infrastructure protection 368:Self-organized criticality control 25: 2233: 1435: 412:Electric Power Research Institute 27:Loss of electric power to an area 2191: 2190: 1611: 538: 1343: 1268: 1231: 1099: 1053: 603:List of energy storage projects 382:self-organized critical systems 237:Merrimack Valley gas explosions 56:2009 Ecuador electricity crisis 782: 715: 692:New York City blackout of 1977 682:2019 California power shutoffs 498:was proposed by A. E. Motter. 448:University of Alaska Fairbanks 241:2019 California power shutoffs 13: 1: 2138:Renewable Energy Certificates 2098:Cost of electricity by source 2020:Arc-fault circuit interrupter 1896:High-voltage shore connection 1409:10.1103/PhysRevLett.93.098701 708: 440:Oak Ridge National Laboratory 229:California electricity crisis 36:Power Outage (disambiguation) 2153:Spark/Dark/Quark/Bark spread 1951:Transmission system operator 1911:Mains electricity by country 1488:Automatic generation control 1364:10.1016/j.ijepes.2013.01.017 1262:10.1016/j.ijepes.2006.03.006 883:Chaos, Solitons and Fractals 638:Uninterruptible power supply 496:using local information only 433: 312:uninterruptible power supply 310:against this, the use of an 7: 2178:List of electricity sectors 2173:Electric energy consumption 1891:High-voltage direct current 1866:Electric power transmission 1856:Electric power distribution 1533:Energy return on investment 1029:10.1109/ICSGCE.2015.7454295 903:10.1016/j.chaos.2014.06.011 652:List of major power outages 531: 424:high-voltage direct current 376:and computer modeling that 107:electric transmission lines 10: 2238: 2093:Carbon offsets and credits 1811:Three-phase electric power 1314:10.1103/PhysRevE.69.045104 1078:10.1109/MSPEC.2004.1318179 702:Northeast blackout of 2003 697:Northeast blackout of 1965 505:Key performance indicators 365: 362:Self-organized criticality 299:Northeast Blackout of 2003 40: 29: 2186: 2161: 2148:Renewable Energy Payments 2071: 2008: 1970: 1824: 1761: 1672: 1637:Fossil fuel power station 1627: 1620: 1609: 1480: 1207:10.1109/HICSS.2001.926274 657:2019 Venezuelan blackouts 332:needs to be performed to 1931:Single-wire earth return 1871:Electrical busbar system 1528:Energy demand management 771:. Hawaii. Archived from 608:Outage management system 438:In 2002, researchers at 168: 2062:Residual-current device 2052:Power system protection 2042:Generator interlock kit 1379:Physical Review Letters 1062:"The Unruly Power Grid" 1060:Fairley, Peter (2004). 677:2011 Southwest blackout 613:Proactive cyber defence 444:University of Wisconsin 142:sewage treatment plants 2222:Electric power quality 1846:Distributed generation 1518:Electric power quality 358: 256: 186: 178: 113:or other parts of the 59: 34:. For other uses, see 2118:Fossil fuel phase-out 1886:Electricity retailing 1881:Electrical substation 1861:Electric power system 825:on September 12, 2003 732:10.5445/IR/1000103292 587:Electromagnetic pulse 567:Coronal mass ejection 522:, measured in minutes 516:, measured in minutes 414:champions the use of 366:Further information: 352: 261:power supply networks 254: 184: 176: 94:network supply to an 90:) is the loss of the 53: 1474:Electricity delivery 795:Daily Energy Insider 667:2012 India blackouts 225:developing countries 2083:Availability factor 2035:Sulfur hexafluoride 1916:Overhead power line 1816:Virtual power plant 1791:Induction generator 1744:Sustainable biofuel 1553:Home energy storage 1543:Grid energy storage 1508:Droop speed control 1401:2004PhRvL..93i8701M 1306:2004PhRvE..69d5104C 1153:2002Chaos..12..985C 983:2007Chaos..17b6103D 895:2014CSF....67...87H 860:on August 21, 2003. 672:2003 Italy blackout 645:Major power outages 593:Energy conservation 162:lead–acid batteries 1957:Transmission tower 1568:Nameplate capacity 1339:on April 24, 2017. 1290:(4 Pt 2): 045104. 662:2019 Java blackout 492:cascading failures 359: 257: 187: 179: 150:standby generators 60: 2204: 2203: 2108:Environmental tax 1988:Cascading failure 1757: 1756: 1593:Utility frequency 1284:Physical Review E 1216:978-0-7695-0981-5 1161:10.1063/1.1505810 1038:978-1-4673-8732-3 992:10.1063/1.2737822 939:on March 29, 2003 778:on April 1, 2011. 741:978-3-7322-9329-2 453:cascading failure 446:(PSerc), and the 400:Cascading failure 276:cascading failure 265:Protective relays 220:Rolling blackouts 154:telecommunication 123:cascading failure 16:(Redirected from 2229: 2194: 2193: 2103:Energy subsidies 2057:Protective relay 1998:Rolling blackout 1625: 1624: 1615: 1583:Power-flow study 1523:Electrical fault 1467: 1460: 1453: 1444: 1443: 1429: 1428: 1394: 1392:cond-mat/0401074 1374: 1368: 1367: 1347: 1341: 1340: 1338: 1332:. Archived from 1299: 1297:cond-mat/0309141 1281: 1272: 1266: 1265: 1255: 1235: 1229: 1228: 1194: 1188: 1187: 1185: 1138: 1129: 1123: 1122: 1120: 1118: 1113:on June 12, 2015 1103: 1097: 1096: 1094: 1092: 1057: 1051: 1050: 1014: 1005: 1004: 994: 962: 949: 948: 946: 944: 938: 931: 920: 914: 913: 911: 880: 871: 862: 861: 859: 852: 841: 835: 834: 832: 830: 812: 806: 805: 803: 801: 786: 780: 779: 777: 766: 757: 746: 745: 719: 623:Rolling blackout 618:Renewable energy 548: 543: 542: 468:blackout model: 420:advanced sensors 390:phase transition 92:electrical power 32:rolling blackout 21: 2237: 2236: 2232: 2231: 2230: 2228: 2227: 2226: 2207: 2206: 2205: 2200: 2182: 2166: 2164: 2157: 2088:Capacity factor 2076: 2074: 2067: 2047:Numerical relay 2025:Circuit breaker 2013: 2011: 2004: 1966: 1906:Load management 1876:Electrical grid 1841:Demand response 1834: 1829: 1820: 1801:Microgeneration 1753: 1668: 1616: 1607: 1603:Vehicle-to-grid 1476: 1471: 1440: 1438: 1433: 1432: 1375: 1371: 1348: 1344: 1336: 1279: 1273: 1269: 1253:10.1.1.375.2146 1236: 1232: 1217: 1201:. p. 710. 1195: 1191: 1183: 1136: 1130: 1126: 1116: 1114: 1105: 1104: 1100: 1090: 1088: 1058: 1054: 1039: 1015: 1008: 963: 952: 942: 940: 936: 929: 921: 917: 909: 878: 872: 865: 857: 850: 842: 838: 828: 826: 813: 809: 799: 797: 787: 783: 775: 764: 758: 749: 742: 720: 716: 711: 706: 642: 598:Internet outage 544: 537: 534: 507: 479:implementation. 461: 436: 374:historical data 370: 364: 347: 325: 317:surge protector 307: 280:electrical grid 249: 185:Transient fault 171: 131:circuit breaker 66:(also called a 46: 39: 28: 23: 22: 15: 12: 11: 5: 2235: 2225: 2224: 2219: 2202: 2201: 2199: 2198: 2187: 2184: 2183: 2181: 2180: 2175: 2169: 2167: 2163:Statistics and 2162: 2159: 2158: 2156: 2155: 2150: 2145: 2140: 2135: 2130: 2125: 2120: 2115: 2113:Feed-in tariff 2110: 2105: 2100: 2095: 2090: 2085: 2079: 2077: 2072: 2069: 2068: 2066: 2065: 2059: 2054: 2049: 2044: 2039: 2038: 2037: 2032: 2022: 2016: 2014: 2009: 2006: 2005: 2003: 2002: 2001: 2000: 1990: 1985: 1980: 1974: 1972: 1968: 1967: 1965: 1964: 1959: 1954: 1948: 1943: 1938: 1933: 1928: 1923: 1918: 1913: 1908: 1903: 1901:Interconnector 1898: 1893: 1888: 1883: 1878: 1873: 1868: 1863: 1858: 1853: 1851:Dynamic demand 1848: 1843: 1837: 1835: 1825: 1822: 1821: 1819: 1818: 1813: 1808: 1803: 1798: 1793: 1788: 1783: 1781:Combined cycle 1778: 1773: 1767: 1765: 1759: 1758: 1755: 1754: 1752: 1751: 1746: 1741: 1736: 1735: 1734: 1729: 1724: 1719: 1714: 1704: 1699: 1694: 1689: 1684: 1678: 1676: 1670: 1669: 1667: 1666: 1661: 1660: 1659: 1654: 1649: 1644: 1633: 1631: 1622: 1618: 1617: 1610: 1608: 1606: 1605: 1600: 1595: 1590: 1585: 1580: 1575: 1570: 1565: 1560: 1558:Load-following 1555: 1550: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1513:Electric power 1510: 1505: 1500: 1495: 1490: 1484: 1482: 1478: 1477: 1470: 1469: 1462: 1455: 1447: 1437: 1436:External links 1434: 1431: 1430: 1369: 1342: 1267: 1230: 1215: 1189: 1147:(4): 985–994. 1124: 1098: 1052: 1037: 1006: 950: 915: 863: 836: 807: 781: 747: 740: 713: 712: 710: 707: 705: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 654: 648: 641: 640: 635: 630: 625: 620: 615: 610: 605: 600: 595: 590: 584: 579: 574: 569: 564: 557: 551: 550: 549: 533: 530: 529: 528: 523: 517: 506: 503: 484: 483: 480: 476: 473: 460: 457: 435: 432: 428:wide area grid 396:distribution. 363: 360: 346: 343: 324: 321: 306: 303: 248: 245: 217: 216: 213:power stations 209: 198: 170: 167: 103:power stations 80:power blackout 26: 9: 6: 4: 3: 2: 2234: 2223: 2220: 2218: 2217:Power outages 2215: 2214: 2212: 2197: 2189: 2188: 2185: 2179: 2176: 2174: 2171: 2170: 2168: 2160: 2154: 2151: 2149: 2146: 2144: 2141: 2139: 2136: 2134: 2133:Pigouvian tax 2131: 2129: 2126: 2124: 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2080: 2078: 2070: 2063: 2060: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2036: 2033: 2031: 2030:Earth-leakage 2028: 2027: 2026: 2023: 2021: 2018: 2017: 2015: 2007: 1999: 1996: 1995: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1975: 1973: 1971:Failure modes 1969: 1963: 1960: 1958: 1955: 1952: 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1922: 1921:Power station 1919: 1917: 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1894: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1838: 1836: 1833: 1828: 1823: 1817: 1814: 1812: 1809: 1807: 1806:Rankine cycle 1804: 1802: 1799: 1797: 1794: 1792: 1789: 1787: 1786:Cooling tower 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1768: 1766: 1764: 1760: 1750: 1747: 1745: 1742: 1740: 1737: 1733: 1730: 1728: 1725: 1723: 1720: 1718: 1715: 1713: 1710: 1709: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1679: 1677: 1675: 1671: 1665: 1662: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1639: 1638: 1635: 1634: 1632: 1630: 1629:Non-renewable 1626: 1623: 1619: 1614: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1548:Grid strength 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1503:Demand factor 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1485: 1483: 1479: 1475: 1468: 1463: 1461: 1456: 1454: 1449: 1448: 1445: 1441: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1393: 1388: 1385:(9): 098701. 1384: 1380: 1373: 1365: 1361: 1357: 1353: 1346: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1298: 1293: 1289: 1285: 1278: 1271: 1263: 1259: 1254: 1249: 1245: 1241: 1234: 1226: 1222: 1218: 1212: 1208: 1204: 1200: 1193: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1135: 1128: 1112: 1108: 1102: 1087: 1083: 1079: 1075: 1071: 1067: 1066:IEEE Spectrum 1063: 1056: 1048: 1044: 1040: 1034: 1030: 1026: 1022: 1021: 1013: 1011: 1002: 998: 993: 988: 984: 980: 977:(2): 026103. 976: 972: 968: 961: 959: 957: 955: 935: 928: 927: 919: 908: 904: 900: 896: 892: 888: 884: 877: 870: 868: 856: 849: 848: 840: 824: 820: 819: 811: 796: 792: 785: 774: 770: 763: 756: 754: 752: 743: 737: 733: 729: 725: 718: 714: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 649: 647: 646: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 562: 561:Brittle Power 558: 556: 555:Energy crisis 553: 552: 547: 546:Energy portal 541: 536: 527: 524: 521: 518: 515: 512: 511: 510: 502: 499: 497: 493: 488: 481: 477: 474: 471: 470: 469: 467: 456: 454: 449: 445: 441: 431: 429: 425: 421: 417: 413: 408: 405: 401: 397: 395: 391: 385: 383: 379: 375: 369: 356: 351: 342: 339: 335: 331: 320: 318: 313: 302: 300: 296: 292: 287: 283: 281: 277: 272: 270: 266: 262: 253: 244: 242: 238: 234: 230: 226: 221: 214: 210: 207: 204:is a drop in 203: 199: 196: 195:short circuit 192: 191: 190: 183: 175: 166: 163: 159: 155: 151: 147: 143: 139: 134: 132: 128: 124: 120: 119:short circuit 116: 112: 108: 104: 99: 97: 93: 89: 85: 81: 77: 76:power failure 73: 69: 65: 57: 52: 48: 44: 37: 33: 19: 2128:Net metering 2075:and policies 1993:Power outage 1992: 1962:Utility pole 1926:Pumped hydro 1832:distribution 1827:Transmission 1776:Cogeneration 1578:Power factor 1439: 1382: 1378: 1372: 1355: 1351: 1345: 1334:the original 1287: 1283: 1270: 1243: 1239: 1233: 1198: 1192: 1144: 1140: 1127: 1115:. Retrieved 1111:the original 1101: 1089:. Retrieved 1072:(8): 22–27. 1069: 1065: 1055: 1019: 974: 970: 941:. Retrieved 934:the original 925: 918: 886: 882: 855:the original 846: 839: 827:. Retrieved 823:the original 817: 810: 798:. Retrieved 794: 784: 773:the original 768: 723: 717: 644: 643: 559: 508: 500: 495: 494:(blackouts) 489: 485: 465: 462: 437: 409: 398: 386: 371: 338:transmission 326: 308: 288: 284: 273: 258: 218: 188: 158:battery room 135: 115:distribution 105:, damage to 100: 87: 83: 79: 75: 71: 67: 64:power outage 63: 61: 47: 2123:Load factor 1978:Black start 1946:Transformer 1647:Natural gas 1598:Variability 1573:Peak demand 1563:Merit order 1493:Backfeeding 1358:: 369–379. 800:October 23, 577:Cyberattack 378:power grids 357:), in 2014. 355:SAIDI value 330:black start 295:black start 133:operation. 111:substations 2211:Categories 2165:production 2010:Protective 1941:Super grid 1936:Smart grid 1763:Generation 1697:Geothermal 1588:Repowering 1246:(9): 627. 943:August 17, 829:August 17, 709:References 633:Smart grid 416:smart grid 117:system, a 84:power loss 2073:Economics 1796:Micro CHP 1674:Renewable 1657:Petroleum 1652:Oil shale 1538:Grid code 1498:Base load 1248:CiteSeerX 1169:1054-1500 889:: 87–93. 434:OPA model 404:power-law 394:power-law 334:bootstrap 138:hospitals 72:power out 43:Power Cut 18:Power cut 2196:Category 1983:Brownout 1771:AC power 1481:Concepts 1417:15447153 1322:15169056 1181:Archived 1177:12779622 1117:June 23, 1091:June 24, 1086:19389285 1047:25664994 1001:17614690 907:Archived 532:See also 233:gas leak 202:brownout 177:Blackout 96:end user 88:blackout 68:powercut 2012:devices 1722:Thermal 1717:Osmotic 1712:Current 1692:Biomass 1682:Biofuel 1664:Nuclear 1621:Sources 1425:4856492 1397:Bibcode 1330:3824371 1302:Bibcode 1225:7708994 1149:Bibcode 979:Bibcode 891:Bibcode 206:voltage 86:, or a 1707:Marine 1687:Biogas 1423:  1415:  1328:  1320:  1250:  1223:  1213:  1175:  1167:  1084:  1045:  1035:  999:  738:  582:Dumsor 144:, and 2064:(GFI) 1953:(TSO) 1739:Solar 1727:Tidal 1702:Hydro 1421:S2CID 1387:arXiv 1337:(PDF) 1326:S2CID 1292:arXiv 1280:(PDF) 1221:S2CID 1184:(PDF) 1137:(PDF) 1082:S2CID 1043:S2CID 937:(PDF) 930:(PDF) 910:(PDF) 879:(PDF) 858:(PDF) 851:(PDF) 776:(PDF) 765:(PDF) 589:(EMP) 269:fuses 169:Types 146:mines 74:, a 1830:and 1749:Wind 1732:Wave 1642:Coal 1413:PMID 1318:PMID 1211:ISBN 1173:PMID 1165:ISSN 1119:2015 1093:2012 1033:ISBN 997:PMID 945:2003 831:2003 802:2018 736:ISBN 380:are 289:The 267:and 127:fuse 82:, a 78:, a 70:, a 1405:doi 1360:doi 1310:doi 1258:doi 1203:doi 1157:doi 1074:doi 1025:doi 987:doi 899:doi 728:doi 466:OPA 259:In 243:). 129:or 2213:: 1419:. 1411:. 1403:. 1395:. 1383:93 1381:. 1356:49 1354:. 1324:. 1316:. 1308:. 1300:. 1288:69 1286:. 1282:. 1256:. 1244:28 1242:. 1219:. 1209:. 1179:. 1171:. 1163:. 1155:. 1145:12 1143:. 1139:. 1080:. 1070:41 1068:. 1064:. 1041:. 1031:. 1009:^ 995:. 985:. 975:17 973:. 969:. 953:^ 905:. 897:. 887:67 885:. 881:. 866:^ 793:. 767:. 750:^ 734:. 430:. 282:. 200:A 140:, 125:, 121:, 109:, 98:. 62:A 1466:e 1459:t 1452:v 1427:. 1407:: 1399:: 1389:: 1366:. 1362:: 1312:: 1304:: 1294:: 1264:. 1260:: 1227:. 1205:: 1159:: 1151:: 1121:. 1095:. 1076:: 1049:. 1027:: 1003:. 989:: 981:: 947:. 901:: 893:: 833:. 804:. 744:. 730:: 58:. 45:. 38:. 20:)

Index

Power cut
rolling blackout
Power Outage (disambiguation)
Power Cut

2009 Ecuador electricity crisis
electrical power
end user
power stations
electric transmission lines
substations
distribution
short circuit
cascading failure
fuse
circuit breaker
hospitals
sewage treatment plants
mines
standby generators
telecommunication
battery room
lead–acid batteries


short circuit
brownout
voltage
power stations
Rolling blackouts

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑